Çؼ®°³·Ð I, 2000³â Á¦ 1Çб⠰ÀÇ°èȹ¼
°Á¹øÈ£ : 300.201-001, 002, 003
* 002, 003 °Á´ ÀÚ¿¬°úÇкÎ(Àü°ø¹ÌÁ¤)¿Í ±âÃÊ°úÇаè ÇлýµéÀ» À§ÇÑ Àü°øŽ»ö °ú¸ñÀ̸ç,
001 °Á´ ¿©Å¸ Çлý (¼öÇÐÀü°ø Çлý Æ÷ÇÔ) µéÀ» À§ÇÑ °ú¸ñÀÌ´Ù. Áß¿äÇÑ Â÷ÀÌ´Â
¿¬½À½Ã°£ÀÇ À¯¹«ÀÌ´Ù.
´ã´ç±³¼ö : ±è¼º±â(001, 27-306, 880-6534, skkim@math.snu.ac.kr)
°Çö¹è(002, 27-303A, 880-8796, hkang@math.snu.ac.kr)
°è½ÂÇõ(003, 27-428, 880-6535, kye@math.snu.ac.kr)
¿¬½ÀÁ¶±³ : À̵¿¿í(002, 27-423, 880-6559, leedu@math.snu.ac.kr)
Àӹ̰æ(002, 27-420, 880-6556, mklim@math.snu.ac.kr)
¼Õ°æ¾Æ(003, 27-420, 880-6556, yoyomath@math.snu.ac.kr)
ÇÑÀç¿ø(003, 27-419, 880-6564, hanjw@math.snu.ac.kr)
°Àǽð£ : È,¸ñ 9:00-10:15, ¿¬½À½Ã°£ : ¿ù 6:00-8:00
°Àǽǰú Àοø¹èÁ¤
°ÀÇ |
001, 24-113 |
002, 24-414 |
003, 24-415 |
||
¿¬½À |
|
Ȧ (´ã´ç: À̵¿¿í) 22-202 ÇйøÀÇ ³¡ ¼öÀÚ°¡ Ȧ¼öÀÎ Çлý |
¦ (Àӹ̰æ) 22-203 ¦¼ö Çлý
|
Ȧ (¼Õ°æ¾Æ) 22-204 Ȧ¼ö Çлý
|
¦ (ÇÑÀç¿ø) 23-403 ¦¼ö Çлý
|
°ÀÇ°³¿ä : 17¼¼±â¿¡ ¹ß°ßµÈ ¹ÌºÐ°³³äÀ̳ª 18¼¼±âÀÇ ÀûºÐ °³³ä µîÀº ÀÚ¿¬°è¸¦ ÀÌÇØÇÏ°í ¼³¸íÇÏ´Â ±âº»ÀûÀΠƲÀ» Á¦°øÇÏ´Â Áß¿äÇÑ °ÍµéÀÌ´Ù. ÀÌ °³³äµéÀ» Á¤ÀÇÇϱâ À§ÇØ ±ØÇÑ °³³äÀ» ÀÌ¿ëÇÏ°í Àִµ¥, ±ØÇÑ °³³äÀÇ ¸ðÈ£¼ºÀ¸·Î ÀÎÇÏ¿© 19¼¼±â ÀÌÀü¿¡´Â ¸¹Àº ³í¶õÀÇ ´ë»óÀÌ µÇ¾ú´Ù. ¹ÌÀûºÐÇÐÀÌ ÀÌ·¯ÇÑ ³í¶õ¿¡¼ ¹þ¾î³ °ÍÀº 19¼¼±â ¸» ±ØÇÑ °³³äÀÌ Á¤¸³µÈ ÀÌÈÄÀÇ ÀÏÀÌ´Ù. Çؼ®°³·Ð 1Çб⠰ÀÇ¿¡¼´Â ±ØÇÑ °³³äÀ» ¾ö¹ÐÇÏ°Ô Á¤ÀÇÇÏ°í ±×°ÍÀÌ ´Ù¸¥ Áß¿äÇÑ °³³äÀ» Á¤ÀÇÇϴµ¥ ¾î¶»°Ô ¾²À̴°¡¸¦ »ìÆ캻´Ù. À̸¦ À§ÇÏ¿© À¯Å¬¸®µå °ø°£ »óÀÇ ±âÃÊÀûÀÎ À§»ó¼öÇÐÀ» °øºÎÇÏ°í, ¿¬¼ÓÇÔ¼ö, ÇÔ¼ö¿ÀÇ ±ØÇÑ µîÀ» ´Ù·é´Ù. ÀÌ·¯ÇÑ ³»¿ëÀº 2Çб⿡ ´Ù·ê ´Ùº¯¼öÇÔ¼öÀÇ ¹ÌÀûºÐ·Ð, Ǫ¸®¿¡ ±Þ¼öÀÌ·Ð µîÀ» °øºÎÇϴµ¥ ÇʼöÀûÀÌ´Ù.
