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Abstract

In this paper we discuss scattering problems inherent in curved microstrip structures
mounted on thin dielectric structures. We provide approximate boundary conditions
for such structures in the framework of integral equations.
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1 Introduction

The solution of the scattering problem of a plane wave by a metallic target coated by a thin
dielectric substrate requires to solve a system of integral equations coupling the solution
in the gain and the surrounding medium. Then, the resulting method is both time and
memory consuming. Moreover, since the scale of the spatial change in electromagnetic fields
in the direction of the thickness of such a thin layer is considerably different from that in
the transverse directions, such a direct formulation suffers from numerical instabilities if
the dielectric layer is too thin. An alternative to this approach consists in approximately
simulating the interior propagation phenomenon by the way of a boundary conditions, the
so-called approximate boundary conditions, set on the surface of the obstacle and next to
solve the associated scattering problem. See [4, 12, 10, 3].

In this paper we discuss scattering problems inherent in curved microstrip structures
mounted on thin dielectric layers. These structures are widely used in printed-circuit tech-
nology, microwave integrated circuits, and the antenna industry [9, 14, 7, 11]. It has been
difficult to analyze electromagnetic fields around such structures. Indeed, the classical ap-
proximate boundary conditions do not provide an accurate approximation of the electro-
magnetic fields due to the fact that the presence of the microstrip patch causes a change in
the relation between the electromagnetic fields at the dielectric interface.
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This paper extends the concept of approximate boundary conditions to microstrip struc-
tures and gives a detailed mathematical derivation of an approximate boundary condition
for a microstrip patch in the framework of integral equations.

2 Problem formulation

Let Ω be a bounded domain in R2, with a connected C2,α, 0 < α < 1, boundary. For h > 0,
let Ωd := {x ∈ R2 \ Ω : dist(x, ∂Ω) < h} and Ωe := R2 \ (Ω ∪ Ωd). We assume that the
outer part of ∂Ωd consists of two disjoint parts Γ and Γe so that ∂Ωd = Γ ∪ Γe ∪ ∂Ω. Put
Γ0 := {x ∈ ∂Ω : x + hνx ∈ Γ}, where ν denotes the outward normal to ∂Ω. The domain Ωd

represents the thin dielectric structure while Γ represents the antenna patch mounted on it.
The profiles of electric permeability and permittivity are given by

µh(x) =

{
µd, x ∈ Ωd,

µe, x ∈ Ωe,

εh(x) =

{
εd, x ∈ Ωd,

εe, x ∈ Ωe,

where µd, µe, εd and εe are positive constants. If we allow the degenerate case h = 0, then
the functions µh(x) and εh(x) are equal to the constants µe and εe.

Let kd := ω
√

µdεd and define ke likewise. For a given incident wave Ei, let EΓ
h denote

the solution to the scattering problem

∇ · 1
µh
∇EΓ

h (x) + ω2εhEΓ
h (x) = 0, x ∈ Ωe ∪ Ωd,

with the radiation condition

lim
|x|→∞

√
|x|

(∂(EΓ
h − Ei)(x)
∂|x| − iωke(EΓ

h − Ei)(x)
)

= 0,

and the Dirichlet boundary condition

EΓ
h = 0 on ∂Ω ∪ Γ. (2.1)

Then the scattering problem in the presence of the patch can be written as




(∆ + k2
e)EΓ

h = 0 in Ωe,

(∆ + k2
d)EΓ

h = 0 in Ωd,

EΓ
h = 0 on Γ ∪ ∂Ω,

EΓ
h |+ = EΓ

h |− on ∂Ωe,

1
µe

∂EΓ
h

∂ν

∣∣∣
+

=
1
µd

∂EΓ
h

∂ν

∣∣∣
−

on Γe,

lim
|x|→∞

√
|x|

(∂(EΓ
h − Ei)(x)
∂|x| − ike(EΓ

h − Ei)(x)
)

= 0.

(2.2)

2



Here and throughout this paper, E|+ and E|− denote the limits from inside and outside the
given domain, respectively.

Let Eh be the solution without the patch, that is, the boundary condition (2.1) is replaced
with u = 0 on ∂Ω. Then Eh is the solution to





(∆ + k2
e)Eh = 0 in Ωe,

(∆ + k2
d)Eh = 0 in Ωd,

Eh = 0 on ∂Ω

Eh|+ = Eh|− on ∂Ωe,

1
µe

∂Eh

∂ν

∣∣∣
+

=
1
µd

∂Eh

∂ν

∣∣∣
−

on ∂Ωe,

lim
|x|→∞

√
|x|

(∂(Eh − Ei)(x)
∂|x| − ike(Eh − Ei)(x)

)
= 0.

(2.3)

The main objective of this paper is to present a schematic way based on a boundary
integral method to derive the leading-order term in the asymptotic expansions of EΓ

h as h
goes to zero. Because of the changes in the electromagnetic fields around the microstrip
patch, EΓ

h can not be approximated inside the thin layer by a linear function in the nor-
mal direction. This causes the most serious difficulty in deriving approximate boundary
conditions for a patch antenna mounted on a thin dielectric layer.

3 Asymptotic formula for the solution without patch

We start with deriving an asymptotic expansion of Eh as h goes to zero.
Let Φe be the fundamental solution for the Helmholtz operator ∆ + k2

e , that is,

Φe(x, y) = − i

4
H

(1)
0 (ke|x− y|),

where H
(1)
0 is the Hankel function of the first kind of order 0, and let Φd be the one for

∆ + k2
d.

For a bounded smooth domain D in R2, let Se
D and De

D be the single and double layer
potential defined by

Se
Dϕ(x) =

∫

∂D

Φe(x, y)ϕ(y)dσ(y), x ∈ R2,

De
Dϕ(x) =

∫

∂D

∂Φe(x, y)
∂νy

ϕ(y)dσ(y), x ∈ R2 \ ∂D.

