Boundary Integral Methods for Boundary Value Problems on Lipschitz Domains
 - Lecture Note, 2003, Seoul National University -

Hyeonbae Kang

September 23, 2003

Contents

1 Introduction 3
2 Boundary Value Problem on C^{2}-Domain 5
2.1 Layer Potentials on C^{2}-domain. 5
2.2 Lipschitz domain 9
3 Calderon-Zygmund Theory of SIO 11
3.1 Preliminary 11
3.2 Singular Integral Operators 14
3.3 Convolution Operators 19
4 Carleson Measures and BMO 21
4.1 Carleson Measure 21
4.2 Bounded Mean Oscillation 25
4.3 BMO and Carleson Measures 28

Chapter 1

Introduction

In the first part of this lecture we study the layer potential methods to solve the classical Dirichlet and Neumann problems developed in last 30 years.

Let $\Omega \subset \mathbb{R}^{n}(n \geq 2)$ be a bounded Lipschitz domain with a connected boundary. A domain is called a Lipschitz domain if its boundary is locally given by a Lipschitz curve. We consider the classical boundary value problems, Dirichlet and Neumann problems:

$$
D P[f]: \begin{cases}\Delta u=0 & \text { in } \Omega, \\ u=f & \text { on } \partial \Omega,\end{cases}
$$

and

$$
N P[g]: \begin{cases}\Delta u=0 & \text { in } \Omega, \\ \frac{\partial u}{\partial \nu}=g & \text { on } \partial \Omega, \quad \int_{\partial \Omega} u=0 .\end{cases}
$$

Lax-Milgram Theorem guarantee the existence of unique solutions $u \in$ $H^{1}(\Omega)$ for the Dirichlet problem $D P[f]$ with data $f \in H^{1 / 2}(\partial \Omega)$ and the Neumann problem $N P[g]$ with data $g \in H^{-1 / 2}(\partial \Omega)$, respectively.

To find the explicit solution of the boundary value problems, we will write down the solution in integral forms. To this end, it is necessary to introduce the fundamental solution of the Laplace's equation: for $x \in \mathbb{R}^{d}$, $x \neq 0$,

$$
\Gamma(x):= \begin{cases}\frac{1}{2 \pi} \log |x| & d=2 \tag{1.1}\\ \frac{1}{(2-d) \omega_{d}}|x|^{2-d} & d \geq 3\end{cases}
$$

where ω_{d} is the surface area of the $d-1$ dimensional unit sphere. Then $-\Delta \Gamma(x)=\delta(x)$ in the distributional sense where δ is the Dirac delta function. The double layer potential and the single layer potential with density
g on Ω is defined to be:

$$
\begin{align*}
& \mathcal{S}_{\Omega} g(x):=\int_{\partial \Omega} \Gamma(x-y) g(y) d \sigma_{y}, \quad x \in \mathbb{R}^{n}, \tag{1.2}\\
& \mathcal{D}_{\Omega} g(x):=\int_{\partial \Omega}\left\langle\nu_{y}, \nabla_{y} \Gamma(x-y)\right\rangle f(y) d \sigma_{y}, \quad x \in \mathbb{R}^{n} \backslash \partial \Omega \tag{1.3}
\end{align*}
$$

where ν_{y} is the outer unit normal vector to $\partial \Omega$ at $y \in \partial \Omega$. By the property of the fundamental solution Γ,
$\mathcal{D}_{\Omega} f$ and $\mathcal{S} g$ are harmonic in $\mathbb{R}^{n} \backslash \partial \Omega$.
Therefore to solve $D P[f]$ it suffices to solve the following integral equation

$$
\begin{equation*}
\text { Find } \phi \in L^{2}(\partial \Omega) \text { so that }\left.\mathcal{D}_{\Omega} \phi\right|_{\partial \Omega}=f \text { on } \partial \Omega \text {. } \tag{1.4}
\end{equation*}
$$

This simple question involves a great deal of hard analysis and it is the purpose of this note to explain the theory to solve (1.4).

Chapter 2

Boundary Value Problem on C^{2}-Domain

2.1 Layer Potentials on C^{2}-domain.

Let Ω be a C^{2}-domain. The main advantage of the C^{2} case over the Lipschitz case in dealing with Dirichlet or Neumann problems is the following fact; If Ω is a C^{2}-domain, then

$$
\begin{equation*}
\left\langle x-y, \nu_{y}\right\rangle=O\left(|x-y|^{2}\right) \quad \forall x, y \in \partial \Omega, \tag{2.1}
\end{equation*}
$$

and hence

$$
\begin{equation*}
\left|\frac{\partial}{\partial \nu_{y}} \Gamma(x, y)\right|+\left|\frac{\partial}{\partial \nu_{x}} \Gamma(x, y)\right| \leq \frac{C}{|x-y|^{d-2}} . \tag{2.2}
\end{equation*}
$$

Since $\partial \Omega$ is a manifold of dimension $d-1$, it thus follows that

$$
\begin{equation*}
\int_{\partial \Omega}\left|\frac{\partial}{\partial \nu_{y}} \Gamma(x, y)\right| d \sigma(y) \leq C \tag{2.3}
\end{equation*}
$$

independently of $x \in \partial \Omega$. This makes the theory for C^{2}-domains much easier than that for C^{1} or Lipschitz domains. You may notice that if the given domain has $C^{1, \alpha}$ boundary for some $\alpha>0$, then (2.2) holds with the power $d-2$ in the denominator of RHS replaced with $d-1+\alpha$. So what will be said in this chapter is true even if the domain is $C^{1, \alpha}$. But we will continue to assume that the domain is C^{2} for simplicity.

To see (2.1), we may assume, after rotation and translation if necessary, that $y=0$ and near $0\left(x^{\prime}, x_{d}\right) \in \Omega$ is given by $x_{d}>\varphi\left(x^{\prime}\right)$, where φ is a defining function for Ω near 0 such that $\varphi(0)=0$ and $\nabla \varphi(0)=0$. Then $\nu_{0}=(0,-1)$ and it is easy to see (2.1). We make note of

$$
\frac{\partial}{\partial \nu_{y}} \Gamma(x-y)=\frac{1}{\omega_{d}} \frac{\left\langle y-x, \nu_{d}\right\rangle}{|x-y|^{d}}, \quad x, y \in \partial \Omega .
$$

Define the boundary integral operator \mathcal{K}_{Ω} by

$$
\mathcal{K}_{\Omega} f(x)=\frac{1}{\omega_{d}} \int_{\partial \Omega} \frac{\left\langle y-x, \nu_{y}\right\rangle}{|x-y|^{d}} f(y) d \sigma_{y}, \quad x \in \partial \Omega .
$$

Let us fix notations: for a function defined in $\mathbb{R}^{d} \backslash \partial \Omega$, set

$$
\left.u\right|_{ \pm}(x):=\lim _{t \rightarrow+0} u\left(x+t \nu_{x}\right), \quad x \in \partial \Omega
$$

when the limit exists. So the subscript + and - denote the approach from outside and inside Ω, respectively.

Theorem 2.1 Let $f \in C(\partial \Omega)$. Then

$$
\begin{equation*}
\left.\mathcal{D}_{\Omega} f\right|_{ \pm}(P)=\left(\mp \frac{1}{2} I+\mathcal{K}_{\Omega}\right) f(P), \quad P \in \partial \Omega \tag{2.4}
\end{equation*}
$$

Proof. We first observe that

$$
\int_{\partial \Omega} \frac{\partial}{\partial \nu_{y}} \Gamma(x, y) d \sigma(y)= \begin{cases}1 & \text { if } x \in \Omega \tag{2.5}\\ 1 / 2 & \text { if } x \in \partial \Omega \\ 0 & \text { if } x \in \mathbb{R}^{d} \backslash \bar{\Omega} .\end{cases}
$$

(2.5) can be proved using the Green theorem. We leave the proofs as an exercise.

If $x \in \Omega$, then by (2.5)

$$
\mathcal{D}_{\Omega} f(x)=\int_{\partial \Omega} \frac{\partial}{\partial \nu_{y}} \Gamma(x-y)[f(y)-f(P)] d \sigma(y)+f(P)
$$

Let $w(x)$ be the first function in the RHS of the above. If $x=P-t \nu_{P}$, then $w(x) \rightarrow w(P)$ as $t \rightarrow 0$. To prove this, for a given $\epsilon>0$, let $\delta>0$ be such that $|f(y)-f(P)|<\epsilon$ whenever $|y-P|<\delta$. Then

$$
\begin{aligned}
w(x)-w(P)= & \int_{\partial \Omega \cap B_{\delta}} \frac{\partial}{\partial \nu_{y}} \Gamma(x-y)[f(y)-f(P)] d \sigma(y) \\
& -\int_{\partial \Omega \cap B_{\delta}} \frac{\partial}{\partial \nu_{y}} \Gamma(P-y)[f(y)-f(P)] d \sigma(y) \\
& +\int_{\partial \Omega \backslash B_{\delta}}\left[\frac{\partial}{\partial \nu_{y}} \Gamma(x-y)-\frac{\partial}{\partial \nu_{y}} \Gamma(P-y)\right][f(y)-f(P)] d \sigma(y) \\
= & I_{1}+I_{2}+I_{3} .
\end{aligned}
$$

It easily follows from (2.3) that

$$
\begin{equation*}
\left|I_{2}\right| \leq C \epsilon \tag{2.6}
\end{equation*}
$$

Since

$$
\left|\frac{\partial}{\partial \nu_{y}} \Gamma(x-y)-\frac{\partial}{\partial \nu_{y}} \Gamma(P-y)\right| \leq C \frac{|x-P|}{|y-P|^{d}}, \quad \forall y \in \partial \Omega,
$$

we get

$$
\begin{equation*}
\left|I_{3}\right| \leq C M|x-P|, \tag{2.7}
\end{equation*}
$$

where M is the maximum of f on $\partial \Omega$. To estimate I_{1} we assume that $P=0$ and near P, Ω is given by $y=\left(y^{\prime}, y_{d}\right)$ with $y_{d}>\varphi\left(y^{\prime}\right)$ where φ is a C^{2} function such that $\varphi(0)=0$ and $\nabla \varphi(0)=0$. With these coordinates, one can show that

$$
\left|\frac{\partial}{\partial \nu_{y}} \Gamma(x-y)\right| \leq C \frac{\left|y^{\prime}\right|^{2}+t}{\left(\left|y^{\prime}\right|^{2}+t^{2}\right)^{d / 2}},
$$

and hence

$$
\begin{equation*}
\left|I_{1}\right| \leq C \epsilon \tag{2.8}
\end{equation*}
$$

Combining (2.6), (2.7), and (2.8), we can see that

$$
\limsup _{t \rightarrow 0}|w(x)-w(P)| \leq C \epsilon
$$

Since ϵ is arbitrary, we obtain

$$
\left.\mathcal{D}_{\Omega} f\right|_{-}(P)=\left(\frac{1}{2} I+\mathcal{K}_{\Omega}\right) f(P)
$$

To see the other identity in (2.5), it suffices to notice that if $x \in \mathbb{R}^{d} \backslash \bar{\Omega}$, then

$$
\mathcal{D}_{\Omega} f(x)=\int_{\partial \Omega} \frac{\partial}{\partial \nu_{y}} \Gamma(x-y)[f(y)-f(P)] d \sigma(y)
$$

which follows from (2.3). The rest of arguments are the same. This completes the proof.

