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Abstract
In composites consisting of inclusions and a matrix of different materials, some inclusions
are located closely to each other. If the material property of inclusions is of high contrast
with that of the matrix, field concentration occurs in the narrow region between closely
located inclusions. Understanding the field concentration quantitatively is important in
the theory of composites and imaging since it represent stress or field enhancement. Last
thirty years or so have witnessed significant progress in analyzing this phenomena of field
concentration: optimal estimates and asymptotic characterization capturing the field con-
centration have been derived in the contexts of the conductivity equation (or anti-plane
elasticity), the Lamé system of linear elasticity, the Stokes system. The purpose of this
paper is to review some of them in a coherent manner.
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1. Introduction
Typical composites consist of inclusions imbedded in the matrix (the background

medium), where the inclusions have material properties different from that of the matrix.
In some composites, two inclusions are located closely to each other, and if their material
properties are in high contrast with that of the matrix, then there may occur strong concen-
tration of the field or stress in the narrow region between two inclusions. It is important to
quantitatively analyze the field concentration or the stress since it may cause the material
failure (see, for example, [5]).

Composites may have multiple inclusions. But, since the region of interest is the
local narrow area in between two inclusions which are closely located, all other inclusions
except two inclusions are ignored and the mathematical problem is formulated with two
inclusions, that is, the problem is formulated in terms of disjoint bounded domains 𝐷1 and
𝐷2 in R𝑑 (𝑑 = 2, 3) representing two inclusions. The inclusions are assumed to have Lips-
chitz continuous boundaries, and the interface conditions along 𝜕𝐷 𝑗 ( 𝑗 = 1, 2) are given by
the perfectly bonding conditions, namely, continuity of the flux and the potential (see (2.5)
and sentences after that). With these interface conditions, we consider the homogeneous and
inhomogeneous transmission problems of various equations such as the equation of conduc-
tivity or anti-plane elasticity, the Lamé system for linear elasticity, and the Stokes system for
fluid flow. The inclusions represent conductors or insulators for conductivity equations, elas-
tic inclusions for anti-plane elasticity equations or Lamé systems, and suspensions for Stokes
systems.

Throughout this paper, 𝜖 denotes the distance between two inclusions, namely,

(1.1) 𝜖 := dist(𝐷1, 𝐷2).

The characteristic feature of the configuration for the problem is that 𝜖 is arbitrarily small.
The mathematical problem here is to capture in quantitative manners the behavior of the
field (the gradient of the solution) and its derivatives in the narrow region between 𝐷1

and 𝐷2 in terms of 𝜖 and, if possible, the contrast of material parameters. As mentioned
before, this problem arises from the stress analysis in composites. It also arises from the
effective medium theory [12,25] (see also [19]): in order to compute the effective properties of
composites with the periodic array of densely packed inclusions, it is necessary to capture
the asymptotic behavior of the field in between inclusions. Sometimes two inclusions are
designed to create the field concentration to achieve desired enhancement of the field.

During last three decades or so, significant development on the problem has been
made: optimal estimates for the gradient and its derivatives have been obtained and asymp-
totic characterizations of the field concentration have been derived. The purpose of this
paper is to review them. Despite all these progress, some outstanding, challenging problems
remain unsolved. We discuss them as well.

The rest of this paper consists of three sections: reviews for the conductivity equa-
tion, the Lamé system, and the Stokes systems in turn. A short discussion is added at the
end of the paper.
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2. The conductivity equation
Let 𝐷1 and 𝐷2 be disjoint bounded domains in R𝑑 (𝑑 = 2, 3) whose boundaries are

assumed to be Lipschitz continuous. Let 𝑘 𝑗 be the conductivity of 𝐷 𝑗 for 𝑗 = 1,2, while that
of R𝑑 \ (𝐷1 ∪ 𝐷2) is assumed to be 1. So the conductivity distribution is given by

(2.1) 𝜎 = 𝜒R𝑑\(𝐷1∪𝐷2) + 𝑘1𝜒𝐷1 + 𝑘2𝜒𝐷2 ,

where 𝜒 denotes the characteristic function on the respective set. We assume that 0 < 𝑘 𝑗 ≠

1 < ∞ ( 𝑗 = 1, 2).
We consider the inhomogeneous transmission problem: for a given function 𝑓

(2.2)
 ∇ · 𝜎∇𝑢 = 𝑓 in R𝑑 ,

𝑢(𝑥) = 𝑐 ln |𝑥 | +𝑂 ( |𝑥 |−1) as |𝑥 | → ∞

for some constant 𝑐. The constant 𝑐 can be non-zero if 𝑑 = 2, and it is zero if 𝑑 = 3. We also
consider the homogeneous transmission problem:

(2.3)
 ∇ · 𝜎∇𝑢 = 0 in R𝑑 ,

𝑢(𝑥) − 𝐻 (𝑥) = 𝑂 ( |𝑥 |−𝑑+1) as |𝑥 | → ∞,

where 𝐻 is a given function harmonic in R𝑑 . In stead of the free space problems (2.2) and
(2.3), one may consider the corresponding boundary value problems, which are equivalent
to above problems. However, the free space problems seem more natural since the problems
arise from the composite theory and all inclusions except closely located two inclusions are
ignored.

When the conductivities 𝑘1 and 𝑘2 simultaneously tend ∞ or 0, it is expected for
the ∇𝑢 of the solution 𝑢 to become arbitrarily large as the distance 𝜖 between two inclusions
tends to 0. The problem is to derive estimates for ∇𝑢 in terms of 𝜖 (and 𝑘1, 𝑘2, if possible) as
𝜖 tends to 0. The conductivity being∞means that the inclusion is perfectly conducting, and
0 means insulating. The two-dimensional equation may represent the anti-plane elasticity,
and in such a case they mean the inclusion is either stiff or void. When 𝑘1 = 0 and 𝑘2 = ∞,
or the other way around, the quite different singular behaviour (blow-up) occurs as 𝜖 tends
to 0 as we will see later.

When the distance 𝜖 tends to 0, the numerical computation of 𝑢 becomes quite dif-
ficult since the blow-up of ∇𝑢 forces us to use refined mesh. In this respect, an asymptotic
characterization of the singularity of ∇𝑢 has an important role. By an asymptotic character-
ization, as 𝜖 tends to 0, we mean a decomposition of the form

(2.4) 𝑢 = 𝑠 + 𝑟,

where 𝑠 is the singular part, namely, ∇𝑠 carries the full information of the singularity of
∇𝑢, while 𝑟 is a regular part, namely, ∇𝑟 is bounded. To be used effectively for numerical
computations, the singular part 𝑠 needs to be the solution of the conductivity equation, and
explicit.
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The problem (2.2) can be expressed as

(2.5)



Δ𝑢 = 𝑓 in R𝑑 \ 𝐷,

Δ𝑢 = 𝑘−1
𝑗
𝑓 in 𝐷 𝑗 , 𝑗 = 1, 2,

𝑢 |+ − 𝑢 |− = 0 on 𝜕𝐷 𝑗 , 𝑗 = 1, 2,

𝜕𝜈𝑢 |+ − 𝑘 𝑗𝜕𝜈𝑢 |− = 0 on 𝜕𝐷 𝑗 , 𝑗 = 1, 2,

𝑢(𝑥) = 𝑐 ln |𝑥 | +𝑂 ( |𝑥 |−1) as |𝑥 | → ∞.

