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Abstract

We investigate in a quantitative way the plasmon resonance at eigenvalues and the
essential spectrum (the accumulation point of eigenvalues) of the Neumann-Poincaré
operator on smooth domains. We first extend the symmetrization principle so that
the single layer potential becomes a unitary operator from H−1/2 onto H1/2. We then
show that the resonance at the essential spectrum is weaker than that at eigenvalues.
It is shown that anomalous localized resonance occurs at the essential spectrum on
ellipses, but cloaking does not occur on ellipses unlike the core-shell structure consid-
ered in [20]. It is shown that resonance does not occur at the essential spectrum on
three dimensional balls.
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1 Introduction

The Neumann-Poincaré (NP) operator is a boundary integral operator which arises natu-
rally when solving classical Dirichlet and Neumann boundary value problems using layer
potentials. This operator can be realized as a self-adjoint operator using Plemelj’s sym-
metrization principle (see the next section). If the boundary of the domain is smooth, the
operator is compact (see [9, 16]) and its spectrum consists of the point spectrum (eigen-
values) and the essential spectrum which is an accumulation point of the eigenvalues.
The purpose of this paper is to investigate resonance at eigenvalues and at the essential
spectrum, and compare them in a quantitatively precise way. The resonance at the eigen-
values of the NP operator is the plasmon resonance [10]. We show that the resonance at
the essential spectrum (on ellipses) is the anomalous localized resonance which was first
discovered on a concentric core-shell structure in [22].

To be more precise, suppose that a bounded simply connected domain Ω in Rd (d =
2, 3) is occupied with a plasmonic material of negative dielectric constant. In general the
material property of the domain Ω is represented by ϵc + iδ where ϵc < 0 is the dielectric
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constant and δ > 0 indicates the dissipation. Let ϵm > 0 be the dielectric constant of the
matrix Rd \ Ω. So the distribution of the dielectric constant of the structure is given by

ϵ =

{
ϵc + iδ in Ω,

ϵm in Rd \ Ω.
(1.1)

We quantify the resonance through the following equation:{
∇ · ϵ∇u = a · ∇δz in Rd,
u(x) = O(|x|1−d) as |x| → ∞,

(1.2)

where a is a constant vector and δz is the Dirac mass at z ∈ Rd \ Ω. If uδ is the solution
to (1.2), the resonance is characterized by the blow-up of ∥∇uδ∥L2(Ω):

∥∇uδ∥L2(Ω) → ∞ as δ → 0. (1.3)

We are particularly interested in the blow-up rate of ∥∇uδ∥L2(Ω) in terms of δ when the
resonance takes place. We emphasize that as δ → 0 ϵ tends to ϵc < 0 in Ω, and so the
problem is not an elliptic one. Resonance is connected to the spectrum of the NP operator
because of the transmission conditions (continuity of the potential and the flux) along the
interface ∂Ω:

uδ|+ = uδ|−, ϵm
∂uδ
∂ν

∣∣∣
+
= (ϵc + iδ)

∂uδ
∂ν

∣∣∣
−

on ∂Ω, (1.4)

where the subscripts + and − denote limits to ∂Ω from outside and inside Ω, respectively.
We will make this connection clear in section 3.

The findings of this paper show that the generic rate of the resonance at the eigenvalues
is δ−1 while that at the essential spectrum is weaker than δ−1. We then show that
resonance occurs at the essential spectrum (0) on ellipses and exact rate of resonance
is provided. It turns out that it is anomalous localized resonance (see subsection 5.1 for
precise statements). We also show that resonance does not occur at the essential spectrum
on the three dimensional balls. For the purpose of analysis on resonance we extend the
symmetrization principle and show as a result that the single layer potential is a unitary
operator from H−1/2(∂Ω) onto H1/2(∂Ω) (Hs is a Sobolev space). We also derive an
expansion formula for the fundamental solution of the Laplacian in terms of eigenfunctions
of the NP operator which seems of independent interest. It is worth mentioning that it
is recently found in [21] that on a disk a complete resonance occurs at 0. This happens
because 0 is the only eigenvalue of the NP operator on a disk.

Recently there is rapidly growing interest in the spectral theory of the NP operator
in relation to plasmonics. In [17] the Poincaré’s variational program was revisited with
modern prospective and symmetrization of the NP operator was proved. Eigenvalues
on disks, ellipses, and balls were computed [4, 14]. Asymptotics of eigenvalues of the NP
operator associated with closely located two-dimensional convex domain has been obtained
in [5, 6]. There has been progress on spectral theory of the NP operator on non-smooth
domains. A bound on the essential spectrum on the two-dimensional curvilinear domains
has been obtained [23]. Quite recently, the complete spectral resolution of the NP operator
on intersecting disks has been derived which in particular shows that only the absolutely
continuous spectrum exists [13]. Interestingly, the results in [13] shows that the spectral
bound obtained in [23] is optimal in the case of intersecting disks. The spectral theory of
the NP operator has been applied to analysis of cloaking by anomalous localized resonance
on the plasmonic structure [1] and to the study of uniformity of elliptic estimates [12].
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This paper is organized as follows. In section 2 we review and extend the symmetriza-
tion of the NP operator. In section 3 we derive an expansion formula for the fundamental
solution of the Laplacian in terms of the eigenfunctions of the NP operator and obtain a
representation of the solution to (1.2). Resonance at eigenvalues and at essential spectrum
is studied in section 4 and section 5, respectively. In Appendix we derive explicit expan-
sion formula for the fundamental solution in terms of spherical harmonics and elliptic
harmonics.

