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Abstract

In this paper we present mathematically rigorous derivations of asymptotic expan-
sions of the effective electrical conductivity of periodic dilute composites in terms of
the volume fraction occupied by the inclusions. Our derivations are based on layer
potential techniques, and valid for high contrast mixtures and inclusions with Lips-
chitz boundaries. They are motivated by the practically important inverse problem of
determining the volume fraction of a suspension of complicated shaped particles from
boundary measurements of voltage potentials.
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1 Introduction

One of the classical problems in physics is the determination of the effective or macroscopic
property of a two-phase medium consisting of inclusions of one material of known shape
embedded homogeneously into a continuous matrix of another having physical properties
different from its own. When the inclusions are well-separated d-dimensional spheres and
their amount is small, the effective electrical conductivity, σ̃, of the composite medium is
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given by the well-known Maxwell-Garnett formula [45]

σ̃ = σ0

[
1 + f

d(σ − σ0)
(σ − σ0) + dσ0

+ df2 (σ − σ0)2

((σ − σ0) + dσ0)2
]
I + o(f2), (1)

where σ0 and σ are the electrical conductivity of the continuous matrix phase and the
inclusions respectively, and f is the volume fraction of the d-spheres.

Despite the importance of calculating the effective properties of composites there has
been very little work addressing itself to the influence of inclusion shape. Most theoretical
treatments focus on generalizing (1) to finite concentrations (f = O(1)). The methods
include bounds on the effective properties of the mixtures and many effective medium type
models have been proposed (see the book of Milton [42] and the extensive list of references
therein). Indeed, there are effective medium calculations that attempt to extend (1) to
higher power of f , but only for the case of d-dimensional spherical inclusions. See Jefferey
[29], Sangani [45], and the references therein.

Until recently, ellipsoids are the only family of inclusions that could be rigorously and
accurately estimated [49]. Douglas and Garboczi [21, 26, 39] made an important advance in
treating more complicated shape inclusions by formally finding that the leading order term
in the expansion of the effective conductivity (and other effective properties) in terms of the
volume fraction, f , could be expressed by means of the polarization tensors of the inclusion
shape which are defined in Section 4. See also the review paper of Douglas and Friedman
[20], and the works of Zhikov et al [30], Greengard and Moura [27], Movchan and Serkov
[43], and Capdeboscq and Vogelius [13].

Our objective in this paper is to present a general unified layer potentials technique for
rigorously deriving very accurate asymptotic expansions of electrical effective properties of
dilute media for non-spherical Lipschitz inclusions. Our approach is valid for high contrast
mixtures and inclusions with Lipschitz boundaries. We shall also emphasize the fact that
it gives us any higher-order term in the asymptotic expansion of the effective conductivity.
To the best of our knowledge, this is the first work to rigorously justify the approximations
derived by Douglas and Garboczi [21, 26, 39] using a layer potentials technique. Indeed, we
go further to obtain higher-order terms in the expansions. The present work is motivated by
the practically important inverse problem of determining the volume fraction of a suspension
of complicated shaped particles from boundary measurements of voltage potentials.

Our approach can be easily extended to other equations such as the anisotropic con-
ductivity problem, Stokes, the Maxwell’s and the Lamé systems. Recent progress for un-
derstanding the effect of small anisotropic conductivity inhomogeneities, dielectric, electro-
magnetic, and elastic inclusions has been achieved in [25], [14], [48], [31], [6], [7], [5], [10],
and [13]. Our method is expected to have a great potential for rigorously deriving very
accurate approximations for other mixtures properties such as the effective viscosity, η̃, of a
suspension of general shaped obstacles suspended in a viscous fluid and the shear modulus,
µ̃, of an elastic medium (incompressible) with arbitrary shaped elastic inclusions. We refer
to Einstein [22] and Batchelor and Green [8] for approximations of η̃ which correspond to
a suspension of hard spheres in a viscous fluid. See Haber and Brenner [28] for the leading
order-term in the expansion of µ̃ when the elastic inclusions are hard spheres. The deriva-
tions of high-order approximations for η̃ and µ̃ for arbitrary shaped objects is much more
difficult than the one presented here for the effective conductivity, σ̃, because of the tensorial
nature of the periodic Green’s functions of the steady state Navier-Stokes equation and the
Lamé system.
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The combination of the high-order asymptotic expansions of σ̃ in terms of the volume
fraction f , which are derived in this paper, together with the earlier results of Bruno [11, 12]
about the analyticity of σ̃ with respect to the variable τ = σ/σ0 suggests that introducing
Padé approximants of σ̃ in the two variables f and τ for general shaped inclusions and
values of f and τ (not necessary ∼ 0 and ∼ 1) would give a very accurate algorithm for
computing σ̃. The implementation of this new method is being under consideration and
numerical results will be reported elsewhere.

2 Problem Formulation

For the sake of clarity, we will focus our attention on two-phase periodic composite materi-
als, that are composites obtained by mixing periodically two different constituents. These
composites are only considered in the context of electrical conductivity.

To set up this problem mathematically, we set Ω to be a bounded domain in R2, with a
connected Lipschitz boundary ∂Ω. We consider a periodic dilute composite filling Ω. The
material consists of a matrix of constant conductivity σ0 > 0 containing a periodic array
of small conductivity inhomogeneities ”centered” in those period cells that fall inside some
smooth subdomain Ω′ ⊂⊂ Ω. The periodic array has period ρ, and each period contains an
inclusion of constant conductivity σ > 0 which is of the form ρ1+βB for some β > 0. Here
B is a bounded Lipschitz domain in R2 containing the origin. As ρ → 0 the volume fraction
of the inhomogeneities is O(ρ2β).