Let \mathcal{K}_{Ω}^{*} be the adjoint operator on $L^{2}(\partial \Omega)$. Then

$$
\mathcal{K}_{\Omega} f(x)=\frac{1}{\omega_{d}} \int_{\partial \Omega} \frac{\left\langle y-x, \nu_{x}\right\rangle}{|x-y|^{d}} f(y) d \sigma_{y}, \quad x \in \partial \Omega .
$$

Then in a similar way one can prove
Theorem 2.2 Let $f \in C(\partial \Omega)$. Then

$$
\begin{equation*}
\left.\frac{\partial\left(\mathcal{S}_{\Omega} f\right)}{\partial \nu}\right|_{ \pm}(P)=\left(\pm \frac{1}{2} I+\mathcal{K}_{\Omega}^{*}\right) f(P), \quad P \in \partial \Omega . \tag{2.9}
\end{equation*}
$$

In order to solve $D P[f]$ and $N P[g]$, it is now enough to solve the following integral equation:

$$
\left(\frac{1}{2} I+\mathcal{K}_{\Omega}\right) \phi=f \quad \text { on } \partial \Omega
$$

and

$$
\left(-\frac{1}{2} I+\mathcal{K}_{\Omega}\right) \phi=g \quad \text { on } \partial \Omega .
$$

Another advantage we can use for C^{2}-domains is that the operator \mathcal{K}_{Ω} is compact. In fact, this follows from (2.1). More generally, we have the following theorem:

Theorem 2.3 For each $\alpha>0$, the operator T_{α} defined by

$$
T_{\alpha} f(x):=\int_{\partial \Omega} \frac{f(y)}{|x-y|^{d-1-\alpha}} d \sigma(y), \quad x \in \partial \Omega
$$

is compact on $L^{2}(\partial \Omega)$.
Thanks to Theorem 2.3, we can use the Fredholm alternative to investigate the invertibility of the operator $\pm \frac{1}{2} I+\mathcal{K}_{\Omega}$.

Theorem 2.4 (Fredholm Alternative) Suppose that K is a compact operator on a Hilbert space X. Then, $I+K$ is onto if and only if $I+K$ is one to one.

For proofs of Theorem 2.3 and Theorem 2.4, see [9].
Theorem 2.5 Let X be one of $L^{2}(\partial \Omega), H^{1 / 2}(\partial \Omega)$, and $C(\partial \Omega)$, and let X_{0} be the space of $f \in X$ satisfying $\int_{\partial \Omega} f d \sigma=0$. Then, $\frac{1}{2} I+\mathcal{K}_{\Omega}$ is invertible on X and $-\frac{1}{2} I+\mathcal{K}_{\Omega}$ is invertible on X_{0}

Proof. To prove $\frac{1}{2} I+\mathcal{K}_{\Omega}$ is onto $L^{2}(\partial \Omega)$, we prove that $\frac{1}{2} I+\mathcal{K}_{\Omega}^{*}$ is one to one. Suppose that

$$
\begin{equation*}
\left(\frac{1}{2} I+\mathcal{K}_{\Omega}^{*}\right) \phi=0 \quad \text { on } \partial \Omega \tag{2.10}
\end{equation*}
$$

We first observe that $\mathcal{K}_{\Omega}(1)=1 / 2$ which follows from (2.1) and (2.5). Thus

$$
0=\int_{\partial \Omega}\left(\frac{1}{2} I+\mathcal{K}_{\Omega}^{*}\right) \phi d \sigma=\int_{\partial \Omega}\left(\frac{1}{2} I+\mathcal{K}_{\Omega}\right)(1) \phi d \sigma=\int_{\partial \Omega} \phi d \sigma .
$$

Let $u(x):=\mathcal{S}_{\Omega} \phi(x), \quad x \in \mathbb{R}^{d} \backslash \bar{\Omega}$. Then u satisfies

$$
\left\{\begin{array}{l}
\Delta u=0 \quad \text { in } \mathbb{R}^{d} \backslash \bar{\Omega}, \\
\left.\frac{\partial u}{\partial \nu}\right|_{+}=0 \quad \text { on } \partial \Omega, \\
u(x)=O\left(|x|^{1-d}\right) \quad \text { as }|x| \rightarrow \infty
\end{array}\right.
$$

In fact, the second follows from (2.2) and (2.10) while the third can be shown as follows: Since $\int_{\partial \Omega} \phi d \sigma=0$,

$$
\mathcal{S}_{\Omega} \phi(x)=\int_{\partial \Omega}[\Gamma(x-y)-\Gamma(x)] \phi(y) d \sigma(y)=O\left(|x|^{1-d}\right), \quad|x| \rightarrow \infty .
$$

We now prove that $u=0$ in $\mathbb{R}^{d} \backslash \bar{\Omega}$. Since

$$
\int_{\mathbb{R}^{d} \backslash \bar{\Omega}}|\nabla u|^{2}=-\left.\int_{\partial \Omega} u \frac{\partial u}{\partial \nu}\right|_{+} d \sigma=0
$$

u is constant and this constant must be 0 . Now since $\mathcal{S}_{\Omega} \phi$ is continuous in \mathbb{R}^{d} and harmonic in Ω, we get $\mathcal{S}_{\Omega} \phi=0$ in Ω and hence in \mathbb{R}^{d}. It then follows from (2.2) that

$$
\phi=\left.\frac{\partial}{\partial \nu} \mathcal{S}_{\Omega} \phi\right|_{+}-\left.\frac{\partial}{\partial \nu} \mathcal{S}_{\Omega} \phi\right|_{-}=0
$$

To prove $\frac{1}{2} I+\mathcal{K}_{\Omega}$ is onto $L_{0}^{2}(\partial \Omega)$, it suffices to prove that $\left(\frac{1}{2} I+\mathcal{K}_{\Omega}^{*}\right) \phi=0$ and $\phi \in L_{0}^{2}(\partial \Omega)$, then $\phi=0$. However the proof is almost the same. In fact, we first prove that $\mathcal{S}_{\Omega} \phi=0$ in Ω, and then using the fact $\phi \in L_{0}^{2}(\partial \Omega)$ we prove $\mathcal{S}_{\Omega} \phi=0$ in \mathbb{R}^{d}.

To prove the invertibility on the spaces $H^{1 / 2}(\partial \Omega)$ and $C(\partial \Omega)$, it suffices to notice that \mathcal{K}_{Ω} is improving regularity (see the following exercise).

Exercise. For this we suppose $d=3$ for simplicity. If $\partial \Omega$ is C^{2}, prove the following.
(1) $\mathcal{K}_{\Omega}: L^{2}(\partial \Omega) \rightarrow H^{1 / 2}(\partial \Omega)$ bounded.
(2) $\mathcal{K}_{\Omega}: L^{2}(\partial \Omega) \rightarrow L^{6}(\partial \Omega), L^{6}(\partial \Omega) \rightarrow L^{\infty}(\partial \Omega)$ bounded.
(2) $\mathcal{K}_{\Omega}: L^{\infty}(\partial \Omega) \rightarrow C^{\alpha}(\partial \Omega)$ bounded $(\alpha<1)$.

Notice that the spaces are not optimal. (Hint. First localize the operator as in the following section. Then you see that you end up with a convolution operator. Then you can apply the generalized Young's inequality, etc.)

2.2 Lipschitz domain

Before we move to the next section, let us take a look at the operator \mathcal{K}_{Ω} when $\partial \Omega$ is only Lipschitz continuous. The main cause of serious difficulties is the failure of (2.2) for the Lipschitz domains. For those, the following holds:

$$
\begin{equation*}
\left|\frac{\partial}{\partial \nu_{y}} \Gamma(x, y)\right|+\left|\frac{\partial}{\partial \nu_{x}} \Gamma(x, y)\right| \leq \frac{C}{|x-y|^{d-1}}, \quad x, y \in \partial \Omega . \tag{2.11}
\end{equation*}
$$

In order to see the type of operators we will be considering, let us localize the operator \mathcal{K}_{Ω}. Let $\left\{\zeta_{j}: j=1, \ldots, M\right\}$ be a partition of unity for $\partial \Omega$. We further assume that for each j, the set $\cup\left(\operatorname{supp}\left(\zeta_{k}\right)\right)$, where the union is taken over all k such that $\operatorname{supp}\left(\zeta_{k}\right) \cap \operatorname{supp}\left(\zeta_{j}\right) \neq \emptyset$, is represented by a

Lipschitz φ as $x_{d}=\varphi\left(x^{\prime}\right)$ after rotation and translation if necessary, where $x^{\prime}=\left(x_{1}, \ldots, x_{d-1}\right)$. Then

$$
\mathcal{K}_{\Omega} f(x)=\sum_{j, k} \zeta_{k}(x) \mathcal{K}_{\Omega}\left(\zeta_{j} f\right)(x):=\sum_{j, k} \mathcal{K}_{j k}(f)(x) .
$$

For those j, k with $\operatorname{supp}\left(\zeta_{k}\right) \cap \operatorname{supp}\left(\zeta_{j}\right)=\emptyset$, it is easy to see that $\mathcal{K}_{j k}$ is bounded on $L^{2}(\partial \Omega)$. But for those j, k with $\operatorname{supp}\left(\zeta_{k}\right) \cap \operatorname{supp}\left(\zeta_{j}\right) \neq \emptyset$, it becomes a completely different story. For such j, k the kernel of the operator $\mathcal{K}_{j k}$ takes the form, after rotation and translation,

$$
\frac{1}{\omega_{d}} \frac{\left\langle y-x, \nu_{y}\right\rangle}{|x-y|^{d}}=\frac{1}{\omega_{d}} \frac{\left(x^{\prime}-y^{\prime}\right) \cdot \nabla \varphi\left(y^{\prime}\right)+\left(\varphi\left(y^{\prime}\right)-\varphi\left(x^{\prime}\right)\right)}{\left[\left|x^{\prime}-y^{\prime}\right|^{2}+\left|\varphi\left(x^{\prime}\right)-\varphi\left(y^{\prime}\right)\right|^{2}\right]^{\frac{d}{2}}} \frac{1}{\sqrt{1+\left|\nabla \varphi\left(y^{\prime}\right)\right|^{2}}} .
$$

Therefore, the type kernels are

$$
\frac{x_{j}-y_{j}}{\left[\left|x^{\prime}-y^{\prime}\right|^{2}+\left|\varphi\left(x^{\prime}\right)-\varphi\left(y^{\prime}\right)\right|^{2}\right]^{\frac{d-1}{2}}} \quad \text { or } \frac{\varphi\left(x^{\prime}\right)-\varphi\left(y^{\prime}\right)}{\left[\left|x^{\prime}-y^{\prime}\right|^{2}+\left|\varphi\left(x^{\prime}\right)-\varphi\left(y^{\prime}\right)\right|^{2}\right]^{\frac{d}{2}}}
$$

where φ is a Lipschitz function. More generally,

$$
\begin{equation*}
\frac{A\left(x^{\prime}\right)-A\left(y^{\prime}\right)}{\left[\left|x^{\prime}-y^{\prime}\right|^{2}+\left|\varphi\left(x^{\prime}\right)-\varphi\left(y^{\prime}\right)\right|^{2}\right]^{\frac{d}{2}}} \tag{2.12}
\end{equation*}
$$

where A and φ are Lipschitz functions.
The major part of the theory for this kind of operators is L^{2} boundedness. In this lecture, we will prove a beautiful theorem of Coifman-McIntoshMeyer [2]. Their result was further generalized to the celebrated $T 1$-theorem due to David-Journé [6]. There are many prerequisites to understand the CMM theorem. Among them are classical theory of singular integral operators, maximal functions, Carleson measures, BMO.