It is well-known that

∂Se
Dϕ

∂νx

∣∣∣
±

(x) =
(
± 1

2
I + (Ke

D)∗
)
ϕ(x) a.e. x ∈ ∂D,

De
Dϕ

∣∣∣
±

(x) =
(
∓ 1

2
I +Ke

D

)
ϕ(x) a.e. x ∈ ∂D,
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where Ke
D : L2(∂D) → L2(∂D) is the operator defined by

Ke
Dϕ(x) = p.v.

∫

∂D

∂Φe(x, y)
∂νy

ϕ(y)dσ(y),

and (Ke
D)∗ is the L2-adjoint of Ke

D and is given by

Ke
Dϕ(x) = p.v.

∫

∂D

∂Φe(x, y)
∂νx

ϕ(y)dσ(y).

Those operators with the superscripts e replaced with d denote the corresponding layer
potentials defined with Φd.

Let the space H1(∂Ωe) be the set of functions f ∈ L2(∂Ωe) such that ∂f/∂τ ∈ L2(∂Ωe),
where ∂/∂τ denotes the tangential derivative on ∂Ωe. The following lemma is essentially
from [1].

Lemma 3.1 Suppose that k2
d is not a Dirichlet eigenvalue for −∆ in Ω and k2

e is not a
Dirichlet eigenvalue for −∆ in R2 \Ωe. For each (F, G) ∈ H1(∂Ωe)×L2(∂Ωe), there exists
a unique solution (f, g1, g2) ∈ L2(∂Ωe)× L2(∂Ωe)× L2(∂Ω) to the integral equation





Se
Ωe

f − Sd
Ωe

g1 − Sd
Ωg2 = F on ∂Ωe,

1
µe

∂Se
Ωe

f

∂ν

∣∣∣
+
− 1

µd

∂Sd
Ωe

g1

∂ν

∣∣∣
−
− 1

µd

∂Sd
Ωg2

∂ν
= G on ∂Ωe,

Sd
Ωe

g1 + Sd
Ωg2 = 0 on ∂Ω.

(3.1)

Moreover, there exists a constant C independent of F and G such that

‖f‖L2(∂Ωe) + ‖g1‖L2(∂Ωe) + ‖g2‖L2(∂Ω) ≤ C
(
‖F‖H1(∂Ωe) + ‖G‖L2(∂Ωe)

)
. (3.2)

Proof. We sketch a proof of this lemma. Since k2
d is not eigenvalue for −∆ in Ω, Sd

Ω has an
inverse (Sd

Ω)−1 : H1(∂Ω) → L2(∂Ω). It follows from the third condition in (3.1) that

g2 = −(Sd
Ω)−1

(
(Sd

Ωe
g1)|∂Ω

)
on ∂Ω.

Let X := L2(∂Ωe) × L2(∂Ωe) and Y := H1(∂Ωe) × L2(∂Ωe), and define the operator
T : X → Y by

T (f, g1) : =
(
Se

Ωe
f − Sd

Ωe
g1 − Sd

Ω(Sd
Ω)−1

(
(Sd

Ωe
g1)|∂Ω

)
,

1
µe

∂Se
Ωe

f

∂ν

∣∣∣
+
− 1

µd

∂Sd
Ωe

g1

∂ν

∣∣∣
−

+
1
µd

∂Sd
Ω(Sd

Ω)−1
(
(Sd

Ωe
g1)|∂Ω

)

∂ν

)
.

Then (3.1) can be rewritten as T (f, g1) = (F,G). We also introduce T0 : X → Y defined by

T0(f, g1) :=
(
Se

Ωe
f − Sd

Ωe
g1,

1
µe

∂Se
Ωe

f

∂ν

∣∣∣
+
− 1

µd

∂Sd
Ωe

g1

∂ν

∣∣∣
−

)
.

We see that T − T0 is a compact operator form X into Y . It is proved in [1] that T0 is
invertible provided that k2

e is not a Dirichlet eigenvalue for −∆ in R2 \ Ωe. Thus by the
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Fredholm alternative, it is enough to prove that T is injective. Suppose that T (f, g1) = 0.
Then the function u defined by

u(x) =




Se

Ωe
f(x) for x ∈ Ωe,

Sd
Ωe

g1(x) + Sd
Ωg2(x) for x ∈ Ωd,

is the unique solution of the transmission problem




(∆ + k2
e)u = 0 in Ωe,

(∆ + k2
d)u = 0 in Ωd,

u|+ = u|− on ∂Ωe,

1
µe

∂u

∂ν

∣∣∣
+

=
1
µd

∂u

∂ν

∣∣∣
−

on ∂Ωe,

u = 0 on ∂Ω,

with the radiation condition

lim
|x|→∞

√
|x|

(∂u(x)
∂|x| − ikeu(x)

)
= 0.

By the uniqueness of a solution to the interface problem for the Helmholtz equation, we
conclude that f = g1 = 0 and hence g2 = 0. The estimate (3.2) is a consequence of
solvability and the closed graph theorem. This completes the proof. ¤

In the next lemma we give a representation of the solution of (2.3). From now on, we
assume that k2

d is not a Dirichlet eigenvalue for −∆ in Ω and k2
e is not a Dirichlet eigenvalue

for −∆ in R2 \ Ωe.