Let Y =] − 1/2, 1/2[2 denote the unit cell and D = ρβB. The effective conductivity
matrix σ̃ = (σ̃ij)i,j=1,2 of Ω is defined by (see for instance [30, 42])

σ̃ij :=
∫

Y

σρ∇ui · ∇uj ,

where σρ = σ0 + (σ − σ0)χ(D) and ui, for i = 1, 2, is the unique solution to





∇ · σρ∇ui = 0 in Y,

ui − yi periodic,
∫

Y

ui = 0.

(2)

Here χ(D) denotes the characteristic function of D. Using the Green’s formula we can
rewrite σ̃ in the following form:

σ̃ij = σ0

∫

∂Y

uj
∂ui

∂ν
, (3)

where ∂/∂ν is the outward normal derivative to ∂Y . The matrix σ̃ depends on ρ as a
parameter, and cannot be written explicitly.

The organization of the paper is as follows. We give in the next section some useful facts
on the periodic Green’s function G and periodic layer potentials. In Section 4 we recall
the concept of generalized polarization tensors. In Section 5 we establish a representation
formula for the unique solution to (2). This formula generalizes the formula proved by
Kang and Seo in [32, 33]. Our aim in Section 6 is to rigorously derive a complete asymptotic
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expansion of σ̃ in terms of ρ for any shape B of the inclusion and any prescribed conductivity
σ. Our technique is in the spirit of [3]. The derivation simply follows from the Taylor
expansion of G(x)−1/(2π) log |x| at 0. Our asymptotic expansions are valid for high contrast
mixtures and inclusions with Lipschitz boundaries. The concept of generalized polarization
tensors is employed for these derivations. Section 7 is devoted to the case of multiple closely
spaced inclusions.

3 Periodic Layer Potentials and Representation Formula

Let Γ(x) be the fundamental solution of the Laplacian ∆ in IR2:

Γ(x) =
1
2π

ln |x|. (4)

Let us introduce the periodic Green’s function through its Fourier representation:

G(x) = −
∑

n∈Z2\{0}

ei2πn·x

4π2|n|2 . (5)

Then we get, in the sense of distributions,

∆G(x) =
∑

n∈Z2\{0}
ei2πn·x =

∑

n∈Z2

ei2πn·x − 1.

It then follows from the Poisson summation formula
∑

n∈Z2

ei2πn·x =
∑

n∈Z2

δ(x + n),

that
∆G(x) =

∑

n∈Z2

δ(x + n)− 1. (6)

The distribution
∑

n∈Z2 δ(x + n) is the periodic Dirac function. Note that because of the
condition of charge neutrality that the right-hand side of the Poisson equation associated
with (5) must satisfy there is no Green’s function for the bare Coulomb potential, i.e., a
periodic solution G′ to ∆G′(x) =

∑
n∈Z2 δ(x + n) in the unit cell Y . We refer to [15] for

another representation of G.
The following lemma on the behavior of the periodic Green’s function G(x) as x → 0 is

important for later use.

Lemma 3.1 There exists a harmonic function R(x) in the unit cell Y such that

G(x) =
1
2π

log |x|+ R(x). (7)

Moreover, the Taylor expansion of R(x) at 0 is given by

R(x) = R(0)− 1
4
(x2

1 + x2
2) + O(|x|4). (8)
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Proof. We have

G(x) = −
∑

n∈Z2\{0}

ei2πn·x

4π2|n|2 = − 1
4π2

∑

n∈Z2\{0}

cos 2πn1x1 cos 2πn2x2

n2
1 + n2

2

= − 1
2π2

+∞∑
n1=0

cos 2πn1x1

+∞∑
n2=1

cos 2πn2x2

n2
1 + n2

2

− 1
2π2

+∞∑
n2=0

cos 2πn2x2

+∞∑
n1=1

cos 2πn1x1

n2
1 + n2

2

:= G1 + G2.

Let us invoke three summation identities (see for instance [17], pp. 813-814):

+∞∑
n2=1

cos 2πn2x2

n2
1 + n2

2

=





− 1
2n2

1

+
π

2n1

cosh π(2x2 − 1)n1

sinhπn1
if n1 6= 0,

π2

6
− π2x2 + π2x2

2 if n1 = 0,

+∞∑
n1=1

cos 2πn1x1

n1
e−2πn1x2 = πx2 − log 2− 1

2
log

(
sinh2 πx2 + sin2 πx1

)
.

