- 1. Write down definitions of the following notions:
 - (1-1) Compact sets
 - (1-2) Connected sets
 - (1-3) Uniform continuity
- 2. Let A be a compact subset of a metric space M and $\{U_i\}$ be an open cover of A. Show that there is an r > 0 such that for each $y \in A$, $D(y, r) \subset U_i$ for some i.
- 3. Let $f : \mathbb{R} \to \mathbb{R}$ be a bounded function. Prove that f is continuous if and only if the graph of f is a closed subset of \mathbb{R}^2 .
- 4. Let

$$f(x) = \begin{cases} x^2 \sin \frac{1}{x}, & x \neq 0, \\ 0, & x = 0. \end{cases}$$

- (4-1) Show that f is differentiable at 0.
- (4-2) Is f' continuous at 0?
- 5. Let f be an increasing function of the interval [a, b].
 - (5-1) Show that f is integrable on [a, b].
 - (5-2) Show that the discontinuity of f is at most countable.
 - (5-3) Construct an increasing function on [a, b] which is discontinuous at countably many points.