Lemma 3.2 Let (ϕ,ψ1, ψ2) ∈ L2(∂Ωe)× L2(∂Ωe)× L2(∂Ω) be the unique solution of




Se
Ωe

ϕ− Sd
Ωe

ψ1 − Sd
Ωψ2 = −Ei on ∂Ωe,

1
µe

∂(Se
Ωe

ϕ)
∂ν

∣∣∣
+
− 1

µd

∂(Sd
Ωe

ψ1)
∂ν

∣∣∣
−
− 1

µd

∂(Sd
Ωψ2)
∂ν

= − 1
µe

∂Ei

∂ν
on ∂Ωe,

Sd
Ωe

ψ1 + Sd
Ωψ2 = 0 on ∂Ω.

(3.3)

Then the solution Eh to (2.3) can be represented as

Eh(x) =





Ei(x) + Se
Ωe

ϕ(x), x ∈ Ωe,

Sd
Ωe

ψ1(x) + Sd
Ωψ2(x), x ∈ Ωd.

(3.4)

Proof. Note that Eh defined by (3.4) satisfies the differential equations and the transmission
conditions on ∂Ωe given in (2.3). The uniqueness of a solution to (2.3) proves the claim. ¤

The following lemma is essentially from [12].
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Lemma 3.3 For h > 0 small enough and for any φ ∈ C1(∂Ω), the following expansions
hold uniformly in x ∈ ∂Ω:

Se
Ωφ(x + hνx) = Se

Ωφ(x) + h
∂Se

Ωφ

∂νx

∣∣∣
+
(x) + O(h2), (3.5)

∂Se
Ωφ

∂νx
(x + hνx) =

∂Se
Ωφ

∂νx

∣∣∣
+
(x) + O(h), (3.6)

where O(h2) and O(h) terms depend on ‖φ‖C1(∂Ω). Moreover, if φ ∈ L2(∂Ωe), then the
following expansions hold uniformly in x ∈ ∂Ω:

Se
Ωe

φ(x + hνx) = Se
Ωφ̂(x) + h

(
(Ke

Ω)∗φ̂(x) +Ke
Ωφ̂(x) + Se

Ω(ρφ̂)(x)
)

+ O(h2), (3.7)

Se
Ωe

φ(x) = Se
Ωφ̂(x) + h

((1
2
I +Ke

Ω

)
φ̂(x) + Se

Ω(ρφ̂)(x)
)

+ O(h2), (3.8)

where φ̂(x) := φ(x + hνx), x ∈ ∂Ω, and ρ(x) is the curvature at the point x ∈ ∂Ω. The
O(h2) terms depends on ‖φ‖L2(∂Ωe). The same formulae hold for Sd

Ωφ and Sd
Ωe

φ.

Proof. Since ∂Ω is C2,α, Se
Ωφ ∈ C2(Ωe) if φ ∈ C1(∂Ω). Thus (3.5) and (3.6) are simply

Taylor expansions.
To derive (3.7), we note that from [5] it follows that

Φe(x + hνx, y + hνy)

= − i

4
H0

1 (ke|(x− y) + h(νx − νy)|)

=
1
2π

log |(x− y) + h(νx − νy)|+ τe

+
∞∑

m=1

[
bm log ke|x− y + h(νx − νy)|+ cm

][
ke|(x− y) + h(νx − νy)|

]2m

,

where the constant τe := 1
2π log ke + γ − i

4 and γ is the Euler constant. Using the formula

log(1 + r) = −
∞∑

n=1

(−r)n

n
(|r| < 1), (3.9)
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we obtain that

Φe(x + hνx, y + hνy)

=
1
4π

log |x− y|2 +
1
4π

log
[
1 + h

2(x− y) · (νx − νy) + h|νx − νy|2
|x− y|2

]
+ τe

+
∞∑

m=1

[
bm log ke + cm +

bm

2
log |x− y|2 +

bm

2
log

(
1 + h

2(x− y) · (νx − νy) + h|νx − νy|2
|x− y|2

)]

× (ke)2m
m∑

`=0

[ m!
`!(m− `)!

|x− y|2`
(
2h(x− y) · (νx − νy) + h2|νx − νy|2

)m−`]

= Φe(x, y) +
h

2π

〈x− y, νx − νy〉
|x− y|2

+ h

∞∑
m=1

(
bm log ke|x− y|+ cm

)
(ke)2m2m|x− y|2m−2(x− y) · (νx − νy)

+ h

∞∑
m=1

(
bm

(x− y) · (νx − νy)
|x− y|2 k2m

e |x− y|2m
)

+ O(h2)

= Φe(x, y) + h
∂Φe(x, y)

∂νx
+ h

∂Φe(x, y)
∂νy

+ O(h2).

If dσe denotes the surface measure on ∂Ωe, then

dσe(y + hνy) = (1 + hρ(y))dσ(y) + O(h2), y ∈ ∂Ω, (3.10)

as was shown in [2]. Thus we obtain (3.7).
To obtain (3.8), we use duality. It follows from (3.5) and (3.10) that for any f ∈ L2(∂Ω),

∫

∂Ω

Se
Ωe

φ(x)f(x)dσ

=
∫

∂Ωe

φ(ỹ)Se
Ωf(ỹ)dσ(ỹ)

=
∫

∂Ω

φ(y + hνy)(Se
Ωf)(y + hνy)dσ(y + hνy)

=
∫

∂Ω

φ̂(y)
[Se

Ωf(y) + h
(1
2
I + (Ke

Ω)∗
)
f(x)

]
(1 + hρ(y))dσ(y) + O(h2).

Thus we get (3.8). This completes the proof. ¤
We are now in position to derive from (3.2) the following asymptotic expansion. Let

f̂(x) := f(x + hνx) for x ∈ ∂Ω as before.