We then compute

G1 = − 1
2π2

+∞∑
n2=1

cos 2πn2x2

n2
2

− 1
2π2

+∞∑
n1=1

cos 2πn1x1

(
− 1

2n2
1

+
π

2n1

cosh π(2x2 − 1)n1

sinhπn1

)

= − 1
2π2

+∞∑
n2=1

cos 2πn2x2

n2
2

+
1

4π2

+∞∑
n1=1

cos 2πn1x1

n2
1

− 1
4π

+∞∑
n1=1

cos 2πn1x1

n1

coshπ(2x2 − 1)n1

sinhπn1

= − 1
12

+
1
2
x2 − 1

2
x2

2 +
1
24
− 1

4
x1 +

1
4
x2

1 −
1
4π

+∞∑
n1=1

cos 2πn1x1

n1
e−2πn1x2

− 1
4π

+∞∑
n1=1

cos 2πn1x1

n1

(
cosh π(2x2 − 1)n1

sinhπn1
− e−2πn1x2

)

to arrive at

G1 = − 1
24

+
log 2
4π

+
1
4
(x2 − x1)− 1

4
(2x2

2 − x2
1) +

1
8π

log
(

sinh2 πx2 + sin2 πx1

)
+ r1(x),

where the function r1(x) is given by

r1(x) = − 1
4π

+∞∑
n1=1

cos 2πn1x1

n1

(
cosh π(2x2 − 1)n1

sinhπn1
− e−2πn1x2

)

= − 1
4π

+∞∑
n1=1

cos 2πn1x1

n1

e2πn1x2 + e−2πn1x2

e2πn1 − 1
.
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Because of the term e−πn1 , one can easily see that r1 is a C∞-function.
In the same way we can derive

G2 = − 1
24

+
log 2
4π

+
1
4
(x1 − x2)− 1

4
(2x2

1 − x2
2) +

1
8π

log
(

sinh2 πx1 + sin2 πx2

)
+ r2(x),

where

r2(x) = − 1
4π

+∞∑
n1=1

cos 2πn1x2

n1

e2πn1x1 + e−2πn1x1

e2πn1 − 1
.

By the Taylor expansion, one can see that

log
(

sinh2 πx2 + sin2 πx1

)
+ log

(
sinh2 πx1 + sin2 πx2

)
= 4 log(π)+ 2 log(x2

1 + x2
2) + r3(x),

where r3(x) is a C∞ function with r3(x) = O(|x|4) as |x| → 0. In short, we obtain

G(x) =
1
2π

log |x|+ R(x),

where
R(x) = C − 1

4
(x2

1 + x2
2) + r1(x) + r2(x) + r3(x)

for some constant C. By the Taylor expansion again, one can see that r1(x) + r2(x) =
C + O(|x|4) as |x| → 0, for some constant C. That R is harmonic follows from (6). This
concludes the proof. ¤

We can expand R(x) even further to get

R(x) = R(0)− 1
4
(x2

1 + x2
2) +

m∑

k=3

Rk(x) + O(|x|m+1), as |x| → 0,

where Rk is a harmonic polynomial of homogeneous degree k. Since R(−x1, x2) = R(x1, x2)
and R(x1,−x2) = R(x1, x2), Rk ≡ 0 if k is odd, and hence

R(x) = R(0)− 1
4
(x2

1 + x2
2) +

m∑

k=2

R2k(x) + O(|x|m+2), as |x| → 0. (9)

Let L2
0(∂D) := {f ∈ L2(∂D) :

∫
∂D

f ds = 0}. The periodic single layer potential of the
density function ϕ ∈ L2

0(∂D) is defined for x ∈ R2 by

SDϕ(x) :=
∫

∂D

G(x− y)ϕ(y) ds(y).

Let S̃D be the (non-periodic) single layer potential, i.e.,

S̃Dϕ(x) :=
∫

∂D

Γ(x− y)ϕ(y) ds(y).

Then by Lemma 3.1, we have

SDϕ(x) = S̃Dϕ(x) +
∫

∂D

R(x− y)ϕ(y) ds(y), for any ϕ ∈ L2
0(∂D),
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and the second operator on the right hand side is a smoothing operator.
For a function u defined on R2 \ ∂D, we denote

∂u

∂ν

∣∣∣∣
±

(x) = lim
t→0

ν(x) · ∇u(x± tν(x)) for x ∈ ∂D

if the limit exists. Here ν(x) is the outward unit normal to ∂D at x. The following theorem
is proved in [23, 47].

Theorem 3.1 (i) For ϕ ∈ L2(∂D). The following trace formula holds:

∂

∂ν
S̃Dϕ

∣∣∣∣
±

(x) = (±1
2
I + K̃∗D)ϕ(x) on ∂D, (10)

where the singular bounded integral operator K̃∗D : L2(∂D) → L2(∂D) is given by

K̃∗Dϕ(x) = p.v.
∫

∂D

∂

∂ν(x)
Γ(x− y)ϕ(y) ds(y). (11)

(ii) If |λ| ≥ 1
2 , then the operator λI − K̃∗D is invertible on L2

0(∂D).

As a consequence of Theorem 3.1, we get the following Lemma on the periodic layer
potential.

Lemma 3.2 (i) Let ϕ ∈ L2
0(∂D). The following trace formula holds:

∂

∂ν
SDϕ

∣∣∣∣
±

(x) = (±1
2
I +K∗D)ϕ(x) on ∂D, (12)

where K∗D : L2
0(∂D) → L2

0(∂D) is given by

K∗Dϕ(x) = p.v.
∫

∂D

∂

∂ν(x)
G(x− y)ϕ(y) ds(y).

(ii) If ϕ ∈ L2
0(∂D), then SDϕ is harmonic in D and Y \D.

(iii) If |λ| ≥ 1
2 , then the operator λI −K∗D is invertible on L2

0(∂D).