Here and throughout this paper, 𝜕𝜈 denotes the outward normal derivative on 𝜕𝐷 𝑗 and the
subscripts ± denote the limits from outside and inside of 𝐷 𝑗 , respectively. The third and
fourth lines in (2.5) represent the perfect-bonding conditions along 𝜕𝐷: continuity of the
potential and the flux, respectively.

Let 𝐹 be the (weighted) Newtonian potential of 𝑓 , namely,

(2.6) 𝐹 (𝑥) =
∫
R𝑑\𝐷

Γ(𝑥 − 𝑦) 𝑓 (𝑦) 𝑑𝑦 +
2∑︁
𝑗=1

1
𝑘 𝑗

∫
𝐷 𝑗

Γ(𝑥 − 𝑦) 𝑓 (𝑦) 𝑑𝑦, 𝑥 ∈ R𝑑 ,

where Γ(𝑥) is the fundamental solution to the Laplacian, i.e.,

(2.7) Γ(𝑥) =


1
2𝜋
ln |𝑥 | , 𝑑 = 2 ,

− 1
4𝜋

|𝑥 |−1 , 𝑑 = 3 .

Since Δ𝐹 = 𝑓 in R𝑑 \ 𝐷 and Δ𝐹 = 𝑘−1
𝑗
𝑓 in 𝐷 𝑗 , 𝑣 := 𝑢 − 𝐹 (𝑢 is the solution to (2.2)) is the

solution to

(2.8)


Δ𝑣 = 0 in 𝐷 ∪ (R𝑑 \ 𝐷),
𝑣 |+ − 𝑣 |− = 0 on 𝜕𝐷 𝑗 , 𝑗 = 1, 2,

𝜕𝜈𝑣 |+ − 𝑘 𝑗𝜕𝜈𝑣 |− = (𝑘 𝑗 − 1)𝜂 𝑗 on 𝜕𝐷 𝑗 , 𝑗 = 1, 2,

𝑣(𝑥) = 𝑐 ln |𝑥 | +𝑂 ( |𝑥 |−1) as |𝑥 | → ∞

with 𝜂 𝑗 = 𝜕𝜈𝐹 |𝜕𝐷 𝑗
( 𝑗 = 1, 2). That is, the inhomogeneous problem (2.2) is reduced to (2.8).

By putting 𝑣 := 𝑢 − 𝐻, we see that the homogeneous (2.3) is reduced to (2.8) with 𝜂 𝑗 =

𝜕𝜈𝐻 |𝜕𝐷 𝑗
.
The solution to (2.8) can be represented in terms of the single layer potentials, and if

it is done so, the problem is reduced to a system integral equations for the Neumann-Poincaré
operator on 𝜕𝐷1 × 𝜕𝐷2. In a recent paper [14], explicit solutions to (2.2) and (2.3) have been
constructed when inclusions are circular using the complete knowledge of the spectrum for
the Neumann-Poincaré operator on two circles. In subsection 2.1, we review them and opti-
mal estimates of derivatives of the solution as consequences. We then review in subsection
2.2 important generalizations, to inclusions of more general shape in two dimensions and
three dimensions, of results for circular inclusions. These are actually results earlier than the
circular case of [14]; review of this section is in reverse historical order. The merit in doing
so is that the fine results for the case of circular inclusions may serve as milestones of which
problems have been solved and which problems need to be solved.
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In the last subsection, we review results on the asymptotic characterizations of the
singular behaviour of the gradient of the solution.

2.1. Estimates for circular inclusions
2.1.1. Explicit representation of the solution. Suppose that 𝐷1 and 𝐷2 are disks of radii
𝑟1 and 𝑟2, respectively. Explicit solutions are constructed in [14] by transforming circles 𝜕𝐷1
and 𝜕𝐷2 to two concentric circles. In order to have the transformation take a simple form,
we make some necessary translations and rotations so that after them centers of 𝐷1 and 𝐷2
are located at (𝑐1, 0) and (𝑐2, 0), where

(2.9) 𝑐1 =
𝑟22 − 𝑟21 − (𝑟1 + 𝑟2 + 𝜖)2

2(𝑟1 + 𝑟2 + 𝜖) − 𝛽

2
, 𝑐2 = 𝑐1 + 𝑟1 + 𝑟2 + 𝜖

with

(2.10) 𝛽 =

√
𝜖
√︁
(2𝑟1 + 𝜖) (2𝑟2 + 𝜖) (2𝑟1 + 2𝑟2 + 𝜖)

𝑟1 + 𝑟2 + 𝜖
.

Then, 𝜕𝐷1 and 𝜕𝐷2 are mapped onto two concentric circles by the transformation

(2.11) 𝑧∗ = 𝑇𝑧 :=
𝛽

𝑧
+ 1,

namely, 𝑇 (𝜕𝐷 𝑗 ) ( 𝑗 = 1, 2) is the circle of the radius 𝑅 𝑗 centered at 0, where 𝑅 𝑗 is given by

(2.12) 𝑅21 = 1 +
𝛽

𝑐1
, 𝑅22 = 1 +

𝛽

𝑐2
.

Let

(2.13) 𝐷∗
1 := 𝑇 (𝐷1) = {|𝜁 | < 𝑅1}, 𝐷∗

2 := 𝑇 (𝐷2) = {|𝜁 | > 𝑅2}.

Let 𝐻−1/2 (𝜕𝐷 𝑗 ) denote the Sobolev space of order −1/2 on 𝜕𝐷 𝑗 , and 𝐻−1/2
0 (𝜕𝐷 𝑗 )

is the subspace of 𝐻−1/2 (𝜕𝐷 𝑗 ) whose element 𝑓 satisfies
∫
𝜕𝐷 𝑗

𝑓 = 0. Suppose that the
function 𝜂 𝑗 appearing in (2.8) belongs to 𝐻−1/2

0 (𝜕𝐷 𝑗 ) and let 𝐻 𝑗 be the unique solution to
the following Neumann boundary value problem:

(2.14)
 Δ𝐻 𝑗 = 0 in 𝐷 𝑗 ,

𝜕𝜈𝐻 𝑗 = 𝜂 𝑗 on 𝜕𝐷 𝑗 .

Let ℎ 𝑗 be the analytic function in 𝐷∗
𝑗
such that ℎ1 (0) = 0, lim |𝜁 |→∞ ℎ2 (𝜁) = 0, and

(2.15) 𝐻 𝑗 (𝑧) = <(ℎ 𝑗 ◦ 𝑇) (𝑧) + 𝐶 𝑗 , 𝑧 ∈ 𝐷 𝑗

for some constant 𝐶 𝑗 . Here and afterwards,< indicates the real part. Let

(2.16) 𝜌 :=
𝑅1
𝑅2

and 𝜆 𝑗 :=
𝑘 𝑗 + 1
2(𝑘 𝑗 − 1)

, 𝑗 = 1, 2,

and define functions 𝑤 𝑗 by

(2.17) 𝑤1 (𝜁) =
∞∑︁
𝑙=0

ℎ1 (𝜌2𝑙𝜁)
(4𝜆1𝜆2)𝑙+1

, |𝜁 | < 𝑅1
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and

(2.18) 𝑤2 (𝜁) =
∞∑︁
𝑙=0

ℎ2 (𝜌−2𝑙𝜁)
(4𝜆1𝜆2)𝑙+1

, |𝜁 | > 𝑅2.