Chapter 3

Calderon-Zygmund Theory of SIO

3.1 Preliminary

In this chapter, we study the Calderón-Zygmund theory of singular integral operators. We first state two major theorems to be used in this chapter and throughout this note, without proofs. For proofs, we refer to [15]

Theorem 3.1 (Marcinkiewicz Interpolation Theorem) Suppose that
(1) $T: L^{1}+L^{\infty} \rightarrow L^{1}+L^{\infty}$ sublinear, i.e., $\left|T\left(f_{1}+f_{2}\right)\right| \leq\left|T f_{1}\right|+\left|T f_{2}\right|$,
(2) T is of weak type $\left(p_{i}, q_{i}\right) \quad\left(i=1,2,1 \leq p_{i} \leq q_{i} \leq \infty\right)$, i.e., there are constants C_{i} such that for all positive number λ and $f \in L^{p_{i}}$,

$$
|\{T f>\lambda\}| \leq\left(\frac{C_{i}\|f\|_{p_{i}}}{\lambda}\right)^{q_{i}}
$$

Let $p=(1-\theta) \frac{1}{p_{1}}+\theta \frac{1}{p_{2}}$ and $q=(1-\theta) \frac{1}{q_{1}}+\theta \frac{1}{q_{2}}(0<\theta<1)$. Then T is of (strong) type (p, q), i.e, there is a constant C depending only on C_{1}, C_{2}, and θ such that

$$
\|T f\|_{q} \leq C\|f\|_{p}
$$

Remark. When $q=\infty$, the weak type (p, q) means the strong type (p, q).

Another important ingredient is the Hardy-Littlewood maximal operator. For an integrable function f, define

$$
\begin{equation*}
\mathcal{M} f(x):=\sup _{r>0} \frac{1}{\left|C_{r}(x)\right|} \int_{C_{r}(x)}|f(y)| d y, \quad x \in \mathbb{R}^{n} \tag{3.1}
\end{equation*}
$$

where $C_{r}(x)$ is either $B_{r}(x)$, a ball centered at x with radius r, or $Q_{r}(x)$, a cube centered at x with the side length r.

Theorem 3.2 The Hardy-Littlewood maximal operator \mathcal{M} is of weak type $(1,1)$ and (∞, ∞), and hence is of strong type (p, p) for all $p, 1<p \leq \infty$.

Lemma 3.3 (Calderon-Zygmund Decomposition) Let $f \geq 0,\|f\|_{1}<$ ∞, and $\alpha>0$ be a fixed number. Then there exists non-overlapping dyadic cubes $\left\{Q_{i}\right\}$ such that
(1) $f \leq \alpha$ a.e. $x \in \mathbb{R}^{n} \backslash \cup_{j} Q_{j}$,
(2) $\alpha<f_{Q_{j}} f \leq 2^{n} \alpha$,
where $f_{Q_{j}} f=\frac{1}{\left|Q_{j}\right|} \int_{Q_{j}} f=f_{Q_{j}}$.
Before proving Lemma 3.3, let us state another lemma which is equivalent to Lemma 3.3.

Let Q_{j} be the cubes in CZ-decomposition. Let

$$
g:=f \chi_{\mathbb{R}^{n} \backslash \cup Q_{j}}+\sum_{j} f_{Q_{j}} \chi_{Q_{j}} \quad \text { and } \quad b=\sum_{j} b_{j}:=\sum_{j}\left(f-f_{Q_{j}}\right) \chi_{Q_{j}}
$$

where $\chi_{Q_{j}}$ is the characteristic function of Q_{j}. Then $f=g+b$. Each b_{j} satisfies

$$
\left\|b_{j}\right\|_{1} \leq \int_{Q_{j}}|f|+\left|f_{Q_{j}}\right| \leq 2^{n+1} \alpha\left|Q_{j}\right|
$$

We also have

$$
\sum_{j}\left|Q_{j}\right| \leq \sum_{j} \frac{1}{\alpha} \int_{Q_{j}}|f| \leq \frac{1}{\alpha} \int_{\cup Q_{j}}|f| \leq \frac{1}{\alpha}\|f\|_{1}
$$

and hence

$$
\begin{aligned}
\|g\|_{2}^{2} & =\int_{\mathbb{R}^{n}}|g|^{2} \\
& \leq 2\left[\int_{\mathbb{R}^{n} \backslash \cup Q_{j}}|f|^{2}+\sum_{j=1}^{\infty} \int_{Q_{j}}\left|f_{Q_{j}}\right|^{2}\right] \\
& \leq 2\left[\alpha \int_{\mathbb{R}^{n} \backslash \cup Q_{j}}|f|+2^{2 n} \alpha^{2} \sum_{j}\left|Q_{j}\right|\right] \\
& \leq 2\left[\alpha\|f\|_{1}+2^{2 n} \alpha\|f\|_{1}\right] \\
& =2\left(2^{2 n}+1\right) \alpha\|f\|_{1} .
\end{aligned}
$$

So we have the following lemma which is, in fact, equivalent to the CZdecomposition.

Lemma 3.4 (CZ-Decomposition) Let $f \in L^{1}$ and $\alpha>0$. Then f can be decomposed as $f=g+b=g+\sum_{j=1}^{\infty} b_{j}$ so that
(1) $\|g\|_{2}^{2} \leq 2^{2 n+2} \alpha\|f\|_{1}$,
(2) $\operatorname{supp} b_{j} \subset Q_{j}$ and $\left\{Q_{j}\right\}$ is mutually non-overlapping,
(3) $\left\|b_{j}\right\|_{1} \leq 2^{n+1} \alpha\left|Q_{j}\right|$,
(4) $\int_{Q_{j}} b_{j}=0 \quad \forall j$,
(5) $\sum_{j}\left|Q_{j}\right| \leq \frac{1}{\alpha}\|f\|_{1}$.

Proof of Lemma 3.3. For any integer k, let \mathcal{D}_{k} be the collection of all dyadic cubes with side length 2^{-k}. So each $Q \in \mathcal{D}_{k}$ is a closed cube whose corners are of the form $\left(l_{1} 2^{-k}, \ldots, l_{n} 2^{-k}\right)$ where $l_{1}, \ldots l_{n}$ are integers. Observe that any two different cubes in \mathcal{D}_{k} are mutually non-overlapping, i.e., they only share, if any, sides which is of measure zero. We also observe that each Q in \mathcal{D}_{k} contains exactly 2^{n} cubes in \mathcal{D}_{k+1}, while each cube in \mathcal{D}_{k+1} is contained in exactly one cube in \mathcal{D}_{k}.

Let $\alpha>0$ be given. Since $f \in L^{1}$, there exists j such that

$$
f_{Q} f<\alpha
$$

for all $Q \in \mathcal{D}_{j}$. Assume $j=0$ without loss of generality. Let

$$
\mathcal{F}_{1}=\left\{Q \in \mathcal{D}_{1}: f_{Q} f>\alpha\right\} .
$$

If $Q \in \mathcal{D}_{1} \backslash \mathcal{F}_{1}$, then bisect the sides of Q to have 2^{n} sub-cubes. Define

$$
\mathcal{F}_{2}=\left\{Q \in \mathcal{D}_{2}: f_{Q} f>\alpha, \text { and } Q \nsubseteq \tilde{Q} \text { for any } \tilde{Q} \in \mathcal{F}_{1}\right\}
$$

Repeat this procedure indefinitely (if necessary) to have the classes \mathcal{F}_{k}, $k=1,2, \ldots$ Enumerate all members of $\cup_{k} \mathcal{F}_{k}$ by $\left\{Q_{j}\right\}$. If $Q_{j} \in \mathcal{F}_{k}$ for some k, then there exists $\tilde{Q} \in \mathcal{D}_{k-1}$ containing Q_{j}. Since $\tilde{Q} \notin \mathcal{F}_{k-1}$, we have

$$
\alpha \leq \frac{1}{\left|Q_{j}\right|} \int_{Q_{j}} f=\frac{2^{n}}{|\tilde{Q}|} \int_{Q} f \leq 2^{n} f_{\tilde{Q}} f \leq 2^{n} \alpha .
$$

If $x \in \mathbb{R}^{n} \backslash \cup_{j} Q_{j}$, then there exists a sequence $\left\{C_{j}\right\}$ of cubes such that

$$
C_{1} \supset C_{2} \supset \cdots, \quad \bigcap_{j} C_{j}=\{x\}, \quad \text { and } \quad C_{j} \in \mathcal{D}_{j} \backslash \mathcal{F}_{j} .
$$

By definition of $\mathcal{F}_{j}, f_{C_{j}} f<\alpha$ for all j. It then follows from the Lebesgue differentiation theorem that

$$
f(x)=\lim _{j \rightarrow \infty} \frac{1}{\left|C_{j}\right|} \int_{C_{j}} f(y) d y \leq \alpha \quad \text { a.e. } x
$$

Note that the Lebesgue differentiation theorem used in the proof is slightly different from the usual differentiation theorem which asserts that

$$
\lim _{r \rightarrow 0} \frac{1}{|B(x, r)|} \int_{B(x, r)} f(y) d y=f(x) \quad \text { a.e. } x .
$$

Such difference causes no trouble. In fact, if we define a maximal function

$$
\mathcal{M}_{1} f(x):=\sup _{\substack{Q: c u b e \\ x \in Q}} \frac{1}{|Q|} \int_{Q}|f(y)| d y
$$

one can easily shows that $\mathcal{M}_{1} f(x) \leq C \mathcal{M} f(x)$ for some constant C depending only on the dimension n. Following the proof of the usual Lebesgue differentiation theorem (e.g., [13]), one can prove the desired differentiation theorem.

3.2 Singular Integral Operators

The singular integral operators are defined as follows.
Definition 3.5 An integral kernel $k(x, y)\left(x, y \in \mathbb{R}^{n}\right)$ is called a standard kernel if for $x, y \in \mathbb{R}^{n}$,
(1) $|k(x, y)| \leq \frac{C}{|x-y|^{n}}$,
(2) $\left|\nabla_{x} k(x, y)\right|+\left|\nabla_{y} k(x, y)\right| \leq \frac{C}{|x-y|^{n+1}}$
for some constant C.
Observe that the kernel of the type (2.12) in which we are interested is a standard kernel on \mathbb{R}^{d-1}. Moreover it is skew symmetric, i.e.,

$$
k(y, x)=-k(x, y), \quad x, y \in \mathbb{R}^{d-1}
$$

We will assume throughout this lecture that the kernel $k(x, y)$ is skew symmetric.

