고사일: 10월 24일, 목요일

1. Solve the following initial boundary value problem:

$$
\left\{\begin{array}{l}
\frac{\partial^{2} u}{\partial t^{2}}=\frac{\partial^{2} u}{\partial x^{2}}, \quad 0<x<1, t>0 \\
u(0, t)=0, \quad t \geq 0 \\
u(1, t)=0, \quad t \geq 0 \\
u(x, 0)=0, \quad 0<x<1 \\
\frac{\partial u}{\partial t}(x, 0)=2 \sin (\pi x)-3 \sin (2 \pi x), \quad 0<x<1 .
\end{array}\right.
$$

2. Consider the following initial value problem:

$$
\left\{\begin{array}{l}
\frac{\partial^{2} u}{\partial t^{2}}=2 \frac{\partial^{2} u}{\partial x^{2}}, \quad-\infty<x<\infty, t>0 \\
u(x, 0)=f(x), \quad-\infty<x<\infty \\
\frac{\partial u}{\partial t}(x, 0)=0, \quad-\infty<x<\infty
\end{array}\right.
$$

When f is supported in the intervals $[0,1]$ and $[2,3]$, draw the region in (x, t) half plane where the solution u vanishes.
3. Suppose that uniform traffic with density ρ_{1} cars per kilometer approaches the end of a line of traffic stopped at a red light. Ahead of the red light there are no cars, while the stopped traffic is at its maximum density ρ_{*} cars per kilometer. At time $t=0$, the red light turns green and the front of the line of stopped traffic begins to move forward. Our model for the resulting traffic density is

$$
\begin{aligned}
& \rho_{t}+v_{1}\left(1-\frac{2 \rho}{\rho_{*}}\right) \rho_{x}=0, \quad-\infty<x<\infty, t>0, \\
& \rho(x, 0)= \begin{cases}\rho_{1} & \text { if } x \leq-L \\
\rho_{*} & \text { if }-L<x<0 \\
0 & \text { if } x \geq 0\end{cases}
\end{aligned}
$$

Assume that $\rho_{1}=\frac{\rho_{*}}{2}$.
(1) Find the characteristics for this initial value problem and sketch them.
(2) Find the solution of the problem.