±³Àç : J.E.Marsden and M.J.Hoffman, Elementary Classical Analysis, 2nd Ed., Freeman, 1993
Æò°¡¹æ¹ý : Ãâ¼® ¹× °úÁ¦¹° (20%), Áß°£°í»ç (25% X 2), ±â¸»°í»ç (30%)
°úÁ¦¹°Àº ±³ÀçÀÇ ¿¬½À¹®Á¦ Áß¿¡¼ ÁöÁ¤µÈ °ÍÀ» Ç®¾î¼ Á¦ÃâÇØ¾ß Çϸç, Á¦Ã⸶°¨ÀÏÀ» ¹Ýµå½Ã ÁöÄÑ¾ß ÇÕ´Ï´Ù. ´Ù¸¥ »ç¶÷ÀÇ Ç®À̸¦ º£³¢Áö ¾Ê´Â °ÍÀº ±âº»ÀÔ´Ï´Ù. ½ÃÇè 3¹ø Áß¿¡¼ ÇѹøÀÌ¶óµµ ¹«´Ü °á½ÃÇϸé F ó¸®ÇÕ´Ï´Ù.
¿¬½À½Ã°£ : ¿¬½À½Ã°£¿¡´Â Á¶±³¼±»ý´Ô°ú ¿¬½À¹®Á¦¸¦ Ç®°Ô µË´Ï´Ù. ¿¬½À½Ã°£Àº º» °ÀÇ¿Í °°Àº ºñÁßÀ¸·Î Áß¿äÇÑ ½Ã°£À̸ç, ¹Ýµå½Ã Ãâ¼®ÇÏ¿©¾ß ÇÕ´Ï´Ù.
Âü°í¹®Çå
[1] ±è¼º±â, ±èµµÇÑ, °è½ÂÇõ Àú, Çؼ®°³·Ð, ¼¿ï´ëÇб³ ÃâÆǺÎ, 1995
°ÀÇÁøµµ : ±³ÀçÀÇ 1Àå - 5Àå
ÁÖ(³¯Â¥) |
±³ÀçÁøµµ |
°Àdz»¿ë |
ºñ°í |
1ÁÖ(3/2) |
|
°Á¼Ұ³, µ¿±â¼³¸í |
¹Ý Á¶Á¤ |
2ÁÖ(3/7,3/9) |
1.1-1.4 |
Number system, least upper bound, Cauchy Sequence |
|
3ÁÖ(3/14,3/16) |
1.5-1.8 |
Cluster points, Norm |
|
4ÁÖ(3/21,3/23) |
2.1-2.4 |
Open and closed set |
|
5ÁÖ(3/28,3/30) |
2.5-2.8 |
accumulation points, boundary, sequence, completeness |
¼ö¾÷ 1/4 |
6ÁÖ(4/4,4/6) |
2.9 |
series |
Áß°£°í»ç I, 4/6 |
7ÁÖ(4/11) |
3.1-3.2 |
compact set, Heine-Borel Theorem |
|
8ÁÖ(4/18,4/20) |
3.3-3.5 |
Nested set property, connectedness |
|
9ÁÖ(4/25,4/27) |
4.1-4.3 |
continuity |
¼ö¾÷ 1/2 |
10ÁÖ(5/2,5/4) |
4.4-4.6 |
continuity and compact sets, uniform continuity |
|
11ÁÖ(5/9) |
4.7-4.8 |
Differentiation, Integration |
|
12ÁÖ(5/16,5/18) |
5.1 |
uniform convergence |
Áß°£°í»ç II, 5/16 |
13ÁÖ(5/23,5/25) |
5.2-5.4 |
Weierstrass M-test, Series |
¼ö¾÷ 3/4, |
14ÁÖ(5/30,6/1) |
5.5-5.7 |
Arzela-Ascoli Theorem, Contraction mapping |
|
15ÁÖ(6/8) |
5.8-5.9 |
Stone-Weierstrass Theorem |
|
16ÁÖ(6/13) |
5.10 |
Convergence test |
Á¾°, 6/13 |
17ÁÖ |
|
|
±â¸»°í»ç, 6/20 |