2 Neumann-Poincaré operator and symmetrization

Let us first fix some notation.

• We denote byH−1/2(∂Ω) the dual space ofH1/2(∂Ω), and by ⟨·, ·⟩ the duality pairing

of H−1/2 and H1/2, and ∥ · ∥s denotes the Hs norm on ∂Ω. Let H
−1/2
0 (∂Ω) be the

space of ψ ∈ H−1/2(∂Ω) satisfying ⟨ψ, 1⟩ = 0.

• The notation A ≲ B means that A ≤ CB for some constant C, and A ≈ B means
that both A ≲ B and B ≲ A hold.

• Let f(δ) and g(δ) be positive quantities depending on δ. We write f(δ) ∼ g(δ) as
δ → 0 if there are constants C1 and C2 such that

C1 <
f(δ)

g(δ)
< C2. (2.1)

Let Γ(x) be the fundamental solution to the Laplacian on Rd (d = 2, 3), i.e.,

Γ(x) =


1

2π
ln |x|, d = 2,

− 1

4π
|x|−1, d = 3.

The Neumann-Poincaré (NP) operator on ∂Ω, denoted by K∂Ω, is defined by

K∂Ω[φ](x) :=

∫
∂Ω

∂

∂νx
Γ(x− y)φ(y) dσ(y) , x ∈ ∂Ω. (2.2)

where ∂
∂νx

indicates the outward normal derivative in x-variable. The adjoint operator

K∗
∂Ω on L2(∂Ω) will be called the adjoint NP operator.
Importance of the adjoint operator in dealing with interface problems lies in its relation

with the single layer potential S∂Ω[φ] defined by

S∂Ω[φ](x) :=

∫
∂Ω

Γ(x− y)φ(y) dσ(y) , x ∈ Rd. (2.3)

The following jump relation holds:

∂

∂ν
S∂Ω[φ]

∣∣
±(x) =

(
±1

2
I +K∗

∂Ω

)
[φ](x), x ∈ ∂Ω , (2.4)

where the subscripts ± indicate the limits (to ∂Ω) from outside and inside of Ω, respec-
tively.
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The NP operator is not self-adjoint on the usual L2-space, unless the domain Ω is a
disc or a ball (see [19]). However, it is found in [17] (see also [11]) that the adjoint NP
operator K∗

∂Ω can be symmetrized using Plemelj’s symmetrization principle (also known
as Calderón’s identity):

S∂ΩK∗
∂Ω = K∂ΩS∂Ω. (2.5)

Define, for φ,ψ ∈ H−1/2(∂Ω),

⟨φ,ψ⟩H∗ := −⟨φ,S∂Ω[ψ]⟩. (2.6)

Since S∂Ω maps H−1/2(∂Ω) into H1/2(∂Ω), the right hand side of (2.6) is well-defined. It

is known that ⟨·, ·⟩H∗ is an inner product on H
−1/2
0 (∂Ω), and the norm ∥ · ∥H∗ induced by

this inner product is equivalent to the H−1/2(∂Ω) norm, namely,

∥φ∥H∗ ≈ ∥φ∥−1/2 (2.7)

for all φ ∈ H
−1/2
0 (∂Ω) (see [12]). Let H∗

0 be the space H
−1/2
0 (∂Ω) equipped with the inner

product ⟨·, ·⟩H∗ . Then the symmetrization principle (2.5) shows that K∗
∂Ω is self-adjoint

on H∗
0.

Let us now consider symmetrization of K∂Ω. The NP operator K∂Ω can be symmetrized
using (2.5) expressed in a different form:

K∗
∂ΩS−1

∂Ω = S−1
∂ΩK∂Ω, (2.8)

provided that S−1
∂Ω exists. However, it was proved in [24] that S−1

∂Ω exists only in three
dimensions (or higher), and there are domains Ω in two dimensions where S−1

∂Ω does not
exist. Here we present a simple way to overcome this difficulty.

To symmetrize K∂Ω, we use, as a replacement of S∂Ω in (2.5), the operator A :
H−1/2(∂Ω)× C → H1/2(∂Ω)× C defined by

A(ψ, a) := (S∂Ω[ψ] + a, ⟨ψ, 1⟩). (2.9)

It is proved in [3, Theorem 2.13] and [12] that A is invertible for d ≥ 2. For f ∈ H1/2(∂Ω)
let

(ψf , af ) = A−1(f, 0). (2.10)

Then ψf ∈ H
−1/2
0 (∂Ω) and it holds that

S∂Ω[ψf ] + af = f (2.11)

Moreover, we have
∥ψf∥−1/2 + |af | ≈ ∥f∥1/2. (2.12)

This shows in particular that the mapping f 7→ a is a bounded linear functional on
H1/2(∂Ω). So, there is a unique φ0 ∈ H−1/2(∂Ω) such that

af = ⟨φ0, f⟩ (2.13)

for all f ∈ H1/2(∂Ω). Since such a (ψf , af ) is unique, we see that af = 1 if f = 1, in other
words,

⟨φ0, 1⟩ = 1. (2.14)
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Since K∂Ω[1] = 1/2, by applying K∂Ω to both sides of (2.11) we see that

K∂ΩS∂Ω[ψf ] +
1

2
af = K∂Ω[f ].