Using functions 𝑤1 and 𝑤2, we define

(2.19) 𝐴1 (𝜁) :=



(𝜆1 + 𝜆2)𝑤1 (𝜁)
+(𝜆1 − 𝜆2)𝑤1 (𝜌𝜁) − 𝑤1 (𝜌2𝜁), |𝜁 | ≤ 𝑅1,

(𝜆1 + 𝜆2)𝑤1 (𝑅21𝜁
−1)

+(𝜆1 − 𝜆2)𝑤1 (𝜌𝜁) − 𝑤1 (𝜌2𝜁), 𝑅1 < |𝜁 | ≤ 𝑅2,

(𝜆1 + 𝜆2)𝑤1 (𝑅21𝜁
−1)

+(𝜆1 − 𝜆2)𝑤1 (𝑅1𝑅2𝜁−1) − 𝑤1 (𝑅21𝜁
−1), 𝑅2 < |𝜁 |,

and

(2.20) 𝐴2 (𝜁) :=



(𝜆1 + 𝜆2)𝑤2 (𝑅22𝜁
−1)

−(𝜆1 − 𝜆2)𝑤2 (𝑅1𝑅2𝜁−1) − 𝑤2 (𝑅22𝜁
−1), |𝜁 | ≤ 𝑅1,

(𝜆1 + 𝜆2)𝑤2 (𝑅22𝜁
−1)

−(𝜆1 − 𝜆2)𝑤2 (𝜌−1𝜁) − 𝑤2 (𝜌−2𝜁), 𝑅1 < |𝜁 | ≤ 𝑅2,

(𝜆1 + 𝜆2)𝑤2 (𝜁)
−(𝜆1 − 𝜆2)𝑤2 (𝜌−1𝜁) − 𝑤2 (𝜌−2𝜁), 𝑅2 < |𝜁 |.

We have the following representation formula for the solution to (2.8).

Proposition 2.1. Suppose 𝜂 𝑗 ∈ 𝐻
−1/2
0 (𝜕𝐷 𝑗 ) ( 𝑗 = 1, 2). The solution 𝑣 to (2.8) is given by

(2.21) 𝑣(𝑧) = < (𝐴1 (𝑇 (𝑧)) + 𝐴2 (𝑇 (𝑧))) , 𝑧 ∈ R2.

For the inhomogeneous problem (2.2), 𝜂 𝑗 = 𝜕𝜈𝐹 |𝜕𝐷 𝑗
, and hence the condition that

𝜂 𝑗 belongs to 𝐻−1/2
0 (𝜕𝐷 𝑗 ) ( 𝑗 = 1, 2) amounts to

(2.22)
∫
𝐷1

𝑓 =

∫
𝐷2

𝑓 = 0.

Thus we have the following corollary for (2.2).

Corollary 2.2. Suppose that 𝑓 satisfies (2.22). The solution 𝑢 to (2.2) is represented as

(2.23) 𝑢(𝑧) = 𝐹 (𝑧) + < (𝐴1 (𝑇 (𝑧)) + 𝐴2 (𝑇 (𝑧))) + const.

For the general case when 𝑓 does not necessarily satisfy the condition (2.22), we
can construct (explicitly) functions 𝑉1 and 𝑉2 such that the function 𝑓0, defined by

𝑓0 = 𝑓 −
(∫

𝐷1

𝑓

)
∇ · 𝜎∇𝑉1 −

(∫
𝐷2

𝑓

)
∇ · 𝜎∇𝑉2,

6 ICM 2022



satisfies (2.22), and hence the solution 𝑢 to (2.2) takes the form

(2.24) 𝑢 =

(∫
𝐷1

𝑓

)
𝑉1 +

(∫
𝐷2

𝑓

)
𝑉2 + 𝑢0,

where 𝑢0 is the solution to (2.2) of the form (2.21). The construction of functions 𝑉1 and 𝑉2
in [14] heavily uses the fact that 𝐷1 and 𝐷2 are disks.

For the homogeneous problem (2.3), 𝜂 𝑗 = 𝜕𝜈𝐻 |𝜕𝐷 𝑗
and hence 𝐻 𝑗 = 𝐻. Thus, we

have the following corollary:

Corollary 2.3. The solution 𝑢 to (2.2) is represented as

(2.25) 𝑢(𝑧) = 𝐻 (𝑧) + < (𝐴1 (𝑇 (𝑧)) + 𝐴2 (𝑇 (𝑧))) .

2.1.2. Optimal estimates for the solution. We now present estimates for the solutions and
their derivatives. These estimates are optimal and derived from the explicit representations
of the solution presented in the previous subsection. The derivation is nothing of triviality.

We first introduce some norms for regularity of functions. A function 𝑔 defined on
R2 (with inclusions 𝐷1 and 𝐷2) is said to be piecewise 𝐶𝑛,𝛼 for some non-negative integer
𝑛 and 0 < 𝛼 < 1 if 𝑔 is 𝐶𝑛,𝛼 on 𝐷1, 𝐷2 and R2 \ 𝐷 (𝐷 = 𝐷1 ∪ 𝐷2) separately. For piecewise
𝐶𝑛,𝛼 functions 𝑔, the norm is defined by

(2.26) ‖𝑔‖𝑛,𝛼 := ‖𝑔‖
𝐶𝑛,𝛼 (𝐷1) + ‖𝑔‖

𝐶𝑛,𝛼 (𝐷2) + ‖𝑔‖𝐶𝑛,𝛼 (R2\𝐷) .

When 𝛼 = 0, we denote it by ‖𝑔‖𝑛,0. We also use the following norm:

(2.27) ‖𝑔‖∗𝑛,𝛼 :=
1
𝑘1

‖𝑔‖
𝐶𝑛,𝛼 (𝐷1) +

1
𝑘2

‖𝑔‖
𝐶𝑛,𝛼 (𝐷2) + ‖𝑔‖𝐶𝑛,𝛼 (R2\𝐷) .

When (𝑘1 − 1) (𝑘2 − 1) > 0 which includes the case when 𝑘1 = 𝑘2 = ∞ or 𝑘1 =
𝑘2 = 0 in limits, we obtain the following theorems for the inhomogeneous and homogeneous
transmission problems. Here and throughout this paper, we put

(2.28) 𝑟∗ :=

√︄
2(𝑟1 + 𝑟2)

𝑟1𝑟2
.

We assume that the inhomogeneity 𝑓 is given by 𝑓 = ∇ · 𝑔 for some 𝑔. It is assumed that 𝑔
is compactly supported in R2 for the sake of simplicity.

Theorem 2.4. Suppose (𝑘1 − 1) (𝑘2 − 1) > 0 and 𝑓 = ∇ · 𝑔 for some piecewise 𝐶𝑛−1,𝛼

function 𝑔 with the compact support (𝑛 is a positive integer and 0 < 𝛼 < 1). There is a
constant 𝐶 > 0 independent of 𝑘1, 𝑘2, 𝜖 and 𝑔 such that the solution 𝑢 to (2.2) satisfies

(2.29) ‖𝑢‖𝑛,0 ≤ 𝐶‖𝑔‖∗𝑛−1,𝛼
(
4𝜆1𝜆2 − 1 + 𝑟∗

√
𝜖
)−𝑛

.