Lemma 3.4 Let (ϕ,ψ1, ψ2) ∈ L2(∂Ωe)×L2(∂Ωe)×L2(∂Ω) be the unique solution to (3.3).
As h → 0, the triple (ϕ̂, ψ̂1, ψ2) converges to (ϕ0, ψ

0
1 , ψ0

2) in H1(∂Ω) where (ϕ0, ψ
0
1 , ψ0

2) is
the unique solution to the integral equation





Se
Ωϕ0 = −Ei,

ψ0
1 + ψ0

2 = 0,

ψ0
1 = − µd

2µe
ϕ0 − µd

µe
K∗,eΩ ϕ0 − µd

µe

∂Ei

∂ν
,

on ∂Ω. (3.11)
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Proof. Using Lemma 3.3 and taking the limit in (3.3) as h → 0, it follows that




Se
Ωϕ̂− Sd

Ωψ̂1 − Sd
Ωψ2 = −Ei,

1
µe

∂(Se
Ωϕ̂)

∂ν

∣∣∣
+
− 1

µd

∂(Sd
Ωψ̂1)
∂ν

∣∣∣
−
− 1

µd

∂(Sd
Ωψ2)
∂ν

∣∣∣
+

= − 1
µe

∂Ei

∂ν
,

Sd
Ωψ̂1 + Sd

Ωψ2 = 0,

on ∂Ω. (3.12)

Let ϕ0, ψ
0
1 and ψ0

2 be the solutions satisfying above equations. Since Sd
Ω is invertible, it

follows from the third equation in (3.12) that

ψ0
1 + ψ0

2 = 0 on ∂Ω.

It also follows from the second equation in (3.12) that

1
2
(ψ0

1 − ψ0
2) = − µd

2µe
ϕ0 − µd

µe
K∗,eΩ ϕ0 − µd

µe

∂Ei

∂ν
.

Therefore the proof is completed. ¤
Define E0 by

E0(x) = Se
Ωϕ0(x) + Ei(x), x ∈ R2 \ Ω. (3.13)

Note that E0 is the solution to the following scattering problem:




(∆ + k2
e)E0 = 0 in R2 \ Ω,

E0 = 0 on ∂Ω,

lim
|x|→∞

√
|x|

(∂(E0 − Ei)(x)
∂|x| − ike(E0 − Ei)(x)

)
= 0.

(3.14)

Lemma 3.5 Let ϕ and ϕ0 be as in the previous lemma, and define ϕ1,h by

ϕ1,h :=
ϕ̂− ϕ0

h
.

Then as h → 0, ϕ1,h converges to ϕ1 in L2(∂Ω) which satisfies

Se
Ωϕ1(x) =

( µd

2µe
I + (

µd

µe
− 1)(Ke

Ω)∗ −Ke
Ω − Se

ΩMρ

)
ϕ0 +

(µd

µe
− 1

)∂Ei

∂ν
on ∂Ω, (3.15)

where Mρ is the multiplication operator by ρ.

Proof. Subtracting the third equations in (3.3) and (3.12), we get, for x ∈ ∂Ω,

0 = [Sd
Ωe

ψ1(x)− Sd
Ωψ0

1(x)] + [Sd
Ωψ2(x)− Sd

Ωψ0
2(x)]

= [Sd
Ωe

ψ1(x)− Sd
Ωψ̂1(x)] + Sd

Ω(ψ̂1 − ψ0
1)(x) + Sd

Ω(ψ2 − ψ0
2)(x).

If we define (ψ1,h
1 , ψ1,h

2 ) = ( ψ̂1−ψ0
1

h ,
ψ2−ψ0

2
h ) and divide above equation by h, then we get

0 =
Sd

Ωe
ψ1(x)− Sd

Ωψ̂1(x)
h

+ Sd
Ω

(
ψ1,h

1 + ψ1,h
2

)
(x), x ∈ ∂Ω.
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Sending h → 0, it follows from Lemma 3.3 that

ψ1
1 + ψ1

2 := lim
h→0

(
ψ1,h

1 + ψ1,h
2

)
= −(Sd

Ω)−1
(1

2
I +Kd

Ω + Sd
ΩMρ

)
(ψ0

1). (3.16)

By virtue of Lemma 3.3, the first equation in (3.3) takes the form

Se
Ωϕ̂ + h

(
(Ke

Ω)∗ +Ke
Ω + Se

ΩMρ

)
ϕ̂− Sd

Ωψ̂1 − h
(
(Ke

Ω)∗ +Ke
Ω + Se

ΩMρ

)
ψ̂1

− Sd
Ωψ2 − h

(1
2
I +Kd

Ω

)
ψ2 = −Ei − h

∂Ei

∂ν
+ O(h2),

on ∂Ω. By subtracting the above equation from the first equation in (3.12), we get

Se
Ωϕ1,h = Sd

Ω

(
ψ1,h

1 + ψ1,h
2

)
−

(
(Ke

Ω)∗ +Ke
Ω + Se

ΩMρ

)
ϕ̂ +

(
(Ke

Ω)∗ +Ke
Ω + Se

ΩMρ

)
ψ̂1

+
(1

2
I +Kd

Ω

)
ψ2 − ∂Ei

∂ν
+ O(h2).

Observe from (3.16) that the right-hand side of above equation converges in L2(∂Ω), as
h → 0, to

−
(1

2
I +Kd

Ω + Sd
ΩMρ

)
(ψ0

1)−
(
(Ke

Ω)∗ +Ke
Ω + Se

ΩMρ

)
ϕ0

+
(
(Ke

Ω)∗ +Ke
Ω + Se

ΩMρ

)
ψ0

1 +
(1

2
I +Kd

Ω

)
ψ0

2 −
∂Ei

∂ν
.