It then follows from (2.5) that

S∂ΩK∗
∂Ω[ψf ] +

1

2
af = K∂Ω[f ],

which implies that aK∂Ω[f ] =
1
2af , in other words,

⟨φ0,K∂Ω[f ]⟩ = ⟨φ0, f⟩/2.

So, we have

K∗
∂Ω[φ0] =

1

2
φ0, (2.15)

namely, φ0 is an eigenfunction of K∗
∂Ω (on H−1/2(∂Ω) corresponding to the eigenvalue 1/2

normalized by (2.14). We can infer from the jump formula (2.4) and (2.15) that S∂Ω[φ0]
is constant in Ω. We emphasize that the function φ0 already appeared in literatures. It is
proved in [24] that S∂Ω[φ0] = 0 in Ω for some domain Ω in two dimensions, which is why
S∂Ω is not invertible.

We now define a variant of the single layer potential on H∗ by

S̃∂Ω[φ] =

{
S∂Ω[φ] if ⟨φ, 1⟩ = 0,

1 if φ = φ0.
(2.16)

Then we have an extension of (2.5):

S̃∂ΩK∗
∂Ω = K∂ΩS̃∂Ω. (2.17)

Using this we can extend the inner product (2.6) (defined on H
−1/2
0 (∂Ω)) to H−1/2(∂Ω).

For φ,ψ ∈ H−1/2(∂Ω), define

⟨φ,ψ⟩H∗ := −⟨φ, S̃∂Ω[ψ]⟩. (2.18)

We also have a new inner product on H1/2(∂Ω):

⟨φ,ψ⟩H := −⟨φ, S̃−1
∂Ω [ψ]⟩. (2.19)

If we define H to be H1/2(∂Ω) with this inner product, then K∂Ω is self-adjoint on H. We
emphasize that norm ∥ · ∥H is equivalent to ∥ · ∥1/2. Moreover, S̃∂Ω : H∗ → H is a unitary
operator. Observe that if {ψj}∞j=1 is an orthonormal basis of H∗

0, then {ψj}∞j=1 ∪ {φ0} is
an orthonormal basis of H∗ and {S∂Ω[ψj ]}∞j=1 ∪ {1} is an orthonormal basis of H.

3 Representation of the solution

If ∂Ω is C1,α-smooth for some α > 0, then it is known that K∗
∂Ω is a compact operator onH∗

(see [16]). Since K∗
∂Ω is self-adjoint on H∗

0, its eigenvalues {λj}∞j=1 are real and accumulates
to 0. We emphasize that |λj | < 1/2 (see [7, 24]). Let {ψj}∞j=1 with ∥ψj∥H∗ = 1 be
the corresponding (real valued) eigenfunctions counting the multiplicities. Then we have
shown in the previous section that {S∂Ω[ψj ]}∞j=1 ∪ {1} is an orthonormal basis of H.
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Fix z ∈ Rd \ Ω. Then Γ(· − z) belongs to H1/2(∂Ω), and so admits the following
decomposition:

Γ(x− z) =

∞∑
j=1

cj(z)S∂Ω[ψj ](x) + c0(z), x ∈ ∂Ω, (3.1)

for some constants cj(z) (depending on z) satisfying

∞∑
j=1

|cj(z)|2 <∞. (3.2)

Since −⟨S∂Ω[ψj ], ψi⟩ = δij where δij is the Kronecker’s delta, we see that

cj(z) = −
∫
∂Ω

Γ(x− z)ψj(x)dσ(x) = −S∂Ω[ψj ](z), j = 1, 2, 3, . . . .

We also see from (2.14) that

c0(z) = S∂Ω[φ0](z), j = 1, 2, 3, . . . .

So, we obtain the following formula:

Γ(x− z) = −
∞∑
j=1

S∂Ω[ψj ](z)S∂Ω[ψj ](x) + S∂Ω[φ0](z), x ∈ ∂Ω, (3.3)

Observe that ∥∥∥∥∥∥
∞∑
j=1

S∂Ω[ψj ](z)S∂Ω[ψj ]

∥∥∥∥∥∥
2

H

=

∞∑
j=1

|S∂Ω[ψj ](z)|2 <∞. (3.4)

Since ∥ · ∥H is equivalent to ∥ · ∥1/2 as shown in the previous section, we find from the
trace theorem that

∑∞
j=1 S∂Ω[ψj ](z)S∂Ω[ψj ] converges in H1(Ω) and is harmonic in Ω.

So, we obtain the following theorem on an expansion of the fundamental solution to the
Laplacian.