The singular integral operator (SIO) T corresponding to the kernel $k(x, y)$ is defined defined as a Cauchy principal value: for each $f \in C_{0}^{\infty}\left(\mathbb{R}^{n}\right)$

$$
\begin{equation*}
T f(x)=\text { p.v. } \int_{\mathbb{R}^{n}} k(x, y) f(y) d y=\lim _{\epsilon \rightarrow 0} \int_{|x-y|>\epsilon} k(x, y) f(y) d y . \tag{3.2}
\end{equation*}
$$

We first prove that the limit exists for each $f \in C_{0}^{\infty}\left(\mathbb{R}^{n}\right)$. For each $\epsilon>0$, let

$$
k_{\epsilon}(x, y)=k(x, y) \chi_{\{|x-y|>\epsilon\}},
$$

and let T_{ϵ} be the integral operator defined by $k_{\epsilon}(x, y)$. Then $k_{\epsilon}(x, y)$ is also skew-symmetric. So we get for all $f, g \in C_{0}^{\infty}\left(\mathbb{R}^{n}\right)$

$$
\left\langle T_{\epsilon} f, g\right\rangle=\frac{1}{2} \iint k_{\epsilon}(x, y)[f(x) g(y)-f(y) g(x)] d x d y
$$

Since $|f(x) g(y)-f(y) g(x)| \leq C|x-y|$, it is now clear that they converge as $\epsilon \rightarrow 0$.

The main theorem of this chapter is the following which is already classical.

Theorem 3.6 Let T be a SIO. If T is bounded on L^{2}, then
(1) $|\{|T f|>\lambda\}| \leq \frac{C\|f\|_{1}}{\lambda}, \quad \forall f \in L^{1}, \forall \lambda>0$,
(2) T is bounded on $L^{p}, \quad 1<p<\infty$.

Remark. The meaning of $T f$ for $f \in L^{1}$ is not clear yet. In view of the CZ-decomposition, it is reasonable to define it by

$$
T f=T g+\sum_{j=1}^{\infty} T b_{j}, \quad \text { when } f=g+\sum_{j=1}^{\infty} b_{j} .
$$

Since $g \in L^{2}, T g$ makes sense. We will give a meaning to $T b_{j}$ after introducing the notion of BMO in the next chapter.

Theorem 3.6 says that an SIO which is bounded on L^{2} is automatically of weak type $(1,1)$, and hence bounded on $L^{p}, 1<p<\infty$.

Proof of Theorem 3.6. Let $f \in L^{1}$ and $\lambda>0$. Let $f=g+b$ be the CZdecomposition with respect to λ and $\left\{Q_{j}\right\}$ be those cubes in Lemma 3.4. Note that

$$
|\{|T f|>\lambda\}| \leq\left|\left\{|T g|>\frac{\lambda}{2}\right\}\right|+\left|\left\{|T b|>\frac{\lambda}{2}\right\}\right| .
$$

By Lemma 3.4 (1), we have

$$
\begin{aligned}
\left|\left\{|T g|>\frac{\lambda}{2}\right\}\right| & \leq \int_{\left\{|T g|>\frac{\lambda}{2}\right\}} \frac{|T g|^{2}}{\left(\frac{\lambda}{2}\right)^{2}} d x \leq \frac{4}{\lambda^{2}}\|T g\|_{2}^{2} \\
& \leq \frac{C}{\lambda^{2}}\|g\|_{2}^{2} \leq \frac{C}{\lambda^{2}} 2^{2 n+2} \lambda\|f\|_{1}=\frac{C}{\lambda}\|f\|_{1} .
\end{aligned}
$$

Let $A=\left\{x \notin \cup_{j=1}^{\infty}\left(2 Q_{j}\right):|T b|>\lambda / 2\right\}$. Then, $\{|T b|>\lambda / 2\} \subset$ $\cup_{j=1}^{\infty}\left(2 Q_{j}\right) \cup A$. By Lemma 3.4 (5), we have

$$
\left|\bigcup_{j=1}^{\infty}\left(2 Q_{j}\right)\right| \leq \sum_{j=1}^{\infty}\left|2 Q_{j}\right|=2^{n} \sum_{j=1}^{\infty}\left|Q_{j}\right| \leq \frac{2^{n}}{\lambda}\|f\|_{1}
$$

Suppose $x \notin 2 Q_{j}$ and let y^{j} be the center of Q_{j}. By Lemma 3.4 (4), we have

$$
\begin{aligned}
T b_{j}(x) & =\int_{Q_{j}} k(x, y) b_{j}(y) d y \\
& =\int_{Q_{j}}\left[k(x, y)-k\left(x, y^{j}\right)\right] b_{j}(y) d y \\
& =\int_{Q_{j}} \nabla_{y} k(x, \xi) \cdot\left(y-y^{j}\right) b_{j}(y) d y
\end{aligned}
$$

for some point $\xi \in Q_{j}$. Since $x \notin 2 Q_{j},\left|x-y^{j}\right| \approx|x-\xi|$ independently of x and hence

$$
\left|\nabla_{y} k(x, \xi)\right| \leq \frac{C}{|x-\xi|^{n+1}} \leq \frac{C}{\left|x-y^{j}\right|^{n+1}}
$$

Thus Lemma 3.4 (3) leads to

$$
\begin{aligned}
\left|T b_{j}(x)\right| & \leq C \int_{Q_{j}} \frac{\left|y-y^{j}\right|}{\left|x-y^{j}\right|^{n+1}}\left|b_{j}(y)\right| d y \\
& \leq \frac{C}{\left|x-y^{j}\right|^{n+1}} l\left(Q_{j}\right) \int_{Q_{j}}\left|b_{j}(y)\right| d y \\
& \leq \frac{C}{\left|x-y^{j}\right|^{n+1}} \lambda\left|Q_{j}\right|^{1+\frac{1}{n}}
\end{aligned}
$$

where $l\left(Q_{j}\right)$ denotes the side length of Q_{j}. It then follows that

$$
\begin{aligned}
\int_{\mathbb{R}^{n} \backslash 2 Q_{j}}\left|T b_{j}(x)\right| d x & \leq C \lambda\left|Q_{j}\right|^{1+\frac{1}{n}} \int_{\mathbb{R}^{n} \backslash 2 Q_{j}} \frac{1}{\left|x-y^{j}\right|^{n+1}} d x \\
& \leq C \lambda\left|Q_{j}\right|^{1+\frac{1}{n}} \int_{|x|>C l\left(Q_{j}\right)} \frac{1}{|x|^{n+1}} d x \leq C \lambda\left|Q_{j}\right| .
\end{aligned}
$$

As a consequence, we have from Lemma 3.4 (5)

$$
\begin{aligned}
|A| & \leq \frac{2}{\lambda} \int_{A}|T b| \\
& \leq \frac{2}{\lambda} \sum_{j=1}^{\infty} \int_{\mathbb{R}^{n} \backslash\left(2 Q_{j}\right)}\left|T b_{j}(x)\right| \leq \frac{C}{\lambda} \lambda \sum_{j=1}^{\infty}\left|Q_{j}\right| \\
& \leq \frac{C}{\lambda}\|f\|_{1} .
\end{aligned}
$$

This proves the weak $(1,1)$ property of T.
The strong (p, p) property for $1<p<2$ follows from the Marcinkiewicz Interpolation Theorem.

If $2<p<\infty$, let T^{*} be the adjoint operator of T . Then T^{*} is also a CZO. Thus $\left\|T^{*} f\right\|_{q} \leq C_{q}\|f\|_{q}, 1<q<2$. By duality, we have boundedness of T on L^{p}. In fact,

$$
|(T f, g)|=\left|\left(f, T^{*} g\right)\right| \leq\|f\|_{p}\left\|T^{*} g\right\|_{q} \leq C_{q}\|f\|_{p}\|g\|_{q}
$$

where $\frac{1}{p}+\frac{1}{q}=1$. Hence

$$
\|T f\|_{p}=\sup _{g} \frac{|(T f, g)|}{\|g\|_{q}} \leq C_{q}\|f\|_{p}
$$

This completes the proof.
Define

$$
T_{*} f(x)=\sup _{\epsilon>0}\left|T_{\epsilon} f(x)\right|, \quad x \in \mathbb{R}^{n} .
$$

The following lemma is due to Cotlar.
Lemma 3.7 Suppose T is bounded on L^{2}. Then there is a constant $C>0$ such that for all $f \in C_{0}^{\infty}\left(\mathbb{R}^{n}\right)$

$$
\begin{equation*}
T_{*} f(x) \leq C(\mathcal{M} f(x)+\mathcal{M} T f(x)) \quad x \in \mathrm{R}^{n} \tag{3.3}
\end{equation*}
$$

where \mathcal{M} is the Hardy-Littlewood maximal function. As a consequence, we have

$$
\begin{equation*}
\left\|T_{*} f\right\|_{p} \leq C_{p}\|f\|_{p} \quad \forall f \in L^{p}, 1<p<\infty \tag{3.4}
\end{equation*}
$$

Proof. Suppose that $x=0$ without loss of generality. If $y \in B_{\epsilon / 2}(0)$, then

$$
\begin{aligned}
T_{\epsilon} f(y)-T_{\epsilon} f(0)= & \int_{|y-z|>\epsilon} k(y, z) f(z) d z-\int_{|z|>\epsilon} k(0, z) f(z) d z \\
= & \int_{|z|>\epsilon}[k(y, z)-k(0, z)] f(z) d z \\
& +\int_{B_{\epsilon}(0) \backslash B_{\epsilon}(y)} k(y, z) f(z) d z-\int_{B_{\epsilon}(y) \backslash B_{\epsilon}(0)} k(y, z) f(z) d z \\
:= & I_{1}+I_{2}+I_{3}
\end{aligned}
$$

For all $y \in B_{\epsilon / 2}(0)$ and $z \in\left(B_{\epsilon}(0) \backslash B_{\epsilon}(y)\right) \cup\left(B_{\epsilon}(y) \backslash B_{\epsilon}(0)\right),|y-z| \geq \frac{\epsilon}{2}$, and hence

$$
\left|I_{2}\right|+\left|I_{3}\right| \leq \frac{C}{\epsilon^{n}} \int_{B_{\epsilon}(0)}|f(z)| d z+\frac{C}{\epsilon^{n}} \int_{B_{2 \epsilon}(0)}|f(z)| d z \leq C \mathcal{M} f(0) .
$$

By mean value theorem, for $y \in B_{\epsilon / 2}(0)$ and $z \notin B_{\epsilon}(0)$,

$$
|k(y, z)-k(0, z)| \leq \frac{C|y|}{|z|^{n+1}} \leq \frac{C \epsilon}{|z|^{n+1}} .
$$

It then follows that

$$
\begin{aligned}
\left|I_{1}\right| & \leq C \epsilon \int_{|z|>\epsilon} \frac{|f(z)|}{|z|^{n+1}} d z \\
& =C \epsilon \sum_{j=0}^{\infty} \int_{2^{j} \epsilon_{\epsilon}<|z| \leq 2^{j+1} \epsilon} \frac{|f(z)|}{|z|^{n+1}} d z \leq C \mathcal{M} f(0)
\end{aligned}
$$

Thus we have for $y \in B_{\epsilon / 2}(0)$,

$$
\left|T_{\epsilon} f(0)\right| \leq\left|T_{\epsilon} f(y)\right|+\left|T_{\epsilon} f(y)-T_{\epsilon} f(0)\right| \leq\left|T_{\epsilon} f(y)\right|+C \mathcal{M} f(0)
$$