It now follows from (3.11) that ϕ1,h converges to ϕ1 in H1(∂Ω) as h → 0 and ϕ1 satisfies
(3.15). This completes the proof. ¤

In view of the third equation in Lemma 3.3 and Lemma 3.5, we get

Se
Ωe

ϕ(x + hνx) = Se
Ωϕ0(x) + hSe

Ωϕ1(x) + h
(
(Ke

Ω)∗ +Ke
Ω + Se

ΩMρ

)
ϕ0(x) + o(h)

= Se
Ωϕ0(x) + h

[µd

µe

(∂(Se
Ωϕ0)
∂ν

∣∣∣
+
(x) +

∂Ei

∂ν
(x)

)
− ∂Ei

∂ν
(x)

]
+ o(h)

= Se
Ωϕ0(x) + h

[µd

µe

∂E0

∂ν

∣∣∣
+
(x)− ∂Ei

∂ν
(x)

]
+ o(h),

for x ∈ ∂Ω and hence,

Eh(x + hνx) = h
µd

µe

∂E0

∂ν
(x) + o(h) for x ∈ ∂Ω. (3.17)

Thus we get the following theorem.

Theorem 3.6 Let E0 be given by (3.13) and let E1 be the solution to




(∆ + k2
e)E1 = 0 in R2 \ Ω,

E1 = (
µd

µe
− 1)

∂E0

∂ν
on ∂Ω,

lim
|x|→∞

√
|x|

(∂E1(x)
∂|x| − ikeE1(x)

)
= 0.
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Then the following asymptotic expansion for Eh:

Eh(x) = E0(x) + hE1(x) + o(h), (3.18)

holds uniformly in any bounded subset of Ωe.

We should emphasize the fact that the (first-order) asymptotic expansion derived in
Theorem 3.6 is independent of the electric permittivity of the thin layer. The effect of the
profile of the electric permittivity is of higher-order.

4 Representation for EΓ
h

We begin this section by proving the following uniqueness result.

Lemma 4.1 Problem (2.2) has at most one solution in H1
loc(R2 \ Ω).

Proof. Let EΓ
h be the solution of (2.2) corresponding to Ei ≡ 0. Then we see that

EΓ
h |+ = EΓ

h |− = 0 on Γ. Applying Green’s formula to a domain BR of radius R containing
Ωd, and using the transmission conditions, we have

∫

Ωd

( 1
µd
|∇EΓ

h |2 − ω2εd|EΓ
h |2

)
+

∫

Ωe∩BR

( 1
µe
|∇EΓ

h |2 − ω2εe|EΓ
h |2

)

=
∫

Ωd

(
− 1

µd
EΓ

h∆EΓ
h − ω2εd|EΓ

h |2
)

+
∫

∂Ωe

( 1
µd

EΓ
h

∂EΓ
h

∂ν

∣∣∣
−
− 1

µe
EΓ

h

∂EΓ
h

∂ν

∣∣∣
+

)

+
∫

Ωe∩BR

(
− 1

µe
EΓ

h∆EΓ
h − ω2εe|EΓ

h |2
)

+
∫

∂BR

1
µe

EΓ
h

∂EΓ
h

∂ν

∣∣∣
−

=
∫

∂BR

1
µe

EΓ
h

∂EΓ
h

∂ν

∣∣∣
−

+
∫

Γ

( 1
µd

EΓ
h

∂EΓ
h

∂ν

∣∣∣
−
− 1

µe
EΓ

h

∂EΓ
h

∂ν

∣∣∣
+

)

=
∫

∂BR

EΓ
h

µe

∂EΓ
h

∂ν

∣∣∣
−

.

Taking the imaginary part of both sides, we obtain

0 = Im

∫

∂BR

EΓ
h

µe

∂EΓ
h

∂ν

∣∣∣
−

.

Using Rellich’s lemma and the unique continuation principle, we arrive at EΓ
h

∣∣∣
Ωd

= EΓ
h

∣∣∣
Ωe

=

0. This completes the proof. ¤
Define the Dirichlet-to-Neumann map Λ : H

1
2 (∂BR) → H− 1

2 (∂BR) by

Λ(g) =
∂u

∂ν

∣∣∣
∂BR

,

where u is the unique solution to the exterior Dirichlet problem for the Helmholtz equation
in Rd\BR with the Dirichlet boundary data g on ∂BR which satisfies the radiation condition.
The following result from [8] is of use to us.
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Lemma 4.2 There exists an operator Λ0 : H
1
2 (∂BR) → H− 1

2 (∂BR) such that
∫

∂BR

ϕΛ0ϕ ≤ 0,

and Λ− Λ0 is a compact operator from H
1
2 (∂BR) to H− 1

2 (∂BR).

Using arguments similar to those in [6], we can obtain the following lemma.

Lemma 4.3 For any incident field Ei, there exists a unique solution EΓ
h in H1

loc(R2 \Ω) to
(2.2).

Proof. Let H1
Γ(BR\Ω) :=

{
ϕ ∈ H1(BR\Ω) | ϕ = 0 on Γ∪∂Ω

}
. We formulate the following

variational problem which is equivalent to solving (2.2): Find u ∈ H1
Γ(BR \ Ω) such that

∫

Ωd

(∇ϕ · ∇u

µd
− ω2εdϕu

)
+

∫

Ωe∩BR

(∇ϕ · ∇u

µe
− ω2εeϕu

)