Theorem 3.1 It holds that

Γ(x− z) = −
∞∑
j=1

S∂Ω[ψj ](z)S∂Ω[ψj ](x) + S∂Ω[φ0](z), x ∈ Ω, z ∈ Rd \ Ω. (3.5)

If Ω is a ball, then S∂Ω[ψj ] is a spherical harmonics (see subsection 5.2). Therefore
(3.5) is the expansion of Γ(x−z) in terms of the spherical harmonics, which is well-known
(see, for example, [16]). We will show explicit formula for (3.5) when Ω is a unit ball in
R3 or an ellipse in R2 in the Appendix. The formula (3.5) shows that the fundamental
solution can be expanded on any smooth domain in terms of the localized plasmon (the
single layer potential of an eigenfunction is called a localized plasmon). The estimate
(3.4) shows that S∂Ω[ψj ](z) → 0 as j → ∞ for all z /∈ Ω. So, if j is large then S∂Ω[ψj ] is
localized near Ω. It explains why S∂Ω[ψj ] is called a localized plasmon.

We now derive a representation of the solution to (1.2). Let

Fz(x) := −a · ∇xΓ(x− z), x ̸= z. (3.6)

6



Then ∆Fz(x) = a · ∇δz(x), and hence we see from transmission conditions (1.4) on ∂Ω
and (2.4) that the solution uδ to (1.2) can be represented as

uδ(x) = Fz(x) + S∂Ω[φδ](x), x ∈ Rd, (3.7)

where the potential φδ ∈ H∗
0(∂Ω) is the solution to the integral equation

(λI −K∗
∂Ω) [φδ] = ∂νFz on ∂Ω (3.8)

(∂νFz denotes the normal derivative of Fz). Here

λ :=
ϵc + ϵm + iδ

2(ϵc − ϵm) + 2iδ
. (3.9)

Note that λ → ϵc+ϵm
2(ϵc−ϵm) as δ → 0. The number ϵc/ϵm such that ϵc+ϵm

2(ϵc−ϵm) is an eigenvalue

of K∗
∂Ω is called a plasmonic eigenvalue [10]. We emphasize that ϵc is negative if and only

if ϵc+ϵm
2(ϵc−ϵm) lies in (−1/2, 1/2) where the spectrum of K∗

∂Ω lies.

Since K∗
∂Ω admits the spectral decomposition

K∗
∂Ω =

∞∑
j=1

λjψj ⊗ ψj , (3.10)

the solution φδ to (3.8) can be expressed as

φδ =

∞∑
j=1

αj(z)

λ− λj
ψj , (3.11)

where
αj(z) := ⟨∂νFz, ψj⟩H∗ . (3.12)

We can see from (3.6) that

αj(z) = −a · ∇
∫
∂Ω

∂

∂νx
Γ(x− z)S∂Ω[ψj ](x) dσ(x).

It can seen from (2.4) and (3.5) that

∂

∂νx
Γ(x− z) = −

∞∑
j=1

S∂Ω[ψj ](z)
∂

∂ν
S∂Ω[ψj ](x) =

∞∑
j=1

(1
2
− λj

)
S∂Ω[ψj ](z)ψj(x).

It then follows that

αj(z) =
(
λj −

1

2

)
a · ∇S∂Ω[ψj ](z). (3.13)

4 Resonance at eigenvalues

We investigate the behavior of the solution uδ when λ approaches to one of eigenvalues
λl ̸= 0 as δ → 0, namely, when

ϵc + ϵm
2(ϵc − ϵm)

= λl. (4.1)

We show that
∥∇uδ∥L2(Ω) ∼ δ−1 as δ → 0, (4.2)
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as one may expect.
We first show that

∥∇S∂Ω[φ]∥2L2(Ω) ≈ ∥φ∥2H∗ (4.3)

for all φ ∈ H∗
0. In fact, we see from (2.4) and (3.10) that

∥∇S∂Ω[φ]∥2L2(Ω) =

∫
∂Ω

S∂Ω[φ]
∂

∂ν
S∂Ω[φ]

∣∣∣
−
dσ

=

⟨
φ, (−1

2
I +K∗

∂Ω)[φ]

⟩
H∗

=

∞∑
j=1

(
1

2
− λj)|⟨φ,ψj⟩H∗ |2.

Since |λj | < 1/2 and accumulates to 0, we have (4.3).
We now see from (3.11) that

∥∇(uδ − Fz)∥2L2(Ω) ≈ ∥φδ∥2H∗ =
∑
λj=λl

|αj(z)|2

|λ− λl|2
+

∑
λj ̸=λl

|αj(z)|2

|λ− λj |2
.

If λj ̸= λl, then |λj −λl| > C for some positive constant C since λl ̸= 0, and so the second
term on the righthand side above is bounded as δ → 0. Since |λ − λl| ∼ δ as δ → 0, we
obtain

∥∇(uδ − Fz)∥L2(Ω) ∼ δ−1.

Since ∥∇Fz∥L2(Ω) is bounded, (4.2) follows.

5 Resonance at the essential spectrum

In this section we assume that 0 is not an eigenvalue of K∗
∂Ω. Since eigenvalues of K∗

∂Ω

converges to 0, {0} is the essential spectrum of K∗
∂Ω. It is worth mentioning that we are

not aware of any domain other than disks on which the NP operator has 0 as an eigenvalue.
If Ω is a disk, then K∗

∂Ω ≡ 0 on H∗
0.