Proof. Since K∗D = K̃∗D + RD where the smoothing operator RD is defined by

RDϕ(x) =
∫

∂D

∂

∂ν(x)
R(x− y)ϕ(y) ds(y), (13)

(i) immediately follows from Theorem 3.1 (i).
(ii) follows from (6) and the fact that ϕ ∈ L2

0(∂D).
As a consequence of (i) and (ii), it follows that λI − K∗D maps L2

0(∂D) into L2
0(∂D). To

prove (iii), we observe that RD is a smoothing operator. In particular, RD maps L2(∂D)
into H1(∂D), and hence it is a compact operator on L2(∂D). Since λI − K̃∗D is invertible
on L2

0(∂D), by the Fredholm alternative, it suffices to show that λI − K∗D is one-to-one on
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L2
0(∂D). To do so, let |λ| ≥ 1

2 , and suppose that ϕ ∈ L2
0(∂D) satisfies (λI −K∗D)ϕ = 0 and

ϕ 6= 0. Let

A :=
∫

D

|∇SDϕ|2 dx, B :=
∫

Y \D
|∇SDφ|2 dx .

Then A 6= 0. In fact, if A = 0, then SDϕ is constant in D. Therefore SDϕ in Y \D satisfies
that SDϕ|∂D = constant and periodic. Hence SDϕ = constant in Y \D. Therefore, by (i),
we get

ϕ =
∂

∂ν
SDϕ

∣∣∣∣
+

− ∂

∂ν
SDϕ

∣∣∣∣
−

= 0,

which contradicts our assumption. In a similar way, one can show that B 6= 0.
On the other hand, using the divergence theorem and periodicity, we have

A =
∫

∂D

(−1
2
I +K∗D)φ SDφ dσ, B = −

∫

∂D

(
1
2
I +K∗D)φ SDφ dσ .

Since (λI −K∗D)φ = 0, it follows that

λ =
1
2

B −A

B + A
.

Thus, |λ| < 1/2, which is a contradiction. This completes the proof. ¤

The following explicit representation formula will be very useful for the derivation of a
complete asymptotic expansion for σ̃. This type of formulae was first obtained by Kang and
Seo [32, 33] for the conductivity problem in a bounded domain. The following lemma holds.

Lemma 3.3 Let ui be the unique solution to the transmission problem (2). Then ui can be
expressed as follows

ui(x) = xi + Ci + SD(λI −K∗D)−1(νi)(x) in Y, i = 1, 2, (14)

where Ci is a constant,

λ =
1
2

σ + σ0

σ − σ0
, (15)

and νi is the i-component of the outward unit normal ν to ∂D.

Before proving this lemma, it is worth observing that xi is the harmonic part of the
solution ui and SD(λI−K∗D)−1(νi) carries the information on the reflection. Moreover, this
decomposition of ui into a harmonic part and a reflection part depends only on the inclusion
D.

Proof. Observe that (2) is equivalent to




∆ui = 0 in D ∪ (Y \D),
ui|+ − ui|− = 0 on ∂D,

σ0
∂ui

∂ν

∣∣∣∣
+

− σ
∂ui

∂ν

∣∣∣∣
−

= 0 on ∂D,

ui − yi periodic,∫

Y

ui = 0.
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Define Vi(x) = SD(λI −K∗D)−1(νi)(x) in Y . Then




∆Vi = 0 in D ∪ (Y \D),

Vi|+ − Vi|− = 0 on ∂D,

∂Vi

∂ν
|+ − 2λ + 1

2λ− 1
∂Vi

∂ν
|− =

2
2λ− 1

νi on ∂D,

Vi periodic.

(16)

Thus by choosing Ci so that
∫

Y
uidx = 0, we get (14). This completes the proof. ¤

4 Generalized Polarization Tensors

4.1 Single Inclusion

We now recall the concept of generalized polarization tensors. Let B be a bounded Lipschitz
domain in IR2 and 0 < σ 6= σ0 < +∞.

Definition 4.1 The generalized polarization tensor of order (l, l′) ∈ N2 × N2 associated to
(B, σ) is given by:

M l,l′(λ, B) =
∫

∂B

yl(λI − K̃∗B)−1(
∂yl′

∂ν
) ds(y), (17)

where the constant λ and the operator K̃∗B are given by (15) and (11), respectively.

It is worth to note that there exists an equivalent definition for the generalized polariza-
tion tensor that is

M l,l′(λ,B) = (
1
σ0
− 1

σ
)(

∫

∂B

yl ∂yl′

∂ν
)dσy + (σ − σ0)

∂ψl′

∂ν
(y)|+dσy),

where ψl′ is the solution of the problem:




∆ψl′ = 0 in B ∪ (R2 \B),

ψl′ |+ − ψl′ |− = 0 on ∂B,

σ0
∂ψl′

∂ν
|+ − σ

∂ψl′

∂ν
|− = ν · ∇xl′ ∂B,

ψl′(x) +
1
2π

(σ0 − σ) log |x|
∫

∂B

ν · ∇yl′ → 0.

