Çؼ®°³·Ð II, 2000³â Á¦ 2Çб⠰­ÀÇ°èȹ¼­

°­Á¹øÈ£ : 300.202-001, 002, 003

* 002, 003 °­Á´ ÀÚ¿¬°úÇкÎ(Àü°ø¹ÌÁ¤)¿Í ±âÃÊ°úÇаè ÇлýµéÀ» À§ÇÑ Àü°øŽ»ö °ú¸ñÀ̸ç, 001 °­Á´ ¿©Å¸ Çлý (¼öÇÐÀü°ø Çлý Æ÷ÇÔ) µéÀ» À§ÇÑ °ú¸ñÀÌ´Ù. Áß¿äÇÑ Â÷ÀÌ´Â ¿¬½À½Ã°£ÀÇ À¯¹«ÀÌ´Ù. Àü°øÀÌ Á¤ÇØÁöÁö ¾ÊÀº ÇлýÀº ¹Ýµå½Ã 002 ȤÀº 003 °­Á¸¦ ¼±ÅÃÇØ¾ß ÇÑ´Ù.

´ã´ç±³¼ö : ±è¼º±â(001, 27-306, 880-6534, skkim@math.snu.ac.kr)

°­Çö¹è(002, 27-303A, 880-8796, hkang@math.snu.ac.kr)

°è½ÂÇõ(003, 27-428, 880-6535, kye@math.snu.ac.kr)

¿¬½ÀÁ¶±³ : Àӹ̰æ(002, 27-420, 880-6556, mklim@math.snu.ac.kr)

Çã¹Ì°æ(002, 27-422, 880-6559, miggie_77@hotmail.com)

ÇãÇüÁø(003, 27-420, 880-6556, hjhuh3@math.snu.ac.kr)

°­Àǽð£°ú °­ÀǽÇ

°­Á¹øÈ£

001

002

003

½Ã°£

°­ÀǽÇ

¿ù,¼ö 1:00-2:15

24-210

È­,¸ñ 10:30 -11:45

22-307

È­,¸ñ 10:30 -11:45

24-415


°­ÀÇ°³¿ä : Çؼ®°³·Ð 1Çб⠰­ÀÇ¿¡¼­ ´Ù·é ±ØÇÑ °³³ä, ±âÃÊÀû Topology, ¿¬¼ÓÇÔ¼öÀÇ ¼ºÁú µîÀ» ¹ÙÅÁÀ¸·Î ÇÏ¿©, ´Ùº¯¼ö ÇÔ¼öÀÇ ¹ÌºÐ ÀûºÐ À̷аú Ǫ¸®¿¡ ±Þ¼öÀÌ·ÐÀ» °øºÎÇÑ´Ù.

±³Àç : J.E.Marsden and M.J.Hoffman, Elementary Classical Analysis, 2nd Ed., Freeman, 1993

Æò°¡¹æ¹ý : Ãâ¼® ¹× °úÁ¦¹° (20%), Áß°£°í»ç (25% X 2), ±â¸»°í»ç (30%)

½ÃÇèÀÏÁ¤ : Áß°£°í»ç (I: 9/28(¸ñ), II: 11/14(È­)), ±â¸»°í»ç (12/14(¸ñ)),

½Ã°£ : ¿ÀÈÄ 6:00-8:00

¿¬½À½Ã°£ : ¿¬½À½Ã°£¿¡´Â Á¶±³¼±»ý´Ô°ú ¿¬½À¹®Á¦¸¦ Ç®°Ô µË´Ï´Ù. ¿¬½À½Ã°£Àº º» °­ÀÇ¿Í °°Àº ºñÁßÀ¸·Î Áß¿äÇÑ ½Ã°£À̸ç, ¹Ýµå½Ã Ãâ¼®ÇÏ¿©¾ß ÇÕ´Ï´Ù.

Âü°í¹®Çå

[1] ±è¼º±â, ±èµµÇÑ, °è½ÂÇõ Àú, Çؼ®°³·Ð, ¼­¿ï´ëÇб³ ÃâÆǺÎ, 1995



°­ÀÇÁøµµ : ±³ÀçÀÇ 6Àå - 10Àå

ÁÖ(³¯Â¥)

±³ÀçÁøµµ

°­Àdz»¿ë

ºñ°í

1ÁÖ(8/29-9/2)

5.8-5.9

uniform convergence º¹½À,

Stone-Weierstrass Theorem,

Dirichlet and Abel test


2ÁÖ(9/4-9/9)

5.10-6.2

Power series, Differentiable mapping


3ÁÖ(9/11-9/16)

6.3-6.4

Differentiable mapping

Ãß¼®¿¬ÈÞ

4ÁÖ(9/18-9/23)

6.5-6.8

Chain rule, Taylor's theorem

¼ö¾÷ 1/4

5ÁÖ(9/25-9/30)

6.9

Maxima

Áß°£°í»ç I, 9/28

6ÁÖ(10/2-10/7)

7.1-7.2

Inverse Function Theorem

°³ÃµÀý 10/3

7ÁÖ(10/9-10/14)

7.3-7.6

Implicit Function Theorem ÀÇ ÀÀ¿ë

ÃàÁ¦ 10/11

8ÁÖ(10/16-10/21)

7.7-8.1

Lagrange Multiplier, Integration


9ÁÖ(10/23-10/28)

8.2-8.5

Properties of Integration

¼ö¾÷ 1/2

10ÁÖ(10/30-11/4)

8.6, 9.1-9.2

Fubini Theroem

8.7 »ý·«

11ÁÖ(11/6-11/11)

9.3-9.5, 9.7

Change of variables

9.6 »ý·«

12ÁÖ(11/13-11/18)

10.1

Inner product space

Áß°£°í»ç II,11/14

13ÁÖ(11/20-11/25)

10.2-10.3

Convergence theorems

¼ö¾÷ 3/4,

14ÁÖ(11/27-12/2)

10.5-10.6

Fourier Series


15ÁÖ(12/4-12/9)

10.7-10.9

ÀÀ¿ë


16ÁÖ(12/10-12/16)



±â¸»°í»ç, 12/14