Çؼ®°³·Ð I, 2000³â Á¦ 1Çб⠰­ÀÇ°èȹ¼­

°­Á¹øÈ£ : 300.201-001, 002, 003

* 002, 003 °­Á´ ÀÚ¿¬°úÇкÎ(Àü°ø¹ÌÁ¤)¿Í ±âÃÊ°úÇаè ÇлýµéÀ» À§ÇÑ Àü°øŽ»ö °ú¸ñÀ̸ç,

001 °­Á´ ¿©Å¸ Çлý (¼öÇÐÀü°ø Çлý Æ÷ÇÔ) µéÀ» À§ÇÑ °ú¸ñÀÌ´Ù. Áß¿äÇÑ Â÷ÀÌ´Â

¿¬½À½Ã°£ÀÇ À¯¹«ÀÌ´Ù.

´ã´ç±³¼ö : ±è¼º±â(001, 27-306, 880-6534, skkim@math.snu.ac.kr)

°­Çö¹è(002, 27-303A, 880-8796, hkang@math.snu.ac.kr)

°è½ÂÇõ(003, 27-428, 880-6535, kye@math.snu.ac.kr)

¿¬½ÀÁ¶±³ : À̵¿¿í(002, 27-423, 880-6559, leedu@math.snu.ac.kr)

Àӹ̰æ(002, 27-420, 880-6556, mklim@math.snu.ac.kr)

¼Õ°æ¾Æ(003, 27-420, 880-6556, yoyomath@math.snu.ac.kr)

ÇÑÀç¿ø(003, 27-419, 880-6564, hanjw@math.snu.ac.kr)

°­Àǽð£ : È­,¸ñ 9:00-10:15, ¿¬½À½Ã°£ : ¿ù 6:00-8:00

°­Àǽǰú Àοø¹èÁ¤

°­ÀÇ

001, 24-113

002, 24-414

003, 24-415

¿¬½À


Ȧ (´ã´ç: À̵¿¿í)

22-202

ÇйøÀÇ ³¡ ¼öÀÚ°¡ Ȧ¼öÀÎ Çлý

¦ (Àӹ̰æ)

22-203

¦¼ö Çлý

Ȧ (¼Õ°æ¾Æ)

22-204

Ȧ¼ö Çлý

¦ (ÇÑÀç¿ø)

23-403

¦¼ö Çлý


°­ÀÇ°³¿ä : 17¼¼±â¿¡ ¹ß°ßµÈ ¹ÌºÐ°³³äÀ̳ª 18¼¼±âÀÇ ÀûºÐ °³³ä µîÀº ÀÚ¿¬°è¸¦ ÀÌÇØÇÏ°í ¼³¸íÇÏ´Â ±âº»ÀûÀΠƲÀ» Á¦°øÇÏ´Â Áß¿äÇÑ °ÍµéÀÌ´Ù. ÀÌ °³³äµéÀ» Á¤ÀÇÇϱâ À§ÇØ ±ØÇÑ °³³äÀ» ÀÌ¿ëÇÏ°í Àִµ¥, ±ØÇÑ °³³äÀÇ ¸ðÈ£¼ºÀ¸·Î ÀÎÇÏ¿© 19¼¼±â ÀÌÀü¿¡´Â ¸¹Àº ³í¶õÀÇ ´ë»óÀÌ µÇ¾ú´Ù. ¹ÌÀûºÐÇÐÀÌ ÀÌ·¯ÇÑ ³í¶õ¿¡¼­ ¹þ¾î³­ °ÍÀº 19¼¼±â ¸» ±ØÇÑ °³³äÀÌ Á¤¸³µÈ ÀÌÈÄÀÇ ÀÏÀÌ´Ù. Çؼ®°³·Ð 1Çб⠰­ÀÇ¿¡¼­´Â ±ØÇÑ °³³äÀ» ¾ö¹ÐÇÏ°Ô Á¤ÀÇÇÏ°í ±×°ÍÀÌ ´Ù¸¥ Áß¿äÇÑ °³³äÀ» Á¤ÀÇÇϴµ¥ ¾î¶»°Ô ¾²À̴°¡¸¦ »ìÆ캻´Ù. À̸¦ À§ÇÏ¿© À¯Å¬¸®µå °ø°£ »óÀÇ ±âÃÊÀûÀÎ À§»ó¼öÇÐÀ» °øºÎÇÏ°í, ¿¬¼ÓÇÔ¼ö, ÇÔ¼ö¿­ÀÇ ±ØÇÑ µîÀ» ´Ù·é´Ù. ÀÌ·¯ÇÑ ³»¿ëÀº 2Çб⿡ ´Ù·ê ´Ùº¯¼öÇÔ¼öÀÇ ¹ÌÀûºÐ·Ð, Ǫ¸®¿¡ ±Þ¼öÀÌ·Ð µîÀ» °øºÎÇϴµ¥ ÇʼöÀûÀÌ´Ù.