Furthermore, Definition 4.1 of the generalized polarization tensors is valid even for the
extreme cases when σ = 0 or ∞. If σ = 0, namely, if B is an insulating inclusion, then

M l,l′(−1
2
, B) =

∫

∂B

yl(−1
2
I − K̃∗B)−1(

∂yl′

∂ν
) ds(y),

while if σ = +∞, namely, if B is perfectly conducting, then

M l,l′(
1
2
, B) =

∫

∂B

yl(
1
2
I − K̃∗B)−1(

∂yl′

∂ν
) ds(y).
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The generalized polarization tensors enjoy some important properties such as symmetry
and positivity and their eigenvalues can be estimated in terms of the volume of the inclusion
B. We refer the reader to [2, 1] for exact statements and rigorous proofs of these properties.
The following lemma from [2] will be of use to us.

Lemma 4.1 Suppose that al and bl′ are constants such that
∑

l aly
l and

∑
l′ bl′y

l′ are har-
monic polynomials. Then

∑

l,l′
albl′M

l,l′(λ,B) =
∑

l,l′
albl′M

l′,l(λ,B).

We will refer to the polarization tensor M l,l′ when |l| = |l′| = 1 as the Pólya-Szegö
polarization tensor. This classical polarization tensor has been extensively studied in the
literature [14, 25, 35, 44, 46, 19]. When σ = 0 and |l| = |l′| = 1, M l,l′ is called the
virtual mass. From the definition (17) it follows that the polarization tensor of an insulating
inclusion is related to the one of a perfectly conducting inclusion of the same shape by a
change of sign:

If |l| = |l′| = 1 then M l,l′(−1
2
, B) = −M l,l′(

1
2
, B). (18)

The following lemma is proved in [37].

Lemma 4.2 Suppose that al and bl′ are constants such that
∑

l aly
l and

∑
l′ bl′y

l′ are har-
monic polynomials of homogeneous degree. If B is a disk, then

∑

l,l′
albl′M

l,l′(λ,B) = 0 if
∑

l

aly
l 6=

∑

l′
bl′y

l′ .

We will denote M l,l′ by Ml,i if l′ = ei. We also use the notation Mij for M l,l′ if l = ei

and l′ = ej . Then it follows from Lemma 4.1 and Lemma 4.2 that if al are constants such
that

∑
l aly

l is a harmonic polynomial without a linear term, then
∑

l

alMi,l(λ, B) =
∑

l

alMl,i(λ,B) = 0, i = 1, 2. (19)

4.2 Multiple Inclusions

Let Bs for s = 1, . . . , m be a bounded Lipschitz domain in IR2. Suppose that:

(H1) there exist positive constants C1 and C2 such that

C1 ≤ diam Bs ≤ C2, and C1 ≤ dist(Bs, Bs′) ≤ C2, s 6= s′ ;

(H2) the conductivity of the inclusion Bs for s = 1, . . . ,m is equal to some positive constant
σs 6= σ0.

The following definition is introduced in [4].

Definition 4.2 Let l = (l1, l2), l′ = (l′1, l
′
2) ∈ IN2 be multi-indices. For s = 1, . . . ,m, let ϕ

(s)
l′

be the solution of

(λsI − K̃∗Bs
)ϕ(s)

l′ −
∑

s′ 6=s

∂S̃Bs′ϕ
(s′)
l′

∂ν(s)

∣∣
∂Bs

=
∂yl′

∂ν(s)

∣∣
∂Bs

on ∂Bs, (20)
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where λs = (σs + σ0)/(2(σs − σ0)) and ν(s) denotes the outward unit normal to ∂Bs. Then
the polarization tensor Ml,l′ of the multiple inclusions ∪m

s=1Bs is defined by

Ml,l′ =
m∑

s=1

∫

∂Bs

ylϕ
(s)
l′ (y) ds(y) . (21)

If |l| = |l′| = 1, we denote Mij = Ml,l′ where l = ei and l′ = ej, and M = (Mij)2i,j=1.
This 2× 2 matrix M is called the first-order polarization tensor.

We define the overall conductivity σ̄ of B = ∪m
s=1Bs by

σ̄ − 1
σ̄ + 1

m∑
s=1

|Bs| :=
m∑

s=1

σs − 1
σs + 1

|Bs|. (22)

It is shown in [4] that we can represent and visualize the multiple inclusions ∪m
s=1Bs by

means of an ellipse, E with the same first-order polarization tensor. We call E the equivalent
ellipse of ∪m

s=1Bs. The following useful lemma is also proved in [4].

Lemma 4.3 Suppose that al and bl′ are constants such that
∑

l aly
l and

∑
l′ bl′y

l′ are har-
monic polynomials. Then ∑

l,l′
albl′Ml,l′ =

∑

l,l′
albl′Ml′,l.

5 Asymptotic Expansion of the Effective Conductivity

For simplicity, we set for i = 1, 2

ϕi(y) = (λI −K∗D)−1(νi)(y) for y ∈ ∂D. (23)

Substituting the representation formula (14) into (3) yields

σ̃ij = σ0

∫

∂Y

(yj + C + SDϕj(y))
∂

∂ν
(yi + SDϕi(y))ds.

Because of periodicity of SDϕj , we get
∫

∂Y

∂

∂ν
SDϕjds =

∫

∂Y

νjSDϕids =
∫

∂Y

SDϕj(y)
∂

∂ν
SDϕi(y)ds = 0,

and hence we have
σ̃ij = σ0

[
δij +

∫

∂Y

yj
∂

∂ν
SDϕi(y) ds(y)

]
. (24)

Let
ψi(y) = ϕi(ρβy) for y ∈ ∂B.