This estimate is optimal in the sense that there is 𝑔 such that the reverse inequality (with a
different constant 𝐶) holds when 𝑛 = 1.

Theorem 2.5. Let Ω be a bounded set containing 𝐷1 ∪ 𝐷2. Let 𝑢 be the solution to (2.3).
If (𝑘1 − 1) (𝑘2 − 1) > 0, then there is a constant 𝐶 > 0 independent of 𝑘1, 𝑘2, 𝜖 and the
function 𝐻 such that

(2.30) ‖𝑢‖𝑛,Ω ≤ 𝐶‖𝐻‖𝐶𝑛 (Ω)
(
4𝜆1𝜆2 − 1 + 𝑟∗

√
𝜖
)−𝑛

.
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This estimate is optimal in the sense that there is a harmonic function 𝐻 such that the reverse
inequality (with a different constant 𝐶) holds for the case 𝑛 = 1. Here, ‖𝑢‖𝑛,Ω denotes the
piecewise 𝐶𝑛 norm on Ω, namely,

(2.31) ‖𝑢‖𝑛,Ω := ‖𝑢‖
𝐶𝑛 (𝐷1) + ‖𝑢‖

𝐶𝑛 (𝐷2) + ‖𝑢‖𝐶𝑛 (Ω\𝐷) .

The estimates (2.29) and (2.30) are not new; The estimate (2.29) (for the inho-
mogeneous problem with circular inclusions) was obtained in [11]. The estimate (2.30) for
the gradient for the homogeneous problem (with circular inclusions), namely, for 𝑛 = 1, is
obtained in [3,4]; that for higher 𝑛 in [11].

Since
4𝜆1𝜆2 − 1 =

2(𝑘1 + 𝑘2)
(𝑘1 − 1) (𝑘2 − 1)

,

the estimate (2.29) shows that if either 𝑘1 or 𝑘2 is finite (away from 0 and∞), then ‖𝑢‖𝑛,0 is
bounded regardless of the distance 𝜖 , while if both 𝑘1 and 𝑘2 tend to∞, then the right-hand
side of (2.29) is of order 𝜖−𝑛/2. As explained at the end of this subsection, ∇𝑢 may actually
blow up at the order of 𝜖−1/2 . If 𝑘1 and 𝑘2 tend to 0, then the right-hand side of (2.29) is
also of order 𝜖−𝑛/2 provided that ‖𝑔‖∗

𝑛−1,𝛼 is bounded, in particular, if there is no source in
𝐷1 ∪ 𝐷2, namely, 𝑔 = 0 in 𝐷1 ∪ 𝐷2. The estimate (2.30) yields the same findings.

If (𝑘1 − 1) (𝑘2 − 1) < 0 which includes the case when 𝑘1 = 0 and 𝑘2 = ∞ (or the
other way around) in limits, then 4𝜆1𝜆2 < 0. Thus the right-hand sides of (2.29) and (2.30)
are bounded and cannot be right estimates for this case. Instead, we obtain the following
theorems.

Theorem 2.6. Suppose (𝑘1 − 1) (𝑘2 − 1) < 0 and 𝑓 = ∇ · 𝑔 for some piecewise𝐶𝑛,𝛼 function
𝑔 with the compact support (𝑛 is a positive integer and 0 < 𝛼 < 1). There is a constant 𝐶 > 0
independent of 𝑘1, 𝑘2, 𝜖 and 𝑔 such that the solution 𝑢 to (2.2) satisfies

(2.32) ‖𝑢‖𝑛,0 ≤ 𝐶‖𝑔‖∗𝑛,𝛼
(
4|𝜆1𝜆2 | − 1 + 𝑟∗

√
𝜖
)−𝑛+1

.

This estimate is optimal in the sense that there is 𝑓 such that the reverse inequality (with a
different constant 𝐶) holds for 𝑛 = 2.

Theorem 2.7. Let Ω be a bounded set containing 𝐷1 ∪ 𝐷2. Let 𝑢 be the solution to (2.3).
If (𝑘1 − 1) (𝑘2 − 1) < 0, then there is a constant 𝐶 > 0 independent of 𝑘1, 𝑘2, 𝜖 and the
function 𝐻 such that

(2.33) ‖𝑢‖𝑛,Ω ≤ 𝐶‖𝐻‖𝐶𝑛+1 (Ω)
(
4|𝜆1𝜆2 | − 1 + 𝑟∗

√
𝜖
)−𝑛+1

.

This estimate is optimal in the sense that there is a harmonic function 𝐻 such that the reverse
inequality (with a different constant 𝐶) holds for 𝑛 = 2.

Estimate (2.32) and (2.33) show that if (𝑘1 − 1) (𝑘2 − 1) < 0, then ∇𝑢 is bounded
regardless of the 𝑘1, 𝑘2 and 𝜖 . But, the 𝑛th (𝑛 ≥ 2) order derivative may blow up at the rate
of 𝜖−(𝑛−1)/2 if, for example, 𝑘1 = 0 and 𝑘2 = ∞. The second derivative of 𝑢 actually blows
up at the rate of 𝜖−1/2 in some case as explained in the next subsection. These results are
new and waiting to be generalized to inclusions of general shape and to higher dimensions.
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2.1.3. Optimality of the estimates. Let 𝐹 be a smooth function in R2 with a compact
support such that 𝐹 (𝑧) = 𝑥1 in a neighborhood of 𝐷1 ∪ 𝐷2. Let 𝑓 := Δ𝐹. Then the following
hold [14]:

(i) Let 𝑘1 = 𝑘2 = ∞. The solution 𝑢 to (2.2) satisfies

(2.34) |∇𝑢(𝑧) | & 𝜖−1/2

for some 𝑧 ∈ R2 \ 𝐷.

(ii) For the case when (𝑘1 − 1) (𝑘2 − 1) < 0, we take either 𝑘1 = 0, 𝑘2 = ∞ or
𝑘1 = ∞, 𝑘2 = 0. The solution 𝑢 to (2.2) satisfies

(2.35) |∇2𝑢(𝑧) | & 𝜖−1/2

for some 𝑧 ∈ R2 \ 𝐷, while ∇𝑢 is bounded.

Similar estimates hold for the solution to the homogeneous problem (2.3) with 𝐻 (𝑥) = 𝑥1

(the optimality of the gradient estimate is also shown in [3]).

2.2. Estimates for inclusions of general shape
The estimate (2.30) shows that if 𝑘1, 𝑘2 are finite, namely, 0 < 𝐶1 ≤ 𝑘1, 𝑘2 ≤ 𝐶2 <∞

for some constants 𝐶1, 𝐶2, then ∇𝑢 is bounded regardless of 𝜖 . This fact is known to be true
in a more general setting where there are several inclusions of arbitrary shape [29] (see [10]

for the case of circular inclusions).
If 𝑘1 = 𝑘2 = ∞ (the perfectly conducting case), then we see from (2.30) that

(2.36) |∇𝑢(𝑧) | . 𝜖−1/2.

This estimate and its optimality for the case of strictly convex inclusions (more generally,
they are strictly convex near the points of the shortest distance) in two dimensions has been
proved in [35]. In three dimensions, the optimal estimate for ∇𝑢 has been obtained in [6]:

(2.37) |∇𝑢(𝑧) | . 1
𝜖 | ln 𝜖 | .