We consider the resonance when λ→ 0 as δ → 0, in other words, when

ϵc + ϵm = 0. (5.1)

In this case, we assume that λ = iδ for simplicity of presentation.
We first obtain the following theorem which shows that the resonance, if it occurs, is

never at the rate of δ−1 unlike the resonance at eigenvalues.

Theorem 5.1 It holds that
lim
δ→0

δ∥∇uδ∥L2(Ω) = 0. (5.2)

Proof. We obtain from (3.11) and (4.3) that

∥∇(uδ − Fz)∥2L2(Ω) ∼
∞∑
j=1

|αj(z)|2

δ2 + λ2j
. (5.3)

8



We then decompose the summation into two parts as

∞∑
j=1

|αj(z)|2

δ2 + λ2j
=

∑
|λj |≤δ

|αj(z)|2

δ2 + λ2j
+

∑
|λj |>δ

|αj(z)|2

δ2 + λ2j
=: S1 + S2. (5.4)

Since
∑

|αj(z)|2 <∞, we have

δ2S1 ≤
∑

|λj |≤δ

|αj(z)|2 → 0 as δ → 0.

To show that δ2S2 → 0, we express S2 as

S2 =

∞∑
k=0

∑
2kδ<|λj |≤2k+1δ

|αj(z)|2

δ2 + λ2j
.

Then we see that

δ2S2 ≤
∞∑
k=0

1

1 + 22k

∑
2kδ<|λj |≤2k+1δ

|αj(z)|2 ≤
∞∑
k=0

1

1 + 22k

∑
|λj |≤2k+1δ

|αj(z)|2.

For each fixed k,
∑

|λj |≤2k+1δ αj(z)
2 → 0 as δ → 0. So we infer that S2 → 0 as δ → 0 by

Lebesgue dominated convergence theorem. The proof is complete. 2

In order to derive estimates for the resonance, we need to investigate the asymptotic
behavior of the quantity on the righthand side of (5.3) as δ → 0. This seems a quite
difficult task since it depends on the behavior of λj and αj(z) as j → ∞. So, we deal
with two specific domains, ellipses and three dimensional balls, where eigenvalues and
eigenfunctions are known. It is worth mentioning that the disks are out of consideration
since the NP operator on disks are 0.

5.1 Anomalous localized resonance on ellipses

We first consider the resonance when Ω is an ellipse in R2. The elliptic coordinates
x = (x1, x2) = (x1(ρ, ω), x2(ρ, ω)) is given by

x1(ρ, ω) = R cosω cosh ρ, x2(ρ, ω) = R sinω sinh ρ, ρ > 0, 0 ≤ ω < 2π.

When the above holds, we denote ρ = ρx and ωx. Then we can represent ∂Ω as

∂Ω = {x ∈ R2; ρx = ρ0} (5.5)

for some ρ0 > 0. The number ρ0 is called the elliptic radius of Ω. The position z of the
source is denote by ρz and ωz in elliptic coordinates. We obtain the following theorem
whose proof will be given in the next section.

Theorem 5.2 Suppose that Ω is an ellipse given by (5.5). Then we have

∥∇uδ∥2L2(Ω) ∼


δ−3+ρz/ρ0 | log δ| if ρ0 < ρz < 3ρ0,

| log δ|2 if ρz = 3ρ0,

1 if ρz > 3ρ0,

(5.6)

as δ → 0.
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The quantity Eδ := δ∥∇uδ∥2L2(Ω) is of particular interest since it represents the imagi-
nary part of the energy, namely,

δ∥∇uδ∥2L2(Ω) = ℑ
∫
Rd

ϵ|∇uδ|2dx.

Physically it represents the electro-magnetic energy dissipated into heat. Estimates (5.6)
shows that Eδ → ∞ if ρ0 < ρz ≤ 2ρ0 while it tends to 0 as δ → 0 if ρz > 2ρ0. So the
critical (elliptic) radius is 2ρ0. This phenomenon is reminiscent of the anomalous localized
resonance (ALR) discovered in [22, 20] (see also [1, 8, 18]). There it is shown that a disk
(a core) is coated by a concentric disk (a shell) of plasmonic material, then ALR occurs
if the source is located within a critical radius, and does not occur for sources outside the
radius. This is exactly what (5.6) shows. It also in accordance with the result in [8] where
the core-shell structure of confocal ellipses of radii ρe > ρi is considered. There it is shown
that the critical (elliptic) radius is given by

ρ∗ =

{
(3ρe − ρi)/2, if ρe ≤ 3ρi,

2(ρe − ρi), if ρe > 3ρi.

If the core shrinks, in other words ρi tends to 0, then ρ∗ tends to 2ρe which is the critical
radius found in this paper.

ALR also requires the solution to be bounded outside a bounded set. This requirement
is satisfied on ellipse as the following theorem shows. Theorem 5.2 and Theorem 5.3 show
that ALR may occur not only on the coated structures but also on simply connected
structure. So ALRmay be regarded as resonance at the accumulation points of eigenvalues.
We emphasize that the NP operator on the coated disk has 0 as its essential spectrum as
proved in [1].