Lemma 5.1 For i, j = 1, 2, the following identity holds
∫

∂Y

yj
∂

∂ν
SDϕi(y) ds(y) = ρ2β

∫

∂B

yjψi(y) ds(y). (25)

11



Proof. Periodicity of SDϕi and the divergence theorem applied on Y \D yield
∫

∂Y

yj
∂

∂ν
SDϕi(y) ds =

∫

∂D

yj
∂

∂ν
SDϕi

∣∣
+
(y) ds−

∫

∂D

νjSDϕi(y) ds

∫

∂D

yj
∂

∂ν
SDϕi

∣∣
+
(y) ds−

∫

∂D

yj
∂

∂ν
SDϕi

∣∣
−(y) ds.

By (12), we get ∫

∂Y

yj
∂

∂ν
SDϕi(y) ds =

∫

∂D

yjϕi(y) ds.

Now by scaling y → ρβy, we obtain (25) and the proof is complete. ¤

Let
pij :=

∫

∂B

yjψi(y) ds(y), i, j = 1, 2, (26)

and P := (Pij). Then by (24) and (25), we obtain

σ̃ = σ0[I + ρ2βP ]. (27)

In order to derive an asymptotic expansion of σ̃ we now expand P in terms of ρ. In view
of (7), the integral equation (23) can be rewritten as

(λI − K̃∗D)ϕi(x)−
∫

∂D

∂

∂ν(x)
R(x− y)ϕi(y) ds(y) = νi(x), x ∈ ∂D,

which, by an obvious change of variables, yields

(λI − K̃∗B)ψi(x)− ρβ

∫

∂B

∂

∂ν(x)
R(ρβ(x− y))ψi(y) ds(y) = νi(x), x ∈ ∂B. (28)

To illustrate our method, we first restrict for simplicity ourselves to the derivations of
the ρ4β-order terms in the asymptotic expansion of σ̃.

To derive our asymptotic formula we use (8) to write

ν · ∇R(ρβ(x− y)) = −ρβ

2
ν · (x− y) + O(ρ3β) (29)

uniformly in x, y ∈ ∂B. Since
∫

∂B
ψi(y) ds(y) = 0, then we get

(λI − K̃∗B)ψi(x)− ρ2β

2
ν(x) ·

∫

∂B

yψi(y) ds(y) + O(ρ4β) = νi(x), x ∈ ∂B, i = 1, 2. (30)

Therefore, we obtain

ψi = (λI − K̃∗B)−1(νi) +
ρ2β

2

2∑

k=1

(λI − K̃∗B)−1(νk) ·
∫

∂B

ykψi(y) ds(y)

+O(ρ4β) on ∂B.

(31)

12



Let ψ̃i := (λI − K̃∗B)−1(νi), i = 1, 2. Then Mij =
∫

∂B
yjψ̃i(y)ds(y), etc. By iterating the

formula (31), we get

ψi = ψ̃i +
ρ2β

2

2∑

k=1

ψ̃k

∫

∂B

ykψ̃i(y) ds(y) + O(ρ4β) on ∂B.

It then follows from the definition (26) of P that

Pij = Mij +
ρ2β

2

2∑

k=1

MkjMik + O(ρ4β), (32)

and then we obtain from (27) the following theorem.

Theorem 5.1 We have

σ̃ = σ0

[
I + ρ2βM +

ρ4β

2
M2

]
+ O(ρ6β), (33)

where M = M1,1(λ,B) is the Pólya-Szegö polarization tensor associated to the scaled inclu-
sion B and the conductivity σ = σ0(2λ + 1)/(2λ− 1).

In the case of spherical inclusions the Pólya-Szegö polarization tensor M1,1 is known
exactly:

M = mI, m =
2(σ − σ0)
σ + σ0

|B|, (34)

and therefore, (33) yields the well-known Maxwell-Garnett formula (1):

σ̃ = σ0

[
1 + f

2(σ − σ0)
σ + σ0

+ 2f2 (σ − σ0)2

(σ + σ0)2
]
I + o(f2),

where f = ρ2β |B| is the volume fraction occupied by the conductivity inhomogeneities within
the unit cell.

Note also that in view of (33), identity (18) that asserts that the polarization tensor of
an insulating inclusion is related to the one of a perfectly conducting inclusion of the same
shape by simply a change of sign is nothing else than the Keller-Mendelson inversion theorem
[34, 41]. Moreover, performing an expansion of the classical Hashin-Shtrikman bounds for
σ̃ in terms of f , as it has been done for instance in [36], we immediately obtain, in view of
formula (33), optimal bounds on the trace of the Pólya-Szegö polarization tensor. See [9]
and [38].

To end this section, we show how to derive further terms in the asymptotic expansion
of σ̃ following the same arguments as in Theorem 5.1 and how the generalized polarization
tensors naturally occur there.

By the (higher-order) Taylor expansion

R(x) = R(0)− 1
4
(x2

1 + x2
2) + R4(x) + O(|x|6) (35)

given in (9), we get

ν · ∇R(ρβ(x− y)) = −ρβ

2
ν · (x− y) + ρ3βν · ∇xR4(x− y) + O(ρ5β) (36)

13



uniformly in x, y ∈ ∂B. Write

R4(x− y) =
∑

|l|+|l′|=4

cl,l′x
lyl′ .

Then for each fixed l′,
∑

l cl,l′x
l is harmonic since

∑

l

cl,l′x
l =

1
l′!