(See [26, 32] for the case of spherical inclusions). In [21], a bow-tie structure, where two
vertices are points of the shortest distance, is considered. It is proved that two kinds of
singularities appear, one due to the corners and the other due to interaction between two
inclusions.

If 𝑘1 = 𝑘2 = 0 (the insulating case), the same estimate for |∇𝑢 | as the perfectly
conducting case holds in two dimensions. This is due to existence of harmonic conjugates
and does not extend to three dimensions. In fact, the three-dimensional case is completely
different. It is proved in [7] that if 𝑘1 = 𝑘2 = 0, the estimate

(2.38) |∇𝑢(𝑧) | . 𝜖−𝑠

holds with 𝑠 = 1/2 when inclusions are strictly convex inclusions in three dimensions. It
is then proved in [36] that the surprising estimate with 𝑠 = 2−

√
2
2 holds on the shortest line
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segment between two spherical inclusions of the same radii. Recently in [30] the estimate
with 𝑠 = 1/2 − 𝛾 for some 𝛾 > 0 is derived on strictly convex inclusions and for dimensions
𝑑 ≥ 3. An upper bound of 𝛾 for 𝑑 ≥ 4 has been derived in [34].

It is likely that in the three-dimensional insulating case the behavior of the gradient
depends heavily on geometry of inclusions and it is not clear at all what the best possible 𝑠
is in (2.38). It is not even clear if such a number exists; it may depend on the position 𝑥 of
the estimate. Clarifying this is now an outstanding open problem to be solved.

For the inhomogeneous problem, estimates on conducting inclusions of circular
and bow-tie shapes in two dimensions and of spherical shape in three dimensions when the
source function is an emitter, namely, 𝑓 = 𝑎 · 𝛿𝑧 for some 𝑧 outside inclusions, have been
obtained [22–24]. Here, 𝛿𝑧 denotes the Dirac-delta function. Such a problem is considered in
relation to the patched antenna where the field excited by an emitter of the dipole-type is
enhanced by closely located antenna (see, for example, [33])

Theorems 2.6 and 2.7 for the case (𝑘1 − 1) (𝑘2 − 1) < 0 are new and unexpected,
and their extension to inclusions of general shape and to higher dimensions is wide open.
Particular interest lies in the high contrast case, namely, 𝑘1 = 0 and 𝑘2 = ∞; whether the
gradient is bounded and the higher order derivatives blow up, if so in what rate. The case of
spherical inclusions seems already quite challenging.

2.3. Asymptotic characterizations of the gradient blow-up
The problem (2.3) in the limit 𝑘1 → ∞ and 𝑘2 → ∞ can be rewritten as

(2.39)


Δ𝑢 = 0 in 𝐷𝑒,

𝑢 = 𝜆 𝑗 (constant) on 𝜕𝐷 𝑗 , 𝑗 = 1, 2,

𝑢(𝑥) − 𝐻 (𝑥) = 𝑂 ( |𝑥 |1−𝑑) as |𝑥 | → ∞,

where 𝐷𝑒 := R𝑑 \ (𝐷1 ∪ 𝐷2). The problem (2.39) is not an exterior Dirichlet problem since
the constants 𝜆 𝑗 are not prescribed. Rather, they are determined by the conditions

(2.40)
∫
𝜕𝐷 𝑗

𝜕𝑢 |+ 𝑑𝑆 = 0, 𝑗 = 1, 2.

The constants 𝜆1 and 𝜆2 may or may not be the same depending on the given 𝐻 (and the
configuration of inclusions). When they are different, there occurs a sharp gradient if the
distance between 𝐷1 and 𝐷2 is short.

The singular behavior of ∇𝑢 where 𝑢 is the solution to (2.39) can be characterized
by the singular function 𝑞 = 𝑞𝐷 which is the solution to

(2.41)



Δ𝑞 = 0 in 𝐷𝑒,

𝑞 = constant on 𝜕𝐷 𝑗 , 𝑗 = 1, 2,∫
𝜕𝐷 𝑗

𝜕𝑞 |+𝑑𝑆 = −(−1) 𝑗 , 𝑗 = 1, 2,

𝑞(𝑥) = 𝑂 ( |𝑥 |1−𝑑) as |𝑥 | → ∞.

For general inclusions 𝐷1 and 𝐷2, there is a unique solution to (2.41) (see [1]).
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Using the singular function 𝑞𝐷 , the solution 𝑢 to (2.39) can be decomposed as

(2.42) 𝑢 = 𝛼𝑞𝐷 + 𝑟

where

(2.43) 𝛼 =
𝑢 |𝜕𝐷2 − 𝑢 |𝜕𝐷1

𝑞𝐷 |𝜕𝐷2 − 𝑞𝐷 |𝜕𝐷1
.

Here the constant 𝛼 and functions 𝑞𝐷 , 𝑟 depend on 𝜖 . Observe that 𝑟 attains constant values
on 𝜕𝐷1 and 𝜕𝐷2, and 𝑟 |𝜕𝐷1 = 𝑟 |𝜕𝐷2 , so that ∇𝑟 is bounded on 𝐷𝑒 (see [16]). Thus the term
𝛼∇𝑞𝐷 characterizes the blow-up of ∇𝑢 as 𝜖 → 0. In particular, since ∇𝑞𝐷 is of order 𝜖−1/2, 𝛼
represents the magnitude of the blow-up, and hence is called the stress concentration factor.

If 𝐷1 = 𝐵1 and 𝐷2 = 𝐵2 two disjoint disks, the solution 𝑞 (we denote it by 𝑞𝐵 in
this case) can be found explicitly. Let 𝑅 𝑗 be the inversion with respect to 𝜕𝐵 𝑗 ( 𝑗 = 1, 2), and
let 𝛿1 and 𝛿2 be the unique fixed points of the combined inversions 𝑅1 ◦ 𝑅2 and 𝑅2 ◦ 𝑅1,
respectively. Let

(2.44) 𝑞𝐵 (𝑥) =
1
2𝜋

(ln |𝑥 − 𝛿1 | − ln |𝑥 − 𝛿2 |).

The function 𝑞𝐵 is the solution to (2.41). In particular, 𝑞𝐵 is constant on 𝜕𝐵 𝑗 because 𝜕𝐵1
and 𝜕𝐵2 are circles of Apollonius of points 𝛿1 and 𝛿2. The function 𝑞𝐵 appears in the bipolar
coordinate system for 𝜕𝐵1 and 𝜕𝐵2 and was used for analysis of the field concentration for
the first time in [35]. Using the explicit form of the function 𝑞𝐵, it is proved that

(2.45) ‖∇𝑞𝐵 ‖𝐿∞ (R2\(𝐵1∪𝐵2)) ∼ 𝜖−1/2.

Results on asymptotic characterizations of the gradient blow-up in two dimensions
may be summarized as follows:

(i) If 𝐷1 = 𝐵1 and 𝐷2 = 𝐵2 are disks, then

(2.46) 𝛼 =
4𝜋𝑟1𝑟2
𝑟1 + 𝑟2

(𝑧2 − 𝑧1) · ∇𝐻 ( 𝑧1+𝑧22 )
|𝑧2 − 𝑧1 |

+𝑂 (
√
𝜖) as 𝜖 → 0,

where 𝑟 𝑗 is the radius of 𝐷 𝑗 , 𝑗 = 1, 2 [16].