Theorem 5.3 Let Ω be an ellipse given by (5.5). It holds for all x satisfying ρx+ρz−4ρ0 >
0 that

|uδ(x)− Fz(x)| ≲
∞∑
n=1

e−n(ρx+ρz−4ρ0). (5.7)

In particular, let ρ > 0 be such that ρ > 4ρ0− ρz, then there exists some C = Cρ > 0 such
that

sup
ρx≥ρ

|uδ(x)− Fz(x)| < C. (5.8)

To prove Theorem 5.2 and Theorem 5.3 let us recall some facts on the NP operator
on ellipses. It is proved in [4] and [8] that eigenvalues of K∗

∂Ω are

λn =
1

2e2nρ0
, n = 1, 2, · · · , (5.9)

and corresponding eigenfunctions are

ϕcn(ω) := Ξ(ρ0, ω)
−1 cosnω, ϕsn(ω) := Ξ(ρ0, ω)

−1 sinnω, n = 1, 2, · · · , (5.10)

where

Ξ = Ξ(ρ0, ω) := R

√
sinh2 ρ0 + sin2 ω. (5.11)
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It is also proved in the same papers that

S∂Ω[ϕ
c
n](x) =


−coshnρ

n
e−nρ0 cosnω, ρ < ρ0,

−coshnρ0
n

e−nρ cosnω, ρ ≥ ρ0,
(5.12)

and

S∂Ω[ϕ
s
n](x) =


−sinhnρ

n
e−nρ0 sinnω, ρ < ρ0,

−sinhnρ0
n

e−nρ sinnω, ρ ≥ ρ0.
(5.13)

Here and afterwards (ρ, ω) is the elliptic coordinates of x. Since the length element dσ on
∂Ω is given by

dσ = Ξdω, (5.14)

one can see that

∥ϕcn∥2H∗ = −⟨ϕcn,S∂Ω[ϕ
c
n]⟩ =

π coshnρ0
nenρ0

,

and

∥ϕsn∥2H∗ =
π sinhnρ0
nenρ0

.

So, the normalized eigenfunctions are

ψc
n :=

√
nenρ0

π coshnρ0
ϕcn, ψs

n :=

√
nenρ0

π sinhnρ0
ϕsn. (5.15)

We see from (5.12)

S∂Ω[ψ
c
n](x) =


−

√
e−nρ0

nπ coshnρ0
coshnρ cosnω, ρ < ρ0,

−
√
enρ0 coshnρ0

nπ
e−nρ cosnω, ρ ≥ ρ0,

(5.16)

and from (5.13)

S∂Ω[ψ
s
n](x) =


−

√
e−nρ0

nπ sinhnρ0
sinhnρ sinnω, ρ < ρ0,

−
√
enρ0 sinhnρ0

nπ
e−nρ sinnω, ρ ≥ ρ0.

(5.17)

Proof of Theorem 5.2. We see from (3.13) and (5.3) that

∥∇(uδ − Fz)∥2L2(Ω) ∼
∞∑
j=1

|αj(z)|2

δ2 + λ2j

=
∞∑
n=1

1

δ2 + λ2n

[
|a · ∇S∂Ω[ψ

c
n](z)|

2 + |a · ∇S∂Ω[ψ
s
n](z)|

2
]

=
∞∑
n=1

1

δ2 + λ2n

[enρ0 coshnρ0
nπ

∣∣a · ∇z

(
e−nρz cosnωz

)∣∣2 + enρ0 sinhnρ0
nπ

∣∣a · ∇z

(
e−nρz sinnωz

)∣∣2 ].
11



Since coshnρ0 ≈ sinhnρ0 ≈ enρ0 , we see that

∞∑
j=1

|αj(z)|2

δ2 + λ2j
∼

∞∑
n=1

1

δ2 + λ2n
· e

2nρ0

n

[ ∣∣a · ∇z

(
e−nρz cosnωz

)∣∣2 +
∣∣a · ∇z

(
e−nρz sinnωz

)∣∣2 ]
(5.18)

as δ → 0.
Let U(ω) be the rotation by the angle ω, namely,

U(ω) =

[
cosω − sinω
sinω cosω

]
.

Using the change of variables formula

∂

∂x1
=

R

Ξ(ρ, ω)2

(
cosω sinh ρ

∂

∂ρ
− sinω cosh ρ

∂

∂ω

)
and

∂

∂x2
=

R

Ξ(ρ, ω)2

(
sinω cosh ρ

∂

∂ρ
+ cosω sinh ρ

∂

∂ω

)
where Ξ(ρ, ω) is given by (5.11), we see through tedious but straightforward computations
(we omit the computations) that

a · ∇
(
e−nρ cosnω

)
=

−Rne−nρ

Ξ(ρ, ω)2
a · U(nω)b(ρ, ω)

and

a · ∇
(
e−nρ sinnω

)
=

−Rne−nρ

Ξ(ρ, ω)2
a · U(nω − π/2)b(ρ, ω),

where

b(ρ, ω) =

[
cosω sinh ρ
sinω cosh ρ

]
.