∂l′
y (R4(x− y))

∣∣
y=0

.

It follows from (28) that for i = 1, 2

(λI − K̃∗B)ψi(x)− ρ2β

2
ν(x) ·

∫

∂B

yψi(y) ds(y)

−ρ4β
∑

|l|+|l′|=4

cl,l′(ν · ∇xl)
∫

∂B

yl′ψi(y) ds(y) + O(ρ6β) = νi(x), x ∈ ∂B.
(37)

Since
∫

∂B
ψids = 0 for i = 1, 2, we get

ψi = (λI − K̃∗B)−1(νi) +
ρ2β

2

2∑

k=1

(λI − K̃∗B)−1(νk)
∫

∂B

ykψi(y) ds(y)

+ρ4β
∑

|l|+|l′|=4
|l′|>0

cl,l′(λI − K̃∗B)−1(ν · ∇xl)
∫

∂B

yl′ψi(y) ds(y) + O(ρ6β).
(38)

Let ψ̃l := (λI−K̃∗B)−1(ν ·∇xl) and if l = ei, let ψ̃i := ψ̃l, i = 1, 2. Then (38) takes the form

ψi = ψ̃i +
ρ2β

2

2∑

k=1

ψ̃k

∫

∂B

ykψi(y) ds(y)

+ρ4β
∑

|l|+|l′|=4
|l′|>0

cl,l′ ψ̃
l

∫

∂B

yl′ψi(y) ds(y) + O(ρ6β) on ∂B.

(39)

In particular, we get
ψi = ψ̃i + O(ρ2β). (40)

Substituting (40) into (39), we get

ψi = ψ̃i +
ρ2β

2

2∑

k=1

ψ̃k

∫

∂B

ykψi(y) ds(y)

+ρ4β
∑

|l|+|l′|=4
|l′|>0

cl,l′ ψ̃
l

∫

∂B

yl′ ψ̃i(y) ds(y) + O(ρ6β) on ∂B.

It then follows from the definitions (26) of P and (17) of the generalized polarization tensor
that

Pij = Mij +
ρ2β

2

2∑

k=1

PikMkj + ρ4β
∑

|l|+|l′|=4
|l|>0,|l′|>0

cl,l′Ml,jMi,l′ + O(ρ6β).
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Let A be the 2× 2 matrix defined by

Aij =
∑

|l|+|l′|=4
|l|>0,|l′|>0

cl,l′Ml,jMi,l′ , i, j = 1, 2. (41)

We then get

P = M +
ρ2β

2
PM + ρ4βA + O(ρ6β),

and hence

P = M(I − ρ2β

2
M)−1 + ρ4βA + O(ρ6β).

Finally, we arrive at the following theorem:

Theorem 5.2 The effective conductivity σ̃ has an asymptotic expansion as ρ → 0:

σ̃ = σ0

[
I + ρ2βM(I − ρ2β

2
M)−1 + ρ6βA

]
+ O(ρ8β), (42)

where M is the (first order) polarization tensor and A is given by (41).

Let us consider a special but interesting case: the case when B is a disk. If we fix l′ so
that |l′| = 1 or 2, then

∑
|l|=4−|l′| cl,l′y

l is a harmonic polynomial of degree 2 or 3, and hence
we get from (19) that ∑

|l|≥2

cl,l′Ml,i = 0.

Therefore
A =

∑

|l|=1

Ml,j

∑

|l′|=3

cl,l′Mi,l′ .

Using (19), we can show that A = 0. Therefore, we get

σ̃ = σ0

[
I + ρ2β(I − ρ2β

2
M)−1M

]
+ O(ρ8β). (43)

If B is a disk, we can even go further to obtain the full asymptotic expansion for the
effective conductivity. Given an integer m, let R2k be the polynomial defined in (9). Write

m∑
s=2

R2s(x− y) =
m∑

s=2

∑

|l|+|l′|=2s

cl,l′x
lyl′ .

Then for each fixed l′,
∑
|l|=2s−|l′| cl,l′x

l is harmonic. The same argument as before and (28)
yield that for i = 1, 2

(λI − K̃∗B)ψi(x)− ρ2β

2
ν(x) ·

∫

∂B

yψi(y) ds(y)

−
m∑

s=2

ρ2sβ
∑

|l|+|l′|=2s

cl,l′(ν · ∇xl)
∫

∂B

yl′ψi(y) ds(y) + O(ρ2(m+1)β) = νi(x),
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and hence

ψi = ψ̃i +
ρ2β

2

2∑

k=1

ψ̃k

∫

∂B

ykψi(y) ds(y)

+
m∑

s=2

ρ2sβ
∑

|l|+|l′|=2s

cl,l′ ψ̃
l

∫

∂B

yl′ψi(y) ds(y) + O(ρ2(m+1)β).

(44)

Let Pi,l :=
∫

∂B
yl′ψi(y) ds(y). We then get from (44)

ψi = ψ̃i +
ρ2β

2

2∑

k=1

Pikψ̃k +
m∑

s=2

ρ2sβ
∑

|l|=2s−1
|l′|=1

cl,l′Pi,l′ ψ̃
l

+
m∑

s=2

ρ2sβ
∑

|l|+|l′|=2s

|l′|>1

cl,l′ ψ̃
l

∫

∂B

yl′ψi(y) ds(y) + O(ρ2(m+1)β).