(ii) Suppose that 𝜕𝐷 𝑗 is C2,𝛾 for some 𝛾 ∈ (0,1). We further suppose that there are
unique points 𝑧1 ∈ 𝜕𝐷1 and 𝑧2 ∈ 𝜕𝐷2 such that |𝑧1 − 𝑧2 | = dist(𝐷1, 𝐷2) and there
is a common neighborhood𝑈 of 𝑧1 and 𝑧2 such that 𝐷 𝑗 ∩𝑈 is strictly convex for
𝑗 = 1, 2. Let 𝐵 𝑗 be the disk osculating to 𝐷 𝑗 at 𝑧 𝑗 ( 𝑗 = 1, 2). Then,

(2.47) ∇𝑞𝐷 = ∇𝑞𝐵 (1 +𝑂 (𝜖𝛾/2)) +𝑂 (1),

and

(2.48) 𝛼 =

√
2𝜋

√
𝜅1 + 𝜅2

1
√
𝜖

∫
𝜕𝐷1∪𝜕𝐷2

𝐻𝜕𝜈𝑞𝐷𝑑𝜎

(
1 +𝑂 (𝜖𝛾/2)

)
.

In particular, 𝛼 is bounded regardless of 𝜖 [1].
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(iii) Let 𝐷01 and 𝐷
0
2 be the touching inclusions obtained as the limit of 𝐷1 and 𝐷2

as 𝜖 → 0 (𝐷1 and 𝐷2 are still assumed to satisfy assumptions of (ii)), and let 𝑢0
be the solution for the touching case, namely,

(2.49)


Δ𝑢0 = 0 in 𝐷𝑒

0 ,

𝑢0 = 𝜆0 on 𝜕𝐷𝑒
0 ,

𝑢0 (𝑥) − 𝐻 (𝑥) = 𝑂 ( |𝑥 |−1) as |𝑥 | → ∞,

where 𝐷𝑒
0 := R

2 \ (𝐷01 ∪ 𝐷02) and 𝜆0 is a constant determined by the additional
condition

(2.50)
∫
Ω

|∇(𝑢0 − 𝐻) |2𝑑𝐴 < ∞.

Then,

(2.51) 𝛼 =

∫
𝜕𝐷01

𝜕𝜈𝑢0 +𝑂 (𝜖 | log 𝜖 |)

as 𝜖 → 0 [15].

The decomposition formula (2.42) (together with (2.47) and (2.51)) has some
important consequences. Since ∇𝑞𝐷 is bounded from below and above by 𝜖−1/2 (up to
constant multiples), the blow-up estimates for ∇𝑢 can be obtained from the formula. It can
be used to compute 𝑢 numerically. Since the formula extracts the major singular term in an
explicit way, it suffices to compute the residual term 𝑏 for which only regular meshes are
required. This idea appeared and was exploited in [16] in the special case when 𝐷 𝑗 are disks.

The formula (2.42) has another very interesting implication. The quantity ∇𝑢 · 𝑛
represents the charge density on 𝜕𝐷1 ∪ 𝜕𝐷2 induced by the field −∇𝐻, and ∇𝑢0 · 𝑛 does
that on 𝜕𝐷01 ∪ 𝜕𝐷02. Note that the charge densities on the separated inclusions have a singular
part 𝛼∇𝑞𝐷 · 𝑛 and a regular part ∇𝑟 · 𝑛. It is proved in [15] that ∇𝑟 · 𝑛 converges to ∇𝑢0 · 𝑛
as 𝜖 → 0, that is, as the separated inclusions approach to the touching ones. So the singular
part suddenly disappears when two inclusions become touching. It is reminiscent of the
electrical spark occurring between two separated conductors which suddenly disappears
when the conductors are touching.

The decomposition formula of the kind (2.42) when 𝐷1 and 𝐷2 are three-dimensional
balls of the same radii has been derived in [17] (see [27] for the case of different radii). In this
case the singular function is given as an infinite superposition of point charges.

3. Lamé system
In this section we review results on the field concentration for the Lamé system of

linear elasticity. If Lamé parameters are finite so that inclusions are of low contrast with
the matrix, then the gradient of the solution is bounded regardless of the distance between
inclusions. This is the well-known result of Li-Nirenberg [28]. The only known results for the
high contrast case are when inclusions are hard and strictly convex. We review them here.
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Hard inclusions for the elasticity correspond to the perfect conductors for the electricity and
is characterized by the boundary condition as explained blow.

As before, let 𝐷1 and 𝐷2 be bounded domains in R2. Let (𝜆, 𝜇) be the pair of Lamé
constants of 𝐷𝑒 = R2 \ (𝐷1 ∪ 𝐷2) which satisfies the strong ellipticity conditions: 𝜇 > 0
and 𝜆 + 𝜇 > 0 (we only consider the two-dimensional case). The Lamé operator is given by

(3.1) L𝜆,𝜇𝑢 := 𝜇Δ𝑢 + (𝜆 + 𝜇)∇∇ · 𝑢,

where 𝑢 = (𝑢1, 𝑢2)𝑇 (𝑇 for transpose) is a vector-valued function. Let

(3.2) Ψ1 (𝑥) =
[
1
0

]
, Ψ2 (𝑥) =

[
0
1

]
, Ψ3 (𝑥) =

[
−𝑥2
𝑥1

]
,

which are the displacement fields of the rigid motions.
The problem for the Lamé system is given as follows:

(3.3)


L𝜆,𝜇𝑢 = 0 in 𝐷𝑒,

𝑢 =

3∑︁
𝑗=1

𝑐𝑖 𝑗Ψ 𝑗 on 𝜕𝐷𝑖 , 𝑖 = 1, 2,

𝑢(𝑥) − 𝐻 (𝑥) = 𝑂 ( |𝑥 |−1)as |𝑥 | → ∞,

where 𝐻 = (ℎ1, ℎ2)𝑇 is a given function satisfying L𝜆,𝜇𝐻 = 0 in R2. The boundary condi-
tions to be satisfied by the displacement 𝑢 on 𝜕𝐷 𝑗 (the second line in (3.3)) indicate that
𝐷1 and 𝐷2 are hard inclusions. The constants 𝑐𝑖 𝑗 there are not given but determined by the
condition similar to (2.40), that is,

(3.4)
∫
𝜕𝐷𝑖

Ψ 𝑗 · 𝜎[𝑢]𝑛 𝑑𝑠 = 0, 𝑖 = 1, 2, 𝑗 = 1, 2, 3.

Here, 𝜎[𝑢] denotes the stress tensor corresponding to the displacement vector 𝑢 and is
defined by

𝜎[𝑢] := 𝜆(∇ · 𝑢) + 2𝜇(∇̂𝑢),

where ∇̂𝑢 = 1
2
(
∇𝑢 + ∇𝑢𝑇

)
.