If $\left|T_{\epsilon} f(y)\right| \leq \frac{1}{2}\left|T_{\epsilon} f(0)\right|$ for some $y \in B_{\epsilon / 2}(0)$, (3.3) follows.
Suppose $\left|T_{\epsilon} f(y)\right|>\frac{1}{2}\left|T_{\epsilon} f(0)\right|$ for all $y \in B_{\epsilon / 2}(0)$. Let χ be the characteristic function of $B_{\epsilon}(0)$. Since $T_{\epsilon} f(y)=T f(y)-T(f \chi)(y)$, we have

$$
B_{\epsilon / 2}(0) \subset E_{1} \cup E_{2}
$$

where

$$
\begin{aligned}
& E_{1}=\left\{y \in B_{\epsilon / 2}(0):|T f(y)|>\frac{1}{4}\left|T_{\epsilon} f(0)\right|\right\} \\
& E_{2}=\left\{y \in B_{\epsilon / 2}(0):|T(f \chi)(y)|>\frac{1}{4}\left|T_{\epsilon} f(0)\right|\right\}
\end{aligned}
$$

One can easily get

$$
\frac{1}{4}\left|T_{\epsilon} f(0)\right|\left|E_{1}\right| \leq \int_{B_{\epsilon / 2}(0)}|T f(y)| d y
$$

Since T is of weak type $(1,1)$, we have

$$
\frac{1}{4}\left|T_{\epsilon} f(0)\right|\left|E_{2}\right| \leq C \int_{B_{\epsilon}(0)}|f(y)| d y
$$

Hence

$$
\begin{aligned}
\left|B_{\epsilon / 2}(0)\right| \frac{1}{4}\left|T_{\epsilon}(0)\right| & \leq \frac{1}{4}\left|T_{\epsilon}(0)\right|\left(\left|E_{1}\right|+\left|E_{2}\right|\right) \\
& \leq C\left(\int_{B_{\epsilon / 2}(0)}|T f(y)| d y+\int_{B_{\epsilon}(0)}|f(y)| d y\right) .
\end{aligned}
$$

It thus follows that

$$
T_{\epsilon} f(0) \leq C(\mathcal{M} T f(0)+\mathcal{M} f(0))
$$

for all $\epsilon>0$. This completes the proof.
As a consequence of (3.4) we can prove that the limit in (3.2) exists for all $f \in L^{p}, 1<p<\infty$.

Lemma 3.8 Let $f \in L^{p}, 1<p<\infty$. Then

$$
T f(x)=\lim _{\epsilon \rightarrow 0} \int_{|x-y|>\epsilon} k(x, y) f(y) d y, \quad \text { for a.e. } x \in \mathbb{R}^{n} .
$$

Proof. Let $\lambda>0$ and

$$
A:=\left\{x: \limsup _{\epsilon \rightarrow 0}\left|T_{\epsilon} f(x)-T f(x)\right|>\lambda\right\} .
$$

For a given $\delta>0$, choose $g \in C_{0}^{\infty}\left(\mathbb{R}^{n}\right)$ such that $\|f-g\|_{p} \leq \delta$. Then

$$
\limsup _{\epsilon \rightarrow 0}\left|T_{\epsilon} f(x)-T f(x)\right| \leq\left|T_{*}(f-g)(x)\right|+|T(f-g)(x)|,
$$

and hence

$$
A \subset\left\{\left|T_{*}(f-g)(x)\right|>\lambda / 2\right\} \cup\{|T(f-g)(x)|>\lambda / 2\} .
$$

It then follows from (3.4) that

$$
|A| \leq C\left(\frac{\delta}{\lambda}\right)^{p}
$$

Since δ is arbitrary, $|A|=0$. This completes the proof.

3.3 Convolution Operators

Theorem 3.6 says that for the L^{p}-boundedness of a SIO, the main question is L^{2}-boundedness. We list some conditions on the kernel which guarantee L^{2}-boundedness of the SIO of the convolution type $T f(x)=(k * f)(x)$. An essential property is "the cancellation property". Since for convolution operators one may apply Fourier transform and Plancherel identity, L^{2}-boundedness of those operators can be derived without much difficulty. Proofs of the following theorems can be found in [13].

Theorem 3.9 If $k(x)$ satisfies
(1) $|k(x)| \leq \frac{C}{|x|^{n}}$,
(2) $\int_{|x|>2|y|}|k(x-y)-k(x)| d x \leq C \quad$ for all $y \neq 0 \quad$ (Hörmander condition),
(3) $\int_{R_{1}<|x|<R_{2}} k(x) d x=0 \quad$ for all $0<R_{1}<R_{2}<\infty \quad$ (Cancellation),
then T is bounded on $L^{p}(1<p<\infty)$.

Theorem 3.10 Let $\Omega \in C^{1}\left(S^{n-1}\right)$ and $\int_{S^{n-1}} \Omega(x) d \sigma(x)=0$. Define $\Omega(x)=$ $\Omega\left(\frac{x}{|x|}\right)$ for $x \neq 0$. Then the operator T defined by

$$
T f(x)=p \cdot v \cdot \int_{\mathbb{R}^{n}} \frac{\Omega(y)}{|y|^{n}} f(x-y) d y
$$

is bounded on $L^{p}(1<p<\infty)$.
Here are two important convolution operator which fall in the case of Theorem 3.10.

- Hilbert transform.

$$
H f(x):=\frac{1}{\pi} \text { p.v. } \int_{\mathbb{R}^{1}} \frac{1}{y} f(x-y) d y
$$

- Riesz transform.

$$
R_{j}(x)=c_{n} \text { p.v. } \int_{\mathbb{R}^{n}} \frac{y_{j}}{|y|^{n+1}} f(x-y) d y
$$

Observe that the operator (2.12) is not a convolution type. The L^{2} boundedness of the non-convolution type SIO is a very hard question and this problem has been one of the central theme in the harmonic analysis and potential theory.

For the operators of type (2.12) there is a impressive result due to Coifman-McIntosh-Meyer [2]. The main purpose of this lecture note is to reproduce, with details, their proof. The method of CMM was further developed to produce the celebrated $T 1$-theorem by David-Journé [6]. If time permits, we will discuss about the $T 1$-theorem. But I don't think time would.

Chapter 4

Carleson Measures and BMO

4.1 Carleson Measure

The concept of Calreson measures came out in solving the follwing problem which was solved by Carleson.
Problem. Characterize those positive measures μ on $\mathbb{R}_{+}^{n+1}=\{(x, y) \in$ $\left.\mathbb{R}^{n} \times \mathbb{R}^{1}: y>0\right\}$ for which the following holds;

$$
\begin{equation*}
\iint_{\mathbb{R}_{+}^{n}}\left|P_{t} f(x)\right|^{2} d \mu(x, t) \leq C \int_{\mathbb{R}^{n}}|f(x)|^{2} d x \quad \forall f \in L^{2}\left(\mathbb{R}^{n}\right) \tag{4.1}
\end{equation*}
$$

where $P_{t} f$ is the Poisson extention of f in \mathbb{R}_{+}^{n+1}
A necessary condition can be easily found: Let Q be a cube in \mathbb{R}^{n} and $f=\chi_{2 Q}$. If $x \in Q$ and $t \leq l=l(Q)$, then since $B(x, l) \subset 2 Q$ we have

$$
\begin{aligned}
P_{t} f(x) & =c_{n} \int_{\mathbb{R}^{n}} \frac{t}{\left[|x-y|^{2}+t^{2}\right]^{\frac{n+1}{2}}} f(y) d y \\
& \geq c_{n} \int_{B(x, l)} \frac{t}{\left[|x-y|^{2}+t^{2}\right]^{\frac{n+1}{2}}} d y \\
& =C \int_{|y| \leq l} \frac{t}{\left[|y|^{2}+t^{2}\right]^{\frac{n+1}{2}}} d y \\
& =C \int_{|y| \leq l / t} \frac{1}{\left[|y|^{2}+1\right]^{\frac{n+1}{2}}} d y
\end{aligned}
$$

Since $t \leq l$, it follows that $P_{t} f(x) \geq C$ for some constant C. Therefore, if (4.1) holds, then

$$
\begin{aligned}
\mu(Q \times[0, l]) & \leq C \int_{Q \times[0, l]}\left|P_{t} f(x)\right|^{2} d \mu(x, t) \\
& \leq C \int_{\mathbb{R}^{n}}|f(x)|^{2} d x \\
& \leq C|Q|
\end{aligned}
$$

For each cube $Q \subset \mathbb{R}^{n}$, define the tent over Q by

$$
T(Q):=Q \times[0, l(Q)] \subset \mathbb{R}_{+}^{n+1}
$$

We have seen that if (4.1) holds, then $\mu(T(Q)) \leq C|Q|$.
Definition 4.1 A positive measure μ on \mathbb{R}_{+}^{n+1} is called a Carleson measure if there is a constant $C>0$ such that

$$
\mu(T(Q)) \leq C|Q| \quad \text { for every cube } Q \subset \mathbb{R}^{n} .
$$

If μ is a Carleson measure, the Carleson norm is defined to be

$$
\|\mu\|_{\mathcal{C}}:=\sup _{Q} \frac{\mu(T(Q))}{|Q|}
$$

For example, $d \mu(x, t)=\varphi(t) d x d t$ is a Carleson measure if and only if $\varphi \in L^{1}\left(\mathbb{R}_{+}\right)$. In particular, $\frac{1}{t} d x d t$ is not a Carleson measure

We will prove that being a Carleson measure is also sufficient for μ to satisfy (4.1).

Lemma 4.2 (Whitney decomposition Lemma) Let Ω be an open set in \mathbb{R}^{n} such that $\Omega^{c} \neq \emptyset$. Then $\Omega=\cup_{j=1}^{\infty} Q_{j}$ where
(1) $\mathcal{F}=\left\{Q_{j}\right\}$ is mutually non-overlapping dyadic cubes,
(2) There are constants C_{1} and C_{2} so that

$$
C_{1} l\left(Q_{j}\right) \leq \operatorname{dist}\left(Q_{j}, \Omega^{c}\right) \leq C_{2} l\left(Q_{j}\right) \text { for all } j .
$$

Proof. For each integer j, let $\Omega_{j}:=\left\{x \in \Omega: 2 \sqrt{n} 2^{-j}<\operatorname{dist}\left(x, \Omega^{c}\right) \leq\right.$ $\left.4 \sqrt{n} 2^{-j}\right\}, \mathcal{D}_{j}$ be the collection of all dyadic cubes with side length 2^{-j}, $\mathcal{F}_{j}:=\left\{Q_{j}: Q \cap \Omega_{j} \neq \emptyset\right\}$, and $\mathcal{F}^{\prime}=\cup_{j} \mathcal{F}_{j}$. Then $\cup_{Q \in \mathcal{F}^{\prime}}=\Omega$. If $Q \in \mathcal{F}^{\prime}$, then there is $x \in Q \cap \Omega_{j}$ where $Q \in \mathcal{D}_{j}$, and hence $\operatorname{dist}\left(x, \Omega^{c}\right) \geq 2 \sqrt{n} 2^{-j}$. It thus follows that

$$
\begin{aligned}
\operatorname{dist}\left(Q, \Omega^{c}\right) & \geq \operatorname{dist}\left(x, \Omega^{c}\right)-\sqrt{n} l(Q) \\
& \geq 2 \sqrt{n} 2^{-j}-\sqrt{n} l(Q) \geq \sqrt{n} l(Q) .
\end{aligned}
$$