(45)

In particular, we get

ψi = ψ̃i +
ρ2β

2

2∑

k=1

Pikψ̃k +
m∑

s=2

ρ2sβ
∑

|l|=2s−1
|l′|=1

cl,l′Pi,l′ ψ̃
l + O(ρ4β). (46)

Since
∫

∂B
yl′ ψ̃l(y) ds(y) = 0 if |l| = 1 and |l′| > 1 by (19), we obtain by substituting (46)

into (45)

ψi = ψ̃i +
ρ2β

2

2∑

k=1

Pikψ̃k +
m∑

s=2

ρ2sβ
∑

|l|=2s−1
|l′|=1

cl,l′Pi,l′ ψ̃
l + O(ρ8β).

By iterating this argument we get

ψi = ψ̃i +
ρ2β

2

2∑

k=1

Pikψ̃k +
m∑

s=2

ρ2sβ
∑

|l|=2s−1
|l′|=1

cl,l′Pi,l′ ψ̃
l + O(ρ2(m+1)β).

It then follows from the definitions (26) of P and (17) of the generalized polarization tensor
that

Pij = Mij +
ρ2β

2

2∑

k=1

PikMkj +
m∑

s=2

ρ2sβ
∑

|l|=2s−1
|l′|=1

cl,l′Pi,l′

∫

∂B

xjψ̃
l(x) ds(x) + O(ρ2(m+1)β).

Observe that since
∑
|l|=2s−1 cl,l′y

l is harmonic,

∑

|l|=2s−1

cl,l′

∫

∂B

xjψ̃
l(x) ds(x) =

∑

|l|=2s−1

cl,l′Ml,j = 0.

Therefore we finally get

Pij = Mij +
ρ2β

2

2∑

k=1

PikMkj + O(ρ2(m+1)β),
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or equivalently,

P = M(I − ρ2β

2
M)−1 + O(ρ2(m+1)β).

In conclusion, we get the following theorem.

Theorem 5.3 If B is a disk, then the effective conductivity σ̃ has an asymptotic expansion
as ρ → 0: for any integer m,

σ̃ = σ0

[
I + ρ2βM(I − ρ2β

2
M)−1

]
+ O((ρ2β)m+1), (47)

where M is the polarization tensor.

Using (34) we can rewrite (47) as

σ̃ = σ0

[
1 +

2f σ−σ0
σ+σ0

1− f σ−σ0
σ+σ0

]
I + O(fm+1), (48)

for each m where f = ρ2β |B|.

6 Derivation of the Effective Conductivity for Closely
Spaced Small Inclusions

An asymptotic formula similar to (33) can be rigorously obtained for closely spaced inclu-
sions. In this section we present the formula and its derivation in brief.

Let D denote a set of m closely spaced inhomogeneities inside Ω:

D = ∪m
s=1Ds := ∪m

s=1(ρ
βBs + z) ,

where z ∈ Y, β > 0 is small and Bs for s = 1, . . . ,m is a bounded Lipschitz domain in IR2.
We suppose in addition to (H1) and (H2) in Section 4 that the set D is well-separated from
the boundary ∂Y , i.e., dist(D, ∂Y ) > c0 > 0. Define σρ = σ0 +

∑m
s=1(σs − σ0)χ(ρβBs + z).

Based on the arguments given in Lemma 3.3, the following Lemma holds.

Lemma 6.1 The solution u of the problem (2) can be represented as

ui(x) = xi + Ci +
m∑

s=1

SDsϕ
(s)
i (x) , x ∈ Y, i = 1, 2, (49)

where ϕ
(s)
i ∈ L2

0(∂Ds), s = 1, · · · ,m, satisfies the integral equation

(λsI −K∗Ds
)ϕ(s)

i −
∑

s′ 6=s

∂(SDs′ϕ
(s′)
i )

∂ν(s)

∣∣
∂Ds

= ν
(s)
i on ∂Ds. (50)

One can also prove the following Lemma.
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Lemma 6.2 Let
ψ

(s)
i (y) = ϕ

(s)
i (ρβy) for y ∈ ∂Bs.

The following identity holds

σ̃ij = σ0

[
δij + ρ2β

m∑
s=1

∫

∂Bs

yjψ
(s)
i (y) ds(y)

]
. (51)

By change of variables, identity (50) leads to

(λI − K̃∗Bs
)ψ(s)

i (x)−
∑

s′ 6=s

∂(S̃Bs′ψ
(s′)
i )

∂ν(s)

∣∣
∂Bs

− ρβ
m∑

s′=1

∫

∂Bs′

∂

∂ν(s)(x)
R(ρβ(x− y))ψ(s′)

i (y) ds′(y) = ν
(s)
i (x),

for x ∈ ∂Bs. Following the same lines of the proof as in the previous section and making
use of Lemma 4.3, we now obtain the following theorem.

Theorem 6.1 We have

σ̃ = σ0

[
I + ρ2βM+

ρ4β

2
M2

]
+ O(ρ6β), (52)

where M is the first-order polarization tensor of the equivalent ellipse of ∪m
s=1Bs, which is

defined by (21).

We conclude this paper by noticing that our asymptotic formula shows that the Pólya-
Szegö polarization tensor of the small inhomogeneities in the unit cell is the only information
that can be reconstructed from boundary measurements. No other type of information or
details of the composite can be obtained (if the noise level is sufficiently large).
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