An asymptotic characterization of the solution 𝑢 to (3.3), which captures the sin-
gular behaviour of ∇𝑢, is obtained in [18]. It is given in terms of singular functions which
are constructed by the singular function 𝑞𝐵 for the conductivity problem given in (2.44).
To describe them, let 𝑧1, 𝑧2, 𝐵1, 𝐵2 be as before (right before (2.47)), namely, 𝑧1 ∈ 𝜕𝐷1 and
𝑧2 ∈ 𝜕𝐷2 are unique points such that |𝑧1 − 𝑧2 | = dist(𝐷1, 𝐷2), there is a common neigh-
borhood 𝑈 of 𝑧1 and 𝑧2 such that 𝐷𝑖 ∩𝑈 is strictly convex for 𝑖 = 1, 2, and 𝐵𝑖 is the disk
osculating to 𝐷𝑖 at 𝑧𝑖 (𝑖 = 1, 2). Let 𝛿1 and 𝛿2 be the points appearing in the definition (2.44)
of 𝑞𝐵, namely, the fixed points of the combined inversions. After a translation and a rotation
if necessary, we may assume that 𝛿1 = (−𝑎, 0) and 𝛿2 = (𝑎, 0). This number 𝑎 is actually
satisfies 𝑎 = 2𝛽, where 𝛽 is given in (2.10). If we denote the centers of 𝐵𝑖 by (𝑐𝑖 ,0) (𝑖 = 1,2),
then 𝑐𝑖 satisfies the relation

(3.5) 𝑐𝑖 = (−1)𝑖
√︃
𝑟2
𝑖
+ 𝑎2, 𝑖 = 1, 2.
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Let 𝑞 = 𝑞𝐵 and let

(3.6) 𝛼1 =
1
2

(
1
𝜇
+ 1
𝜆 + 2𝜇

)
and 𝛼2 =

1
2

(
1
𝜇
− 1
𝜆 + 2𝜇

)
.

Singular functions 𝑄1 and 𝑄2 for the elasticity problem of this section are defined by

(3.7) 𝑄1 = 𝛼1

[
𝑞

0

]
− 𝛼2𝑥1∇𝑞

and

(3.8) 𝑄2 = 𝛼1

[
0
𝑞

]
+ 𝛼2𝑥1 (∇𝑞)⊥,

where (𝑎, 𝑏)⊥ = (−𝑏, 𝑎). Actually, these functions was found in [18] as linear combinations
of point source functions in linear elasticity called nuclei of strain. It turns out that they can
be expressed in simple forms using the function 𝑞 (see also [20]).

One can easily see that 𝑄 𝑗 are solutions to the Lamé system, namely,

(3.9) L𝜆,𝜇𝑄 𝑗 = 0 in R2 \ {𝛿1, 𝛿2}.

It is shown in [18] that 𝑄 𝑗 takes ‘almost’ constant values Ψ 𝑗 on the osculating circles 𝜕𝐵𝑖

(𝑖 = 1, 2). In fact, there are constants 𝑘 𝑗𝑖 and 𝑙 𝑗𝑖 such that for 𝑖 = 1, 2,

(3.10) 𝑄1 (𝑥) = 𝑘1𝑖Ψ1 (𝑥) + 𝑙1𝑖𝑥, 𝑥 ∈ 𝜕𝐵𝑖

and

(3.11) 𝑄2 (𝑥) = 𝑘2𝑖Ψ2 (𝑥) + 𝑙2𝑖𝑥
⊥, 𝑥 ∈ 𝜕𝐵𝑖 .

Actually, the constants 𝑘 𝑗𝑖 and 𝑙 𝑗𝑖 can be easily derived using the simple forms 𝑄 𝑗 . Using
the fact that 𝑞 is constant on 𝜕𝐵𝑖 , one can show that

∇𝑞(𝑥) = − 𝑎

2𝜋𝑟𝑖
1
𝑥1

(𝑥1 − 𝑐𝑖 , 𝑥2), 𝑥 ∈ 𝜕𝐵𝑖 , 𝑖 = 1, 2.

It thus follows that for 𝑖 = 1, 2,

(3.12) 𝑘1𝑖 = 𝛼1𝑞 |𝜕𝐵𝑖
− 𝛼2𝑎𝑐𝑖
2𝜋𝑟𝑖

, 𝑙1𝑖 =
𝛼2𝑎

2𝜋𝑟𝑖
and

(3.13) 𝑘2𝑖 = 𝛼1𝑞 |𝜕𝐵𝑖
+ 𝛼2𝑎𝑐𝑖
2𝜋𝑟𝑖

, 𝑙2𝑖 = − 𝛼2𝑎

2𝜋𝑟𝑖
Another function related with the boundary valueΨ3 on 𝜕𝐵1 and 𝜕𝐵2 is constructed

in the same paper. But this function has nothing to do with the singular behavior of the
field, so we omit it here. It is worth mentioning that the singular functions 𝑄1 and 𝑄2 are
effectively utilized to prove the Flaherty-Keller formula [12] on the effective property of
densely packed elastic composites [19].

Using the singular functions 𝑄1 and 𝑄2, it is proved that the solution 𝑢 to (3.3)
admits the following decomposition:

(3.14) 𝑢 = 𝐶1𝑄1 + 𝐶2𝑄2 + 𝑏,
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where 𝐶1 and 𝐶2 are constants depending on 𝜖 , but bounded independently of 𝜖 , and 𝑏 is a
function whose gradient is bounded on any bounded subset of 𝐷𝑒. The following estimate
is obtained as an immediate consequence of the decomposition formula:

(3.15) ‖∇𝑢‖𝐿∞ (𝐷𝑒) . 𝜖−1/2.

This estimate is also proved in [8]. This estimate is optimal in the sense that the reverse
inequality holds in some cases. An extension to three dimensions has been achieved in [9].

We emphasize that the constants 𝐶1 and 𝐶2 appearing in the formula (3.14) are not
explicit. Thus further investigation on how to determine them (or compute them numeri-
cally) is desired.

4. Stokes system
In this section we review the result in [2]: an asymptotic characterization of the stress

concentration for the Stokes flowmodelled by 𝜇Δ𝑢 =∇𝑝 and ∇ · 𝑢 = 0. Here, 𝜇 represents the
constant viscosity of the fluid. Even if the result is only for the two-dimensional inclusions
of circular shape, the result may serve as a milestone for further development.

Let 𝐷1 and 𝐷2 be disks and let 𝐷𝑒 = R2 \ 𝐷1 ∪ 𝐷2 as before. Let (𝑈, 𝑃) is a
given background solution to the homogeneous Stokes system in R2, namely, 𝜇Δ𝑈 = ∇𝑃
and ∇ ·𝑈 = 0 in R2. We consider the following problem of the Stokes system:

(4.1)



𝜇Δ𝑢 = ∇𝑝 in 𝐷𝑒,

∇ · 𝑢 = 0 in 𝐷𝑒,

𝑢 =

3∑︁
𝑗=1

𝑑𝑖 𝑗Ψ 𝑗 on 𝜕𝐷𝑖 , 𝑖 = 1, 2,

with the conditions

(𝑢 −𝑈) (𝑥) = 𝑂 ( |𝑥 |−1), ∇(𝑢 −𝑈) (𝑥) = 𝑂 ( |𝑥 |−2), (𝑝 − 𝑃) (𝑥) = 𝑂 ( |𝑥 |−2)

as |𝑥 | →∞. Here,Ψ 𝑗 are the functions given in (3.2), and 𝑑𝑖 𝑗 are constants to be determined
from the equilibrium conditions

(4.2)
∫
𝜕𝐷𝑖

Ψ 𝑗 · 𝜎[𝑢, 𝑝]𝑛 𝑑𝜎 = 0, 𝑖 = 1, 2, 𝑗 = 1, 2, 3.