And

$$
\operatorname{dist}\left(Q, \Omega^{c}\right) \leq \operatorname{dist}\left(x, \Omega^{c}\right)+\sqrt{n} l(Q) \leq 5 \sqrt{n} l(Q)
$$

Since \mathcal{F}^{\prime} consist of dyadic cubes, any two of members of \mathcal{F}^{\prime} are either mutually non-overlapping or one contains the other. So, for each $Q \in \mathcal{F}^{\prime}$
there exists $\tilde{Q} \in \mathcal{F}^{\prime}$ which is maximal with respect to the inclusion relation. In fact, if $Q, \tilde{Q} \in \mathcal{F}^{\prime}$ and $Q \subset \tilde{Q}$, then

$$
\begin{aligned}
l(\tilde{Q}) & \leq \frac{1}{C_{1}} \operatorname{dist}\left(\tilde{Q}, \Omega^{c}\right) \\
& \leq \frac{1}{C_{1}} \operatorname{dist}\left(Q, \Omega^{c}\right) \leq \frac{C_{2}}{C_{1}} l(Q)
\end{aligned}
$$

Let \mathcal{F} be the collection of all maximal elements of \mathcal{F}^{\prime}. This \mathcal{F} does the job.
For functions u defined on \mathbb{R}_{+}^{n+1}, define the non-tangential maximal function by

$$
\mathcal{N} u(x)=\sup _{(y, t) \in \Gamma(x)}|u(y, t)| \quad\left(x \in \mathbb{R}^{n}\right)
$$

where $\Gamma(x)$ is the cone defined by $\Gamma(x)=\{(y, t): t>|y-x|\}$.
Let us prove a useful lemma.

Lemma 4.3

$$
\begin{equation*}
\mathcal{N}\left(P_{t} f\right)(x) \leq C \mathcal{M} f(x), \quad x \in \mathbb{R}^{n} \tag{4.2}
\end{equation*}
$$

Proof. Put

$$
\begin{aligned}
P_{t} f(y) & =c_{n} \int_{\mathbb{R}^{n}} \frac{t}{\left[|y-z|^{2}+t^{2}\right]^{\frac{n+1}{2}}} f(z) d z \\
& =c_{n}\left(\int_{|z-y| \leq t}+\sum_{j=1}^{\infty} \int_{2^{j-1} t<|z-y| \leq 2^{j} t}\right) \\
& :=c_{n}\left(I_{0}+\sum_{j=1}^{\infty} I_{j}\right) .
\end{aligned}
$$

If $(y, t) \in \Gamma(x)$ and $|z-y| \leq t$, then $|x-z| \leq 2 t$, and hence

$$
\left|I_{0}\right| \leq \frac{1}{t^{n}} \int_{|z-y| \leq 2 t}|f(z)| d z \leq C \mathcal{M} f(x)
$$

If $(y, t) \in \Gamma(x)$ and $2^{j-1} t<|z-y| \leq 2^{j} t$, then $|z-x| \leq 2^{j+1} t$, and hence

$$
\left|I_{j}\right| \leq \frac{1}{2^{j-1}} \frac{1}{\left(2^{j-1} t\right)^{n}} \int_{|z-y| \leq 2^{j+1} t}|f(z)| d z \leq \frac{C}{2^{j-1}} \mathcal{M} f(x),
$$

for each j. This completes the proof.
Theorem 4.4 If μ is a Carleson measure and u is continuous in \mathbb{R}_{+}^{n+1}. Then

$$
\begin{equation*}
\mu(\{(x, t):|u(x, t)|>\lambda\}) \leq C|\{x: \mathcal{N} u(x)>\lambda\}| . \tag{4.3}
\end{equation*}
$$

Proof. For $\lambda>0$, let $G_{\lambda}:=\{x:|\mathcal{N} u(x)|>\lambda\}$. Since u is continuous, G_{λ} is open. We may assume $G_{\lambda} \neq \mathbb{R}^{n}$ since otherwise there is nothing to prove. Let $\left\{Q_{j}\right\}$ be the cubes in the Whitney decomposition lemma for G_{λ}. Suppose $|u(x, t)|>\lambda$. Then $x \in G_{\lambda}$ and hence $x \in Q_{j}$ for some j. Thus there exists $y_{j} \in G_{\lambda}^{c}$ such that

$$
C_{1} l\left(Q_{j}\right) \leq \operatorname{dist}\left(y_{j}, Q_{j}\right) \leq C_{2} l\left(Q_{j}\right)
$$

and hence

$$
C_{1} l\left(Q_{j}\right) \leq\left|y_{j}-x\right| \leq C_{3} l\left(Q_{j}\right) .
$$

Since $y_{j} \notin G_{\lambda},(x, t) \notin \Gamma\left(y_{j}\right)$. Thus

$$
t<\left|x-y_{j}\right| \leq C_{3} l\left(Q_{j}\right)
$$

Therefore, $(x, t) \in Q_{j} \times\left[0, C_{3} l\left(Q_{j}\right)\right]$. Since μ is a Carleson measure, it follows that

$$
\begin{aligned}
\mu(\{(x, t):|u(x, t)|>\lambda\}) & \leq \mu\left(\bigcup_{j} Q_{j} \times\left[0, C_{3} l\left(Q_{j}\right)\right]\right) \\
& \leq \sum_{j} \mu\left(Q_{j} \times\left[0, C_{3} l\left(Q_{j}\right)\right]\right) \\
& \leq C \sum_{j}\left|Q_{j}\right|=C\left|G_{\lambda}\right| .
\end{aligned}
$$

This completes the proof.
Finally, we are ready to prove
Theorem 4.5μ is a Calreson measure if and only if (4.1) holds.
Proof. Recall that

$$
\int_{X}|u(x)|^{p} d \mu=p \int_{0}^{\infty} \lambda^{p-1} \mu(\{x \in X:|u(x)|>\lambda\}) d \lambda,
$$

for any positive measure on a measurable space X if $1 \leq p<\infty$. So it follows from (4.2) and (4.3) that

$$
\begin{aligned}
\iint_{\mathbb{R}_{+}^{n+1}}\left|P_{t} f(x)\right|^{p} d \mu(x, t) & =p \int_{0}^{\infty} \lambda^{p-1} \mu\left(\left\{(x, t):\left|P_{t} f(x)\right|>\lambda\right\}\right) d \lambda \\
& \leq C p \int_{0}^{\infty} \lambda^{p-1}\left|\left\{\mathcal{N}\left(P_{t} f\right)(x)>\lambda\right\}\right| d \lambda \\
& \leq C p \int_{0}^{\infty} \lambda^{p-1} \mid\{(M f>\lambda\} \mid d \lambda \\
& =C\|\mathcal{M} f\|_{p}^{p} \leq C p\|f\|_{p}^{p} .
\end{aligned}
$$

This completes the proof.

4.2 Bounded Mean Oscillation

Definition 4.6 A function $f \in L_{\text {loc }}^{1}\left(\mathbb{R}^{n}\right)$ is called a function of bounded mean oscillation (BMO) if

$$
\|f\|_{*}=\sup _{Q} f_{Q}\left|f(x)-f_{Q}\right| d x<\infty .
$$

If this is the case, $\|f\|_{*}$ is called the BMO-norm of f.
Remark Let us observe a few facts on BMO functions.

1. It is easy to see that f is constant if and only if $\|f\|_{*}=0$. If we define an equivalence relation \sim by

$$
f \sim g \Longleftrightarrow f-g=\text { constant a.e, }
$$

then $B M O / \sim$ is a Banach space.
2. If $\alpha \in \mathbb{C}$, then

$$
f_{Q}\left|f-f_{Q}\right| \leq f_{Q}|f-\alpha|+f_{Q}\left|\alpha-f_{Q}\right| \leq 2 f_{Q}|f-\alpha|
$$

Thus we have

$$
\frac{1}{2} f_{Q}\left|f-f_{Q}\right| \leq \inf _{\alpha} f_{Q}|f-\alpha| \leq f_{Q}\left|f-f_{Q}\right| .
$$

Therefore

$$
\|f\|_{*}^{\prime}:=\sup _{Q} \inf _{\alpha \in \mathbb{C}} f_{Q}|f-\alpha|
$$

defines an equivalent norm for BMO.
3. $L^{\infty} \subset B M O$. In fact, $\|f\|_{*} \leq 2\|f\|_{\infty}$.
4. $\log |x| \in \operatorname{BMO}\left(\mathbb{R}^{n}\right)$. We give a proof for the case $n=1$. Let $Q=[a, b]$ and assume that $-b<a<b, b>0$. (The other case can be treated in similar ways.)

$$
\begin{aligned}
\frac{1}{|Q|} \int_{Q}|f-f(b)| d x & =\frac{1}{b-a} \int_{a}^{b}|\log | x|-\log b| d x \\
& =-\frac{1}{b-a} \int_{a}^{b} \log \frac{|x|}{b} d x \\
& =-\frac{b}{b-a} \int_{\frac{a}{b}}^{1} \log |y| d y
\end{aligned}
$$

If $\frac{a}{b}>\frac{1}{2}$, then $\log |y|$ is bounded and hence

$$
I \leq C \frac{b}{b-a} \int_{\frac{a}{b}}^{1} d x \leq C
$$

If $\frac{a}{b} \leq \frac{1}{2}$, then $\frac{b}{b-a} \leq 2$ and hence

$$
I \leq 2 \int_{-1}^{1} \log |y| d x \leq C
$$

5. signx $\cdot \log |x| \notin B M O\left(\mathbb{R}^{1}\right)$. In general, $|f| \in B M O$ does not imply $f \in B M O$. Being a BMO function is not simply a size condition.

Theorem 4.7 (John-Nirenberg inequality) There are constants $C_{1}, C_{2}>$ 0 such that for all $f \in B M O$, cube $Q, \lambda>0$,

$$
\begin{equation*}
\left|\left\{x \in Q:\left|f(x)-f_{Q}\right|>\lambda\right\}\right| \leq C_{1}|Q| \exp \left(-\frac{C_{2}}{\|f\|_{*}} \lambda\right) \tag{4.4}
\end{equation*}
$$

Proof. Fix a cube Q. By considering $g=C\left(f-f_{Q}\right) \chi_{Q}$ if necessary, we may assume $f_{Q}=0$ and $\|f\|_{*}=1$. Here"dyadic" means dyadic with respect to Q. Apply CZ-decomposition with $\alpha=2$ to obtain mutually non-overlapping dyadic cubes $\left\{Q_{j}^{1}\right\}$ such that
(1) $|f(x)| \leq 2$ a.e. on $E_{1}:=Q \backslash \bigcup_{j} Q_{j}^{1}$,
(2) $2<f_{Q_{j}^{1}}|f| \leq 2^{n+1}$ for all j,
(3) $\sum_{j}\left|Q_{j}^{1}\right| \leq \frac{1}{2} \int_{Q}|f|=\frac{1}{2} \int_{Q}\left|f-f_{Q}\right| \leq \frac{1}{2}\|f\|_{*}|Q|=\frac{1}{2}|Q|$.