=
∫

∂BR

ϕ

µe

∂u

∂ν

=
∫

∂BR

ϕ

µe
Λ(u + Ei)−

∫

∂BR

ϕ

µe

∂Ei

∂ν
,

for any function ϕ ∈ H1
Γ(BR \ Ω). Define

A1(u, ϕ) :=
∫

Ωd

(∇ϕ · ∇u

µd
+ ϕu

)
+

∫

Ωe∩BR

(∇ϕ · ∇u

µe
+ ϕu

)
−

∫

∂BR

ϕ

µe
Λ0(u),

A2(u, ϕ) :=
∫

∂BR

ϕ

µe
(Λ0 − Λ)(u)−

∫

Ωd

(ω2εd + 1)ϕu−
∫

Ωe∩BR

(ω2εe + 1)ϕu,

and
L(ϕ) :=

∫

∂BR

ϕ

µe

(
Λ(Ei)− ∂Ei

∂ν

)
,

for u, ϕ ∈ H1
Γ(BR \ Ω). The problem (2.2) can be rewritten as follows:

A1(EΓ
h − Eiχ(Ωe), ϕ) + A2(EΓ

h − Eiχ(Ωe), ϕ) = L(ϕ) for all ϕ ∈ H1
Γ(BR \ Ω). (4.1)

Using Lemma 4.2, we get

Re(A1(u, u)) =
∫

Ωd

( |∇u|2
µd

+ |u|2
)

+
∫

Ωe∩BR

( |∇u|2
µe

+ |u|2
)
−Re

∫

∂BR

ū

µe
Λ0(u)

≥ C2‖u‖2H1(BR\Ω̄).

Furthermore, |A1(u, ϕ)| ≤ C‖u‖2
H1(BR\Ω̄)

‖ϕ‖2
H1(BR\Ω̄)

. Thus, by the Lax-Milgram theorem

and the Riesz Representation theorem, there is a bounded linear operator T on H1
Γ(BR \Ω)

having a bounded inverse such that (Tu, ϕ) = A1(u, ϕ) for all u, ϕ ∈ H1
Γ(BR \Ω) where (·, ·)

is the inner product on H1
Γ(BR \ Ω).

11



We define the operator K on H1
Γ(BR \ Ω) by

(Ku, ϕ) = A2(u, ϕ), for all u, ϕ ∈ H1
Γ(BR \ Ω).

The compact embedding of H1(BR \ Ω) into L2(BR \ Ω) and the compactness of Λ − Λ0

from Lemma 4.2 imply that the operator K is compact.
In short, we have

((T + K)u, ϕ) = A1(u, ϕ) + A2(u, ϕ), for ϕ ∈ H1
Γ(BR \ Ω),

with T invertible and K compact. If (T + K)u = 0, then

A1(u, ϕ) + A2(u, ϕ) = 0, for all ϕ ∈ H1
Γ(BR \ Ω),

and hence by Lemma, 4.1 u = 0. Using the Fredholm alternative, we have existence of a
solution to (4.1). This completes the proof. ¤

Let Gh(x, y), x, y ∈ R2 \ Ω, be the Green’s function satisfying




(
∆ + k2

e

)
Gh = δy in Ωe,

(
∆ + k2

d

)
Gh = δy in Ωd,

∣∣∣∂Gh

∂ν
− ikeGh

∣∣∣ = O
( 1√

|x|
)
,

1
µd

∂Gh

∂ν

∣∣∣
−

=
1
µe

∂Gh

∂ν

∣∣∣
+

on ∂Ωe,

Gh

∣∣∣
−

= Gh

∣∣∣
+

on ∂Ωe,

Gh = 0 on ∂Ω.

(4.2)

Then we have the following representation for the solution of (2.2):

EΓ
h (x) = Eh(x) +

∫

Γ

Gh(x, y)ψΓ(y)dσy, (4.3)

where ψΓ is given by

ψΓ(x) :=
∂EΓ

h

∂νy

∣∣∣
+
(x)− µe

µd

∂EΓ
h

∂νy

∣∣∣
−

(x).
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Indeed, by the divergence theorem, we get for x ∈ Ωe that

1
µe

(EΓ
h (x)− Eh(x))

=
∫

Ωe

1
µe

(∆ + k2
e)Gh(x, y)(EΓ

h − Eh)(y)dσ(y)

+
∫

Ωd

1
µd

(∆ + k2
d)Gh(x, y)(EΓ

h − Eh)(y)dσ(y)

=
∫

∂Ωe

1
µd

∂Gh

∂νy

∣∣∣
−

(x, y)(EΓ
h (y)− Eh(y))− 1

µe

∂Gh

∂νy

∣∣∣
+
(x, y)(EΓ

h (y)− Eh(y))dσ(y)

+
∫

∂Ωe

Gh(x, y)
µe

∂(EΓ
h − Eh)
∂νy

∣∣∣
+
(y)− Gh(x, y)

µd

∂(EΓ
h − Eh)
∂νy

∣∣∣
−

(y)dσ(y)

=
∫

Γ

Gh(x, y)
( 1

µe

∂EΓ
h

∂νy

∣∣∣
+
(y)− 1

µd

∂EΓ
h

∂νy

∣∣∣
−

(y)
)
dσ(y).

We now derive an asymptotic formula for EΓ
h . Since Gh(x, y) is the Green’s function of

(4.2), for any continuous function f on ∂Ω the function u defined by

u(x) :=
∫

∂Ω

∂Gh(x, y)
∂νy

f(y)dσ(y), x ∈ R2 \ Ω

is the solution to 



(∆ + k2
e)u = 0 in Ωe,

(∆ + k2
d)u = 0 in Ωd,

u|+ = u|− on ∂Ωe,

1
µe

∂u

∂ν

∣∣∣
+

=
1
µd

∂u

∂ν

∣∣∣
−

on ∂Ωe,

u = f on ∂Ω,

with the radiation condition. In particular,

lim
x→x0∈∂Ω

∫

∂Ω

∂Gh(x, y)
∂νy

f(y)dσ(y) = f(x0) (4.4)

if f is continuous at x0. Therefore, we get

Eh(x)− Ei(x) = −
∫

∂Ω

∂Gh(x, y)
∂νy

Ei(y)dσ(y). (4.5)