Here, 𝜎[𝑢, 𝑝] is the stress field induced by the velocity-pressure pair (𝑢, 𝑝), namely,

(4.3) 𝜎[𝑢, 𝑝] = −𝑝𝐼 + 2𝜇∇̂𝑢,

where 𝐼 is the identity matrix.
As the distance between 𝐷1 and 𝐷2 tends to 0, the solution to (4.1) exhibits singular

behaviour in its gradient which can be captured in terms of singular functions. The singular
functions for (4.1) is the solution (𝑉 𝑗 , 𝑝 𝑗 ) ( 𝑗 = 1, 2) to the following problem:

(4.4)


𝜇Δ𝑉 𝑗 = ∇𝑝 𝑗 in R2 \ {𝛿1, 𝛿2},
∇ · 𝑉 𝑗 = 0 in R2 \ {𝛿1, 𝛿2},

𝑉 𝑗 =
(−1)𝑖
2

Ψ 𝑗 𝜕𝐵𝑖 , 𝑖 = 1, 2,
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with the conditions

𝑉 𝑗 (𝑥) = 𝐶 𝑗 +𝑂 ( |𝑥 |−1), ∇𝑉 𝑗 (𝑥) = 𝑂 ( |𝑥 |−2), 𝑝 𝑗 (𝑥) = 𝑂 ( |𝑥 |−2)

for some constant 𝐶 𝑗 as |𝑥 | → ∞. Here 𝛿 𝑗 is the point appearing in (2.44).
In [2], singular functions (𝑉 𝑗 , 𝑝 𝑗 ) are constructed using the stream function formula-

tion for which the bipolar coordinate system is used. We assume 𝛿1 = (−𝑎,0) and 𝛿2 = (𝑎,0)
as before. Then, the bipolar coordinates (𝜁, 𝜃) are defined by

(4.5) 𝜁 = 2𝜋𝑞𝐷 , 𝜃 = arg(𝑥 − 𝑎, 𝑦) − arg(𝑥 + 𝑎, 𝑦).

Let
𝑒𝜁 =

∇𝜁
|∇𝜁 | , 𝑒𝜃 =

∇𝜃
|∇𝜃 | .

Suppose that 𝐷1 and 𝐷2 have the same radius, say 𝑅, and let

𝑠 = sinh−1 (𝑎/𝑅).

Define two constants 𝐴1 and 𝐵1 by

(4.6) 𝐴1 :=
1

2𝑠 − tanh 2𝑠 , 𝐵1 := − 1
2 cosh 2𝑠

𝐴1.

Then, the velocity 𝑉1 is given by 𝑉1 = 𝑣1𝜁 𝑒𝜁 + 𝑣1𝜃𝑒𝜃 where

𝑣1𝜁 = (𝐴1𝜁 + 𝐵1 sinh 2𝜁)
1 − cosh 𝜁 cos 𝜃
cosh 𝜁 − cos 𝜃 ,(4.7)

𝑣1𝜃 = sin 𝜃
(
𝐴1 + 2𝐵1 cosh 2𝜁 −

sinh 𝜁 (𝐴1𝜁 + 𝐵1 sinh 2𝜁)
cosh 𝜁 − cos 𝜃

)
,(4.8)

and the pressure 𝑝1 is given by

(4.9) 𝑝1 =
2𝜇
𝑎
((𝐴1 − 2𝐵1) cosh 𝜁 cos 𝜃 + 𝐵1 cosh 2𝜁 cos 2𝜃) −

2𝜇
𝑎
(𝐴1 − 𝐵1).

The formulas for (𝑉2, 𝑝2) are quite involved. But it is proved in [2] that

(4.10) 𝑉2 = −𝐴2

[
0
𝜁

]
+ 𝐴2𝑥(∇𝜁)⊥ +𝑉2𝑜

and

(4.11) 𝑝2 = −2𝜇
𝑎

𝐴2 sinh 𝜁 sin 𝜃 + 𝑝2𝑜,

where (𝑉2𝑜, 𝑝2𝑜) is a solution to the Stokes system whose gradient is bounded regardless of
𝜖 , and 𝐴2 is the constant defined by

(4.12) 𝐴2 = − 1
2𝑠 + sinh 2𝑠 .

The function 𝑉2 is similar to the function 𝑄2 for the Lamé system given in (3.8).
It is proved in the same paper that if the background velocity field𝑈 is given by

(4.13) 𝑈 (𝑥1, 𝑥2) =
[
𝛼 𝛽

𝛾−𝛼

] [
𝑥1

𝑥2

]
(𝛼2 + (𝛽 + 𝛾)2 ≠ 0)
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for some constants 𝛼, 𝛽 and 𝛾 and the background pressure 𝑃 = 0, and if 𝐷1 and 𝐷2 are
disks of the same radius 𝑅, then the solution (𝑢, 𝑝) admits a decomposition of the following
form:

(4.14) (𝑢, 𝑝) = 𝛼
2
√
𝑅
𝜖3/2 (𝑉1, 𝑝1) +

𝛽 + 𝛾

2
√
𝑅𝜖 (𝑉2, 𝑝2) + (𝑢0, 𝑝0),

where (𝑢0, 𝑝0) is a solution to the Stokes problem whose stress tensor is bounded. Thus we
have

(4.15) 𝜎[𝑢, 𝑝] = 𝛼
2
√
𝑅
𝜖3/2𝜎[𝑉1, 𝑝1] +

𝛽 + 𝛾

2
√
𝑅𝜖𝜎[𝑉2, 𝑝2] + 𝜎[𝑢0, 𝑝0] .

Since ‖𝜎[𝑉1, 𝑝1] ‖𝐿∞ (𝐷𝑒) ≈ 𝜖−2 and ‖𝜎[𝑉2, 𝑝2] ‖𝐿∞ (𝐷𝑒) ≈ 𝜖−1 as proved in [2], we
have

(4.16) ‖𝜎[𝑢, 𝑝] ‖𝐿∞ (𝐷𝑒) ≈ 𝜖−1/2,

which says that the stress always blows up at the rate of 𝜖−1/2 provided that 𝑈 is linear as
given in (4.13) and inclusions are circular. It is quite interesting and challenging to extend
this result to the non-circular case.

Conclusions
In this paper we review significant results on optimal estimates of the derivatives

and asymptotic characterizations of the solution in presence of two inclusions when the
distance between two inclusions tends to zero. A special emphasis is laid on the case of high
contrast. We review results on the conductivity equation, the Lamé system, and the Stokes
system. Other than these equation, the stress concentration factor for the 𝑝-Laplacian has
been derived in [13].

As mentioned in the text, many challenging problems remain unsolved. Among
them, the problem for the three-dimensional insulating case is outstanding. The case when
the conductivities 𝑘1 and 𝑘2 satisfy the condition (𝑘1 − 1) (𝑘2 − 1) < 0 is also quite interest-
ing. It goes without saying that the problems for the Lamé system and the Stokes system are
in their early stage. Extensions to general shape and higher dimensions are quite challenging.
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