Let θn be the angle between the vectors a and U(nω)b(ρ, ω). Then we have

|a · U(nω)b(ρ, ω)|2 = |a|2|b(ρ, ω)|2 cos2 θn

and
|a · U(nω − π/2)b(ρ, ω)|2 = |a|2|b(ρ, ω)|2 sin2 θn,

which implies

∣∣a · ∇ (
e−nρ cosnω

)∣∣2 + ∣∣a · ∇ (
e−nρ sinnω

)∣∣2 = n2e−2nρ |a|2 |b(ρ, ω)|2

R2
(
sinh2 ρ+ sin2 ω

)2 . (5.19)

It then follows from (5.18) that

∞∑
j=1

|αj(z)|2

δ2 + λ2j
∼

∞∑
n=1

ne2nρ0e−2nρz

δ2 + λ2n
(5.20)

as δ → 0.
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We now investigate the asymptotic behavior of the righthand side of (5.20) as δ → 0.
Let

N =

[
− 1

2ρ0
log 2δ

]
, (5.21)

which is the first number such that δ > 1
2e

−2Nρ0 . Then one can easily see that

∞∑
n=1

ne2nρ0e−2nρz

δ2 + λ2n
=

∑
n≤N

+
∑
n>N

∼
∑
n≤N

ne2nρ0e−2nρz

e−4nρ0
+

1

δ2

∑
n>N

ne−2n(ρz−ρ0).

Observe that

∑
n≤N

ne2nρ0e−2nρz

e−4nρ0
∼

∑
n≤N

ne2n(3ρ0−ρz) ∼


1 if ρz > 3ρ0,

| log δ|2 if ρz = 3ρ0,

| log δ|δ−3+ρz/ρ0 if ρ0 < ρz < 3ρ0.

On the other hand, we have

1

δ2

∑
n>N

ne−2n(ρz−ρ0) ∼ | log δ|δ−3+ρz/ρ0 .

So we infer that

∞∑
n=1

ne2nρ0e−2nρz

δ2 + λ2n
∼


1 if ρz > 3ρ0,

| log δ|2 if ρz = 3ρ0,

| log δ|δ−3+ρz/ρ0 if ρ0 < ρz < 3ρ0.

Since ∥∇Fz∥2L2(Ω) is bounded, we obtain (5.6). 2

Proof of Theorem 5.3. One can see from (3.7), (3.11) and (3.13) that

uδ(x)− Fz(x) =

∞∑
n=1

1

iδ − λn

(
1

2
− λn

)[
(a · ∇zS∂Ω[ψ

c
n](z))S∂Ω[ψ

c
n](x)

+ (a · ∇zS∂Ω[ψ
s
n](z))S∂Ω[ψ

s
n](x)

]
.

It then follows from (5.16) and (5.17) that

uδ(x)− Fz(x) =

∞∑
n=1

1

iδ − λn

(
1

2
− λn

)
×
[enρ0 coshnρ0

nπ

(
a · ∇z

(
e−nρz cosnωz

))
e−nρx cosnωx

+
enρ0 sinhnρ0

nπ

(
a · ∇z

(
e−nρz sinnωz

))
e−nρx sinnωx

]
where (ρz, ωz) is the elliptic coordinates of z. Therefore we have

|uδ(x)− Fz(x)| ≲
∞∑
n=1

e4nρ0

n

[ ∣∣a · ∇z

(
e−nρz cosnωz

)∣∣+ ∣∣a · ∇z

(
e−nρz sinnωz

)∣∣ ]e−nρx

We then see from (5.19) that

|uδ(x)− Fz(x)| ≲
∞∑
n=1

e4nρ0

n
ne−nρze−nρx =

∞∑
n=1

e−n(ρx+ρz−4ρ0).

(5.8) is an immediate consequence of (5.7). This completes the proof. 2

13



5.2 Anomalous localized resonance on balls

The following theorem shows that resonance at the essential spectrum does not occur if
Ω is a three dimensional ball.

Theorem 5.4 Suppose that Ω is a three dimensional ball and f(x) = a · ∇δz(x) for some
z ∈ R3 \ Ω. Then there is a constant C such that

∥∇uδ∥L2(Ω) ≤ C (5.22)

for all δ.

Proof. Assume that Ω is the unit ball centered at 0 for convenience. Then eigenvalue of
K∗

∂Ω are

λn =
1

2(2n+ 1)
, n = 1, 2, . . . , (5.23)

and corresponding eigenfunctions are Y m
n (x̂), m = −n,−n+ 1, · · · , n− 1, n, the spherical

harmonics of degree n, where x̂ = x/|x| (see [2]). It is also proven in the same paper that

S∂Ω[Y
m
n ](x) =


− 1

2n+ 1
rnY m

n (x̂), for |x| = r < 1,

− 1

2n+ 1
r−(n+1)Y m

n (x̂), for |x| = r ≥ 1.
(5.24)

So the eigenfunctions normalized in H∗ are

ψm
n (x) =

1√
2n+ 1

Y m
n (x), m = −n,−n+ 1, · · · , n− 1, n. (5.25)

According to (3.13) and (5.3), we have

∞∑
j=1

αj(z)
2

δ2 + λ2j
≈

∞∑
n=1

1

δ2 + λ2n

n∑
m=−n

∣∣a · ∇S∂Ω[ψ
m
n ](z)

∣∣2. (5.26)

We see from (5.24) that S∂Ω[ψ
m
n ] is a homogeneous harmonic polynomial of degree −(n+1)

in R3 \ Ω. So, we have

∂

∂xj
S∂Ω[ψ

m
n ](x) = r−(n+2)

n+1∑
m=−n−1

ajnmY
m
n+1(x̂), |x| > 1 (5.27)

for some constants ajnm, j = 1, 2, 3. We then have∫
R3\Ω

∣∣∇S∂Ω[ψ
m
n ](x)

∣∣2dx =
1

2(n+ 2)

3∑
j=1

n+1∑
m=−n−1

|ajnm|2.