Let G0 be the Green’s function for ∆ + k2
e in R2 \ Ω, i.e.,

{
(∆x + k2

e)G0(x, y) = δy in R2 \ Ω,

G0(x, y) = 0 x ∈ ∂Ω, y ∈ R2 \ Ω,
(4.6)

together with the radiation condition. Note that (4.4) holds with Gh replaced with G0.
Since E0 is the solution to (3.14), we also have

E0(x)− Ei(x) = −
∫

∂Ω

∂G0(x, y)
∂νy

Ei(y)dσ(y). (4.7)
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It then follows from (3.18), (4.5), and (4.7) that
∫

∂Ω

∂Gh(x, y)
∂νy

Ei(y)dσ(y) =
∫

∂Ω

∂G0(x, y)
∂νy

Ei(y)dσ(y) + O(h).

Since this identity holds for any incidence field Ei, we have

∂Gh(x, y)
∂νy

=
∂G0(x, y)

∂νy
+ O(h), (4.8)

which holds uniformly for x in a bounded subset of Ωe and y ∈ ∂Ω.
By Taylor expansion, we get, for y ∈ ∂Ω,

Gh(x, y + hνy) = Gh(x, y) + h
∂Gh

∂νy
(x, y) + o(h) = h

∂Gh

∂νy
(x, y) + o(h). (4.9)

It then follows from (4.8) that for x ∈ Ωe,∫

Γ

Gh(x, y)ψΓ(y)dσ(y) =
∫

Γ0

Gh(x, y + hνy)ψΓ(y + hνy)(1 + hρ(y))dσ(y)

= h

∫

Γ0

∂G0

∂νy
(x, y)ψ̃(y)dσ(y) + o(h),

where
ψ̃(x) = ψ(x + hνx) for x ∈ Γ0. (4.10)

If x = x0 + hνx0 for some x0 ∈ Γ0, then

∂G0

∂νy
(x0 + hνx0 , y) =

∂G0

∂νy
(x0, y) + O(h),

and hence, we have∫

Γ

Gh(x, y)ψΓ(y)dσ(y) = h

∫

Γ0

∂G0

∂νy
(x0, y)ψ̃(y)dσ(y) + o(h)

= hψ̃(x0) + o(h), (4.11)

where the last equality holds thanks to (4.4).
Note that by Theorem 3.6

Eh(x + hνx) = h
µd

µe

∂E0

∂ν
(x) + o(h), x ∈ Γ0.

It then follows from (4.11) and the condition on the patch
∫

Γ

Gh(x, y)ψΓ(y)dσ(y) = −Eh on Γ

that
ψ̃(x) = −µd

µe

∂E0

∂ν
(x), x ∈ Γ0.

We finally arrive at the following result.

Theorem 4.4 We have the following asymptotic formula for EΓ
h :

EΓ
h (x)− Eh(x) = −h

µd

µe

∫

Γ0

∂G0

∂νy
(x, y)

∂E0

∂ν
(y)dσ(y) + o(h), (4.12)

which holds uniformly in any bounded subset of Ωe for h small enough.
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5 Numerical Experiments

In this section, we perform numerical experiments to demonstrate the validity of the ap-
proximation formulae (3.18) and (4.12). We first provide an explicit form for Gh defined by
(4.2) when ∂Ω and ∂Ωe are the disks centered at the origin with radius r and r + h. If we
write

Ge(x, y) = Φe(x, y) + He(x, y) = − i

4
H

(1)
0 (ke|x− y|) + He(x, y),

Gd(x, y) = Φd(x, y) + Hd(x, y) = − i

4
H

(1)
0 (kd|x− y|) + Hd(x, y),

then the functions He and Hd satisfy

(∆ + k2
e)He(x, y) = 0 for x, y ∈ Ωe, (5.1)

(∆ + k2
d)Hd(x, y) = 0 for x, y ∈ Ωd, (5.2)

In addition, by (4.2), He and Hd are subject to the transmission conditions:

He(x, y)−Hd(x, y) = Φd(x, y)− Φe(x, y) for x, y ∈ ∂Ωe, (5.3)
1
µe

∂He(x, y)
∂νx

− 1
µd

∂Hd(x, y)
∂νx

=
1
µd

∂Φd

∂νx

∣∣∣
−

(x, y)− 1
µe

∂Φe

∂νx

∣∣∣
+
(x, y) on x, y ∈ ∂Ω, (5.4)

Hd(x, y) = −Φd(x, y) for x ∈ Ωd and y ∈ ∂Ω, (5.5)

and the radiation condition:

lim
|x|→∞

√
|x|

(∂He(x, y)
∂|x| − ikeHe(x, y)

)
= 0.

Since He is the solution of (5.1) satisfying the radiation condition, we have

He(x, y) =
∞∑

n=0

ae
nH(1)

n (ke|x|)H(1)
n (ke|y|) cos n(θx − θy),

for x = |x|eiθx and y = |y|eiθy . In addition, because of (5.5), we have

Hd(x, y) =
∞∑

n=0

(
ad

nJn(kd|x|)Jn(kd|y|) + bd
nJn(kd|x|)Yn(kd|y|)

+ bd
nYn(kd|x|)Jn(kd|y|) + cd

nYn(kd|x|)Yn(kd|y|)
)

cos n(θx − θy).

Here the functions Jn(t) and Yn(t) are the spherical Bessel functions and the spherical
Neumann functions of order n satisfying

t2f ′′(t) + tf ′(t) + [t2 − n2]f(t) = 0.