To each $\left(f-f_{Q_{j}^{1}}\right) \chi_{Q_{j}^{1}}$ apply CZ-decomposition with $\alpha=2$ to obtain mutually non-overlapping dyadic cubes $\left\{Q_{j}^{2}\right\}$ such that
$\left(^{\prime}\right)\left|f-f_{Q^{1}{ }_{j}}\right| \leq 2$ a.e. on $E_{2}:=\bigcup_{j} Q_{j}^{1} \backslash \bigcup_{k} Q_{k}^{2}$,
(2') $2<f_{Q_{k}^{2}}\left|f-f_{Q_{j}^{1}}\right| \leq 2^{n+1}$ for all j, k such that $Q_{k}^{2} \subset Q_{j}^{1}$,
(3') $\sum_{k}\left|Q_{k}^{2}\right|=\sum_{j} \sum_{Q_{k}^{2} \subset Q_{k}^{1}}\left|Q_{k}^{2}\right| \leq \frac{1}{2} \sum_{j} \int_{Q_{j}^{1}}\left|f-f_{Q_{j}^{1}}\right|$
$\leq \frac{1}{2} \sum_{j}\left|Q_{j}^{1}\right|=\frac{1}{2^{2}}|Q|$.

Note that for almost all $x \in E_{2}$,

$$
|f(x)| \leq\left|f(x)-f_{Q_{j}^{1}}\right|+\left|f_{Q_{j}^{1}}\right| \leq\left(2^{n}+1\right) \cdot 2 .
$$

Repeat this process to obtain E_{k} and $\left\{Q_{j}^{k}\right\}(k=1,2, \cdots)$ so that for almost all $x \in E_{k}$,

$$
\begin{aligned}
|f(x)| & \leq\left|f(x)-f_{Q_{j}^{k-1}}\right|+\left|f_{Q_{j}^{k-1}}-f_{Q_{j}^{k-2}}\right|+\cdots+\left|f_{Q_{j}^{1}}\right| \\
& \leq 2+f_{Q_{j}^{k-1}}\left|f-f_{Q_{j}^{k-2}}\right|+\cdots+\left|f_{Q_{j}^{1}}\right| \\
& \leq 2+(k-1) 2^{n+1}=\left(1+(k-1) 2^{n}\right) \cdot 2 .
\end{aligned}
$$

We also have

$$
\begin{aligned}
\left|Q \backslash \bigcup_{l=1}^{k} E_{l}\right| & =\left|\bigcap_{l=1}^{k}\left(Q \backslash E_{l}\right)\right| \leq\left|\bigcup_{j} Q_{j}^{k}\right| \\
& \leq \sum_{j}\left|Q_{j}^{k}\right| \leq 2^{-k}|Q| \quad \forall k
\end{aligned}
$$

Let $\lambda>0$ be a number. If $\lambda<4$, there is nothing to prove. Suppose $\lambda \geq 4$ and choose k so that

$$
2\left((k-1) 2^{n}+1\right) \leq \lambda<\left(k \cdot 2^{n}+1\right) .
$$

Then

$$
\begin{aligned}
|\{x \in Q:|f(x)|>\lambda\}| & \leq\left|\left\{x \in Q:|f(x)|>2\left((k-1) 2^{n}+1\right)\right\}\right| \\
& \leq\left|Q \backslash \bigcup_{l=1}^{k} E_{l}\right| \\
& \leq 2^{-k}|Q| \leq e^{-c_{2} \lambda}|Q| .
\end{aligned}
$$

This completes the proof.
The following is the original version of John-Nirenberg inequality.
Corollary 4.8 There exist constants $C, \alpha>0$ such that for all cube Q and $f \in B M O$,

$$
\begin{equation*}
f_{Q} \exp \left(\frac{\alpha}{\|f\|_{*}}\left|f(x)-f_{Q}\right|\right) d x \leq C \tag{4.5}
\end{equation*}
$$

Proof. Fix Q and for $\lambda>0$ let

$$
\begin{aligned}
E_{\lambda} & :=\left\{x \in Q:\left|f(x)-f_{Q}\right|>\lambda\right\} \\
& =\left\{x \in Q: \exp \left(\frac{\alpha\left|f(x)-f_{Q}\right|}{\|f\|_{*}}\right)>\exp \left(\frac{\alpha \lambda}{\|f\|_{*}}\right)\right\} .
\end{aligned}
$$

Let $\eta=\exp \left(\frac{\alpha \lambda}{\|f\|_{*}}\right)$. Then it follows from (4.4) that

$$
\begin{aligned}
& f_{Q} \exp \left(\frac{\alpha}{\|f\|_{*}}\left|f(x)-f_{Q}\right|\right) d x=\frac{1}{|Q|} \int_{0}^{\infty}\left|E_{\lambda}\right| d \eta \\
& \quad \leq \frac{1}{|Q|} \int_{0}^{\infty} C_{1}|Q| \exp \left(\frac{-C_{2} \lambda}{\|f\|_{*}}\right) \exp \left(\frac{\alpha \lambda}{\|f\|_{*}}\right) \frac{\alpha}{\|f\|_{*}} d \lambda \\
& \quad<C
\end{aligned}
$$

if $\alpha<C_{2}$. This completes the proof.

Corollary 4.9 For $1 \leq p<\infty$, let

$$
\|f\|_{p, *}=\sup \left(f_{Q}\left|f-f_{Q}\right|^{p}\right)^{\frac{1}{p}}
$$

Then $\|f\|_{p, *} \approx\|f\|_{*}$.

Proof. It follows from Jensen's inequality that

$$
\|f\|_{*} \leq\|f\|_{p, *} .
$$

If $\|f\|_{*}=1$, then

$$
f_{Q}\left|f-f_{Q}\right|^{p} \leq C(p, \alpha) f_{Q} e^{\alpha\left|f-f_{Q}\right|} d x \leq C_{p}
$$

Hence $\|f\|_{p, *} \leq C_{p}$, and the proof is complete.

4.3 BMO and Carleson Measures

Let $\psi \in C^{\infty}\left(\mathbb{R}^{n}\right)$ be such that

$$
\left\{\begin{array}{l}
|\psi(x)|+|\nabla \psi(x)| \leq C(1+|x|)^{-n-1} \tag{4.6}\\
\int_{\mathbb{R}^{n}} \psi(x) d x=0
\end{array}\right.
$$

For $t>0$, define

$$
\psi_{t}(x)=t^{-n} \psi\left(t^{-1} x\right)
$$

and

$$
Q_{t} f(x)=\left(f * \psi_{t}\right)(x) .
$$

We are going to prove

Theorem 4.10 If $f \in B M O$, then

$$
d \mu(x, t)=\frac{\left|Q_{t} f(x)\right|^{2}}{t} d x d t
$$

is a Carleson measure and the Carleson norm

$$
C_{\mu} \leq C\|f\|_{*}^{2} .
$$

Notice that since $\frac{d x d t}{t}$ is not a Carleson measure, the estimate $\left|Q_{t} f(x)\right| \leq$ $C\|f\|_{*}$ is not enough to prove Theorem 4.10.

For example, let

$$
\phi(x):=P_{1}(x)=c_{n} \frac{1}{\left(1+|x|^{2}\right)^{\frac{n+1}{2}}},
$$

the Poisson kernel. Then $P_{t}(x)=\phi_{t}(x)$ and hence the Poisson extension is given by

$$
P_{t} f(x)=\left(f * \phi_{t}\right)(x) .
$$

Let

$$
\psi(x):=\nabla \phi(x)=\left(\psi^{1}(x), \ldots, \psi^{n}(x)\right) .
$$

Then each ψ^{j} satisfies the condition (4.6). Let

$$
Q_{t}^{j} f(x)=\left(f * \psi_{t}^{j}\right)(x), \quad j=1, \cdots, n .
$$

It follows from Theorem 4.10 that if $f \in B M O$, then $\left|Q_{t}^{j} f(x)\right|^{2} \frac{d x d t}{t}$ is a Carleson measure. Note that

$$
\nabla_{x} \phi_{t}(x)=t^{-1} \psi_{t}(x)
$$

and hence

$$
\left|\nabla_{x} P_{t} f(x)\right|^{2}=\left|\nabla_{x} \phi_{t} * f(x)\right|^{2}=\frac{1}{t^{2}} \sum_{j=1}^{n}\left|Q_{t}^{j} f(x)\right|^{2} .
$$

So we have the following Theorem from Theorem 4.10.
Theorem 4.11 If $f \in B M O$, then $t\left|\nabla_{x} P_{t} f(x)\right|^{2} d x d t$ is a Carleson measure and its Carleson norm is less than $C\|f\|_{*}^{2}$.

In order to prove Theorem 4.10, we need the following Lemmas
Lemma 4.12 If $\psi \in C^{\infty}\left(\mathbb{R}^{n}\right)$ satisfies (4.6), then there exists a constant C depending only on the constants in (4.6) such that

$$
\begin{equation*}
|\hat{\psi}(\xi)| \leq C \frac{|\xi|^{\frac{1}{n+2}}}{1+|\xi|} \tag{4.7}
\end{equation*}
$$

Proof. If $|\xi| \leq 1$, then

$$
\begin{aligned}
|\hat{\psi}(\xi)| & =\left|\int_{\mathbb{R}^{n}} \psi(x) e^{-2 \pi i x \cdot \xi} d x\right| \\
& =\left|\int_{\mathbb{R}^{n}} \psi(x)\left[e^{-2 \pi i x \cdot \xi}-1\right] d x\right| \\
& \leq C \int_{\mathbb{R}^{n}}|\psi(x)| \min (|x||\xi|, 1) d x \\
& =C\left[\int_{|x|<\delta}+\int_{|x| \geq \delta}\right] \\
& :=I_{1}+I_{2} .
\end{aligned}
$$

Here $\delta>0$ is to be chosen later. We have

$$
\begin{aligned}
I_{1} & \leq \int_{|x|<\delta}|\psi(x)||x||\xi| d x \\
& \leq C|\xi| \int_{|x|<\delta} \frac{|x|}{(1+|x|)^{n+1}} d x \\
& \leq C \delta^{n+1}|\xi|
\end{aligned}
$$

On the other hand, we get

$$
I_{2} \leq \int_{|x| \geq \delta}|\psi(x)| d x \leq C \int_{|x| \geq \delta}|x|^{-n-1} d x \leq C \delta^{-1}
$$

Choose $\delta=|\xi|^{-\frac{1}{n+2}}$ to obtain (4.7) for $|\xi| \leq 1$.
If $|\xi|>1$, assume without loss of generality that $\left|\xi_{1}\right| \geq \frac{1}{\sqrt{n}}|\xi|$. Write $x=\left(x_{1}, x^{\prime}\right)=\left(x_{1}, x_{2}, \ldots, x_{n}\right)$. Then

$$
\begin{aligned}
\hat{\psi}(\xi) & =\int_{\mathbb{R}^{n}} \psi(x) e^{-2 \pi i x \cdot \xi} d x \\
& =\int_{x^{\prime} \in \mathbb{R}^{n-1}}\left[\int_{-\infty}^{\infty} \psi(x) e^{-2 \pi i x_{1} \cdot \xi_{1}} d x_{1}\right] e^{-2 \pi i x^{\prime} \cdot \xi^{\prime}} d x^{\prime}
\end{aligned}
$$

Integration by parts yields

$$
\begin{aligned}
\int_{-\infty}^{\infty} \psi(x) e^{-2 \pi i x_{1} \xi_{1}} d x_{1} & =\int_{-\infty}^{\infty} \frac{-1}{2 \pi i \xi_{1}} \frac{\partial}{\partial x_{1}} e^{-2 \pi i x_{1} \cdot \xi_{1}} \psi(x) d x_{1} \\
& =\int_{-\infty}^{\infty} \frac{1}{2 \pi i \xi_{1}} \frac{\partial}{\partial x_{1}} \psi(x) e^{-2 \pi i x_{1} \cdot \xi_{1}} d x_{1}
\end{aligned}
$$

Thus we get

$$
|\hat{\psi}(\xi)| \leq \frac{C}{\left|\xi_{1}\right|} \int_{\mathbb{R}^{n}}|\nabla \psi(x)| d x \leq \frac{C}{|\xi|}
$$

This completes the proof.