±³Àç : J.E.Marsden and M.J.Hoffman, Elementary Classical Analysis, 2nd Ed., Freeman, 1993

Æò°¡¹æ¹ý : Ãâ¼® ¹× °úÁ¦¹° (20%), Áß°£°í»ç (25% X 2), ±â¸»°í»ç (30%)

°úÁ¦¹°Àº ±³ÀçÀÇ ¿¬½À¹®Á¦ Áß¿¡¼­ ÁöÁ¤µÈ °ÍÀ» Ç®¾î¼­ Á¦ÃâÇØ¾ß Çϸç, Á¦Ã⸶°¨ÀÏÀ» ¹Ýµå½Ã ÁöÄÑ¾ß ÇÕ´Ï´Ù. ´Ù¸¥ »ç¶÷ÀÇ Ç®À̸¦ º£³¢Áö ¾Ê´Â °ÍÀº ±âº»ÀÔ´Ï´Ù. ½ÃÇè 3¹ø Áß¿¡¼­ ÇѹøÀÌ¶óµµ ¹«´Ü °á½ÃÇϸé F ó¸®ÇÕ´Ï´Ù.

¿¬½À½Ã°£ : ¿¬½À½Ã°£¿¡´Â Á¶±³¼±»ý´Ô°ú ¿¬½À¹®Á¦¸¦ Ç®°Ô µË´Ï´Ù. ¿¬½À½Ã°£Àº º» °­ÀÇ¿Í °°Àº ºñÁßÀ¸·Î Áß¿äÇÑ ½Ã°£À̸ç, ¹Ýµå½Ã Ãâ¼®ÇÏ¿©¾ß ÇÕ´Ï´Ù.

Âü°í¹®Çå

[1] ±è¼º±â, ±èµµÇÑ, °è½ÂÇõ Àú, Çؼ®°³·Ð, ¼­¿ï´ëÇб³ ÃâÆǺÎ, 1995

°­ÀÇÁøµµ : ±³ÀçÀÇ 1Àå - 5Àå

ÁÖ(³¯Â¥)

±³ÀçÁøµµ

°­Àdz»¿ë

ºñ°í

1ÁÖ(3/2)


°­Á¼Ұ³, µ¿±â¼³¸í

¹Ý Á¶Á¤

2ÁÖ(3/7,3/9)

1.1-1.4

Number system, least upper bound, Cauchy Sequence


3ÁÖ(3/14,3/16)

1.5-1.8

Cluster points, Norm


4ÁÖ(3/21,3/23)

2.1-2.4

Open and closed set


5ÁÖ(3/28,3/30)

2.5-2.8

accumulation points, boundary, sequence, completeness

¼ö¾÷ 1/4

6ÁÖ(4/4,4/6)

2.9

series

Áß°£°í»ç I, 4/6

7ÁÖ(4/11)

3.1-3.2

compact set, Heine-Borel Theorem


8ÁÖ(4/18,4/20)

3.3-3.5

Nested set property, connectedness


9ÁÖ(4/25,4/27)

4.1-4.3

continuity

¼ö¾÷ 1/2

10ÁÖ(5/2,5/4)

4.4-4.6

continuity and compact sets, uniform continuity


11ÁÖ(5/9)

4.7-4.8

Differentiation, Integration


12ÁÖ(5/16,5/18)

5.1

uniform convergence

Áß°£°í»ç II, 5/16

13ÁÖ(5/23,5/25)

5.2-5.4

Weierstrass M-test, Series

¼ö¾÷ 3/4,

14ÁÖ(5/30,6/1)

5.5-5.7

Arzela-Ascoli Theorem, Contraction mapping


15ÁÖ(6/8)

5.8-5.9

Stone-Weierstrass Theorem


16ÁÖ(6/13)

5.10

Convergence test

Á¾°­, 6/13

17ÁÖ



±â¸»°í»ç, 6/20