We now find the complex constants ae
n, ad

n, bd
n, cd

n for n = 0, 1, . . . . Set `(m) = 1 if m 6= 0
and `(0) = 2. Using the condition (5.5) and the fact that for x ∈ Ωd and y ∈ ∂Ω

H
(1)
0 (k|x− y|) = H

(1)
0 (k|x|)J0(k|y|) + 2

∞∑
n=1

H
(1)
0 (k|x|)Jn(k|y|) cos nθ,
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we derive

ad
m = −bd

m

Y0(kdr)
J0(kdr)

+
i

2`(m)
, (5.6)

cd
m = −bd

m

Jm(kdr)
Ym(kdr)

− 1
2`(m)

Jm(kdr)
Ym(kdr)

, (5.7)

for m ≥ 1. Multiplying (5.3) and (5.4) by cos m(θx − θy)/(2π2) for m = 0, 1, . . ., and
integrating over ∂Ωe yield

1
2π2

∫

∂Ωe

∫

∂Ωe

(
He(x, y)−Hd(x, y)

)
cosm(θx − θy)dσ(x)dσ(y)

=
1

2π2

∫

∂Ωe

∫

∂Ωe

(
Φd(x, y)− Φe(x, y)

)
cosm(θx − θy)dσ(x)dσ(y),

and

1
2π2

∫

∂Ωe

∫

∂Ωe

( 1
µe

∂He(x, y)
∂νx

− 1
µd

∂Hd(x, y)
∂νx

)
cos m(θx − θy)dσ(x)dσ(y)

=
1

2π2

∫

∂Ωe

∫

∂Ωe

( 1
µd

∂Φd(x, y)
∂νx

− 1
µe

∂Φe(x, y)
∂νx

)
cos m(θx − θy)dσ(x)dσ(y).

It then follows that, for m = 0, 1, . . . ,

ae
mH(1)

m (ke(r + h))2

− ad
mJm(kd(r + h))2 − 2bd

mJm(kd(r + h))Ym(kd(r + h))− cd
mYm(kd(r + h))2

=
1

2(r + h)2π2`(m)

∫

∂Ωe

∫

∂Ωe

(
Φd(x, y)− Φe(x, y)

)
cosm(θx − θy)dσ(x)dσ(y), (5.8)

and

ae
m

H
(1)
m (ke(r + h))

µe

(mH
(1)
m (ke(r + h))

r + h
− keH

(1)
m+1(kd(r + h))

)

− ad
m

Jm(kd(r + h))
µd

(mJm(kd(r + h))
r + h

− kdJm+1(kd(r + h))
)

− bd
m

(Jm(kd(r + h))
µd

(mYm(kd(r + h))
r + h

− kdYm+1

)

+
Ym(kd(r + h))

µd

(mJm(kd(r + h))
r + h

− kdJm+1

))

− cd
m

Ym(kd(r + h))
µd

(mYm(kd(r + h))
r + h

− kdYm+1

)

=
1

2(r + h)2π2`(m)

∫

∂Ωe

∫

∂Ωe

( 1
µd

∂Φd(x, y)
∂νx

− 1
µe

∂Φe(x, y)
∂νx

)
cosm(θx − θy)dσ(x)dσ(y).

(5.9)

Using (5.6)-(5.9), we get the values of ae
m, ad

m, bd
m, cd

m for m = 0, 1, . . ..
Finally, we illustrate our approximate boundary condition in the following numerical

experiments. Our configuration involves two circular disks of radii 0.5 and 0.49 so that
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Figure 1: The case without patch.

h = 0.01. Corresponding dielectric permittivities εe and εd are equated to 2 and 6 and
magnetic permeabilities µe and µd are equated to 4 and 3. The frequency is fixed to ω = 1
and Ei = eikex·d with d = (1, 0).

We solve for the solutions Ẽh and ẼΓ
h using our approximate boundary conditions, and

Eh and EΓ
h using a boundary integral method. To accomplish this, we discretize the integral

equations at the node points on ∂Ω and on ∂Ωe given by

ξd
n = r

(
cos

2π(n− 1)
N

, sin
2π(n− 1)

N

)
on ∂Ω,

and

ξe
n = (r + h)

(
cos

2π(n− 1)
N

, sin
2π(n− 1)

N

)
on ∂Ωe,

for n = 1, 2, . . . , N, with N = 256.

Example 1. In this example, we compare Eh (computed using a boundary integral method)
and Ẽh (using the approximate boundary condition in Theorem 3.6) without patch. Figure
1 shows the numerical results. In the first diagram, the blue line is the real part of Eh and
the red line is the real part of Ẽh on ∂Ωe. The second diagram shows the imaginary parts of
Eh and Ẽh on ∂Ωe. The error computed in L2 and L∞ are ||Eh−Ẽh||L2(∂Ωe) = 3.4091e−004
max |Eh − Ẽh| = 7.1113− 004 which are of order h2.

Example 2. In the second example we consider the case with patch. The configuration is
the same as in Example 1. In the first diagram in Figure 2, the red-line represents the patch
Γ. The mesh points on Γ are given by

ξe,Γ
n = (r + h)

(
cos

2π(n− 1)
NΓ

, sin
2π(n− 1)

NΓ

)
,

for n = 1, 2, . . . , NΓ, with NΓ = 32. The second and third diagrams express the difference
between the real and imaginary parts of EΓ

h (the exact field which is computed by solving
the integral equation (4.3)) and ẼΓ

h (solved using the approximate boundary condition in
Theorem 4.4) on ∂Ωe. The error is ||Eh− Ẽh||L2(∂Ωe) = 3.9992e− 004 and max |Eh− Ẽh| =
0.0021. Relatively large errors occur at the end points of the patch.
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h )

imag(EΓ
h )

imag(ẼΓ
h )

Figure 2: The case with patch.
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