Corollary 4.13 There is $C>0$ independent of ξ such that

$$
\int_{0}^{\infty}|\hat{\psi}(t \xi)|^{2} \frac{d t}{t} \leq C
$$

Proof. Let $s=t|\xi|$. Then

$$
\begin{aligned}
\int_{0}^{\infty}|\hat{\psi}(t \xi)|^{2} \frac{d t}{t} & =\int_{0}^{\infty}\left|\hat{\psi}\left(s \frac{\xi}{|\xi|}\right)\right|^{2} \frac{d s}{s} \\
& \leq C\left(\int_{0}^{1} s^{\frac{2}{n+2}} \frac{d s}{s}+\int_{1}^{\infty} \frac{1}{s^{2}} d x\right) \leq C
\end{aligned}
$$

This completes the proof.
Lemma 4.14 If ψ satisfies (4.6), then there is C depending only on the constants in (4.6) such that

$$
\int_{0}^{\infty} \int_{\mathbb{R}^{n}}\left|Q_{t} f(x)\right|^{2} \frac{d x d t}{t} \leq C \int_{\mathbb{R}^{n}}|f(x)|^{2} d x \quad \forall f \in L^{2}\left(\mathbb{R}^{n}\right)
$$

Proof. Since $\widehat{\psi}_{t}(\xi)=\hat{\psi}(t \xi), \widehat{Q_{t} f}(\xi)=\hat{\psi}(t \xi) \hat{f}(\xi)$. Thus

$$
\begin{aligned}
\int_{0}^{\infty} \int_{\mathbb{R}^{n}}\left|Q_{t} f(x)\right|^{2} \frac{d x d t}{t} & =\int_{0}^{\infty} \int_{\mathbb{R}^{n}}|\hat{\psi}(t \xi)|^{2}|\hat{f}(\xi)|^{2} d \xi \frac{d t}{t} \\
& \leq C \int_{\mathbb{R}^{n}}|f(x)|^{2} d x
\end{aligned}
$$

This completes the proof.
Lemma 4.15 There is $C>0$ such that for $f \in B M O$ and cube Q with the center at 0 ,

$$
\int_{(2 Q)^{c}} \frac{\left|f(y)-f_{2 Q}\right|}{|y|^{n+1}} d y \leq C \frac{1}{l(Q)}\|f\|_{*} .
$$

Proof. On $2^{k+1} Q \backslash 2^{k} Q,|y| \approx 2^{k} l(Q)$. Therefore

$$
\begin{aligned}
\int_{(2 Q)^{c}} \frac{\left|f(y)-f_{2 Q}\right|}{|y|^{n+1}} d y & =\sum_{k=1}^{\infty} \int_{2^{k+1} Q \backslash 2^{k} Q} \frac{\left|f(y)-f_{2 Q}\right|}{|y|^{n+1}} d y \\
& \leq C \sum_{k=1}^{\infty} \frac{1}{\left(2^{k} l(Q)\right)^{n+1}} \int_{2^{k+1} Q}\left|f(y)-f_{2 Q}\right| d y
\end{aligned}
$$

The triangular inequality yields

$$
\begin{aligned}
& \int_{2^{k+1} Q}\left|f(y)-f_{2 Q}\right| d y \\
& \quad \leq \int_{2^{k+1} Q}\left|f(y)-f_{2^{k+1} Q}\right|+\sum_{j=1}^{k} \int_{2^{k+1} Q}\left|f_{2^{j+1} Q}-f_{2^{j} Q}\right| \\
& \quad \leq||f||_{*}\left|2^{k+1} Q\right|+\left|2^{k+1} Q\right| \sum_{j=1}^{k}\left|f_{2^{j+1} Q}-f_{2^{j} Q}\right| .
\end{aligned}
$$

However,

$$
\left|f_{2^{j+1} Q}-f_{2^{j} Q}\right| \leq f_{2^{j} Q}\left|f(y)-f_{2^{j+1} Q}\right| \leq C| | f \|_{*},
$$

and hence

$$
\int_{2^{k+1} Q}\left|f(y)-f_{2 Q}\right| d y \leq C\left|2^{k+1} Q\right|\|f\|_{*}(1+k) .
$$

It thus follow that

$$
\int_{(2 Q)^{c}} \frac{\left|f(y)-f_{2 Q}\right|}{|y|^{n+1}} d y \leq C \sum_{k=1}^{\infty} \frac{1+k}{2^{k}} \cdot \frac{1}{l(Q)}\|f\|_{*} \leq \frac{C}{l(Q)}\|f\|_{*} .
$$

This completes the proof.
Proof of Theorem 4.10. Let Q be a cube and assume $Q=Q_{r}(0)$ without loss of generality. Let $f \in B M O$. Since $\int_{\mathbb{R}^{n}} \psi_{t}(x) d x=0$,

$$
Q_{t} f(x)=Q_{t}\left(f-f_{2 Q}\right)(x)
$$

Let $f_{1}=\left(f-f_{2 Q}\right) \chi_{2 Q}$ and $f_{2}=\left(f-f_{2 Q}\right) \chi_{(2 Q)}$. Then $Q_{t} f=Q_{t} f_{1}+Q_{t} f_{2}$. Thus

$$
\begin{aligned}
d \mu & =\left|Q_{t} f(x)\right|^{2} \frac{d x d t}{t} \leq 2\left(\left|Q_{t} f_{1}(x)\right|^{2} \frac{d x d t}{t}+\left|Q_{t} f_{2}(x)\right|^{2} \frac{d x d t}{t}\right) \\
& :=2\left(d \mu_{1}+d \mu_{2}\right) .
\end{aligned}
$$

By Lemma 4.14, we have

$$
\begin{aligned}
\mu_{1}(Q \times[0, r]) & \leq \int_{0}^{\infty} \int_{\mathbb{R}^{n}}\left|Q_{t} f_{1}(x)\right|^{2} \frac{d x d t}{t} \\
& \leq C \int_{\mathbb{R}^{n}}\left|f_{1}(x)\right|^{2} d x \\
& =C \int_{2 Q}\left|f(x)-f_{2 Q}\right|^{2} d x \\
& \leq C \|\left. f\right|_{*} ^{2}|Q| .
\end{aligned}
$$

For $d \mu_{2}$, we first observe that

$$
\begin{aligned}
\left|Q_{t} f_{2}(x)\right| & =\left|\int_{(2 Q)^{c}} t^{-n} \psi\left(t^{-1}(x-y)\right)\left(f(y)-f_{2 Q}\right) d y\right| \\
& \leq C \int_{(2 Q)^{c}} t^{-n} \cdot \frac{1}{\left(1+\frac{|x-y|}{t}\right)^{n+1}}\left|f(y)-f_{2 Q}\right| d y \\
& \leq C t \int_{(2 Q)^{c}} \frac{1}{|x-y|^{n+1}}\left|f(y)-f_{2 Q}\right| d y
\end{aligned}
$$

If $x \in Q$ and $0 \leq t \leq r=l(Q)$, and $y \in(2 Q)^{c}$, then $|x-y| \approx|y|$. Therefore,

$$
\left|Q_{t} f_{2}(x)\right| \leq C t \int_{(2 Q)^{c}} \frac{\left|f(y)-f_{2 Q}\right|}{|y|^{n+1}} d y
$$

It then follows from Lemma 4.15 that

$$
\begin{aligned}
\mu_{2}(Q \times[0, r]) & =\int_{0}^{r} \int_{Q}\left|Q_{t} f_{2}(x)\right|^{2} \frac{d x d t}{t} \\
& \leq C \int_{0}^{r} \int_{Q} t^{2} \frac{1}{r^{2}}| | f \|_{*}^{2} \frac{d x d t}{t} \\
& =C| | f \|_{*}^{2}|Q|
\end{aligned}
$$

This completes the proof.

Bibliography

[1] M. Christ, Lectures on Singular Integral Operators. CBMS Series 77, Amer. Math. Soc. 1990.
[2] R. R. Coifman, A.McIntosh, Y. Meyer, L'intégrale de Cauchy definit un opérateur bournée sur L^{2} pour courbes lipschitziennes, Ann. of Math., 116 (1982), 361-387.
[3] R. R. Coifman and Y. Meyer, Au dela des operateurs pseudodifferentiels. Asterisque 57, 1978.
[4] B. Dahlberg, Estimates of harmonic measure, Arch. Rat. Mech. Anal. 65 (1977), pp278-288.
[5] B. Dahlberg and C. Kenig, Harmonic Analysis and Partial Differential Equations.
[6] G. David and J.-L. Journé, A boundedness criterion for generalized Calderón-Zygmund operators, Ann. of Math., 120 (1984), 371-397.
[7] L. Escauriaza, E.B. Fabes, and G. Verchota, On a regularity theorem for Weak Solutions to Transmission Problems with Internal Lipschitz boundaries, Proc. of Amer. Math. Soc., 115 (1992), pp 1069-1076.
[8] E.B. Fabes, M. Jodeit, and N.M. Riviére, Potential techniques for boundary value problems on C^{1} domains, Acta Math., 141 (1978), pp 165-186.
[9] G.B. Folland. Introduction to partial differential equations. Princeton University Press, Princeton, New Jersey, 1976.
[10] D. Gilbarg and N.S. Trudinger, Elliptic Partial Differential Equations of Second Order, Springer-Verlag, 1983.
[11] J.-L. Journé, Calderón-Zygmund Operators, Pseudo-Differential Operators and the Cauchy Integral of Calderón. Lecture Notes in Math. 994, Springer-Verlag, 1983.
[12] C. Kenig, Harmonic Analysis techniques for second order elliptic boundary value problems. CBMS Series 83, Amer. Math. Soc. 1994.
[13] E. Stein, Singular Integrals and Differentiability Properties of Functions. Princeton Univ. Press, Princeton, New Jersey, 1970.
[14] E. Stein, Harmonic Analysis: Real-Variable Methods, Orthogonality, and Oscillatory Integrals. Princeton Math. Series 43, Princeton Univ. Press, Princeton, New Jersey, 1993.
[15] E. Stein and G. Weiss, Introduction to Fourier Analysis on Euclidean Spaces. Princeton Univ. Press, Princeton, New Jersey, 1971.
[16] G.C. Verchota, Layer potentials and boundary value problems for Laplace's equation in Lipschitz domains. J. of Functional Analysis, 59 (1984), 572-611.