We then infer from (4.3) that

1

2(n+ 2)

3∑
j=1

n+1∑
m=−n−1

|ajnm|2 ≲ ∥ψm
n ∥H∗ = 1.
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It then follows from (5.27) that

∣∣∇S∂Ω[ψ
m
n ](z)

∣∣2 = r
−2(n+2)
0

( 3∑
j=1

n+1∑
m=−n−1

|ajnm|2
)( n+1∑

m=−n−1

|Y m
n (ẑ)|2

)

≲ (n+ 1)r
−2(n+2)
0

n+1∑
m=−n−1

|Y m
n (ẑ)|2,

where r0 = |z|. Using the Unsöld’s theorem

n∑
m=−n

|Y m
n (ẑ)|2 = 2n+ 1

4π
, n = 0, 1, 2, · · · ,

we obtain ∣∣∇S∂Ω[ψ
m
n ](z)

∣∣2 ≲ n2r
−2(n+2)
0 . (5.28)

We now see from (5.26) that

∥∇(uδ − Fz)∥2L2(Ω) ≲
∞∑
n=1

n3r
−2(n+2)
0

δ2 + λ2n
≲

∞∑
n=1

n5r
−2(n+2)
0 ≲ 1

for any δ. Since ∥∇Fz∥2L2(Ω) is finite, the proof is completed. 2

Appendix: Expansions of the fundamental solution

In this appendix we write down the formula (3.5) explicitly when Ω is a unit ball in R3 or
an ellipse in R2 to demonstrate the connection of (3.5) with the known expansion formula
of the fundamental solution for the Laplace equation.

Let Ω be the unit ball in R3. We see from (5.25) that the eigenfunctions in H∗
0 are

{ 1√
2n+ 1

Y m
n ; n = 1, 2, . . . and m = −n,−n+ 1, . . . , n− 1, n, }.

One can easily see that φ0(x) =
1
4π and

S∂Ω[φ0](x) =


− 1

4π
, for |x| = r < 1,

− 1

4π

1

r
, for |x| = r ≥ 1.

(5.29)

Then, using (5.24) and (5.29), we have

Γ(x− z) = −
∞∑
n=1

rnr−n−1
z

(2n+ 1)3

n∑
m=−n

Yn,m(x̂)Yn,m(ẑ)− 1

4π

1

rz
, r ≤ 1 < rz, (5.30)

where r = |x|, rz = |z| and x̂ = x/|x|, ẑ = z/|z|. As mentioned right after Theorem 3.1,
(5.30) is the well-known expansion of the fundamental solution in R3 in terms of spherical
harmonics.
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Now let Ω be an ellipse with the elliptic radius ρ0 in R2. Then eigenfunctions in H∗
0 are

given by {ψc
n, ψ

s
n}∞n=1 defined by (5.15). We can see from (5.16) and (5.17) that Ξ(ρ0, ω)

−1

is orthogonal to {ψc
n, ψ

s
n}∞n=1 in H∗. So we have from (2.14) that

φ0(ω) =
1

2πΞ(ρ0, ω)
.

Moreover, one can see that

S∂Ω[φ0](x) =


1

2π
(ρ0 + lnR− ln 2), ρ < ρ0,

1

2π
(ρ+ lnR− ln 2), ρ ≥ ρ0,

(5.31)

where (ρ, ω) be the elliptic coordinates of x ∈ R2. In fact, as ρ→ ∞, we have

|x| = R

√
cosh2 ρ cos2 ω + sinh2 ρ sin2 ω =

R

2
eρ +O(1),

which implies that

ρ+ lnR− ln 2 = ln |x|+O(|x|−1) as |x| → ∞.

Note that ρ is a harmonic function. So, the righthand side of (5.31) is constant in ρ < ρ0,
harmonic in ρ > ρ0, and behaves like ln |x| as |x| → ∞. So the equality in (5.31) holds.
Using (5.16), (5.17) and (5.31), we now have

Γ(x− z) =−
∞∑
n=1

1

nπ

(
coshnρ cosnρ e−nρz cosnρz + sinhnρ sinnρ e−nρz sinnρz

)
+

1

2π

(
ρz + ln

(
R

2

))
, ρ ≤ ρ0 < ρz,

(5.32)

where (ρ, ω) is the elliptic coordinate of x ∈ Ω and (ρz, ωz) is that of z ∈ R2 \ Ω. An
expansion of a derivative of Γ(x− z) is also obtained in [8, (4.6)].
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