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Chapter 1

Introduction

In the first part of this lecture we study the layer potential methods to solve
the classical Dirichlet and Neumann problems developed in last 30 years.

Let Ω ⊂ Rn (n ≥ 2) be a bounded Lipschitz domain with a connected
boundary. A domain is called a Lipschitz domain if its boundary is locally
given by a Lipschitz curve. We consider the classical boundary value prob-
lems, Dirichlet and Neumann problems:

DP [f ] :
{

∆u = 0 in Ω,
u = f on ∂Ω,

and

NP [g] :





∆u = 0 in Ω,

∂u

∂ν
= g on ∂Ω,

∫

∂Ω
u = 0.

Lax-Milgram Theorem guarantee the existence of unique solutions u ∈
H1(Ω) for the Dirichlet problem DP [f ] with data f ∈ H1/2(∂Ω) and the
Neumann problem NP [g] with data g ∈ H−1/2(∂Ω), respectively.

To find the explicit solution of the boundary value problems, we will
write down the solution in integral forms. To this end, it is necessary to
introduce the fundamental solution of the Laplace’s equation: for x ∈ Rd,
x 6= 0,

Γ(x) :=





1
2π

log |x| d = 2,

1
(2− d)ωd

|x|2−d d ≥ 3
(1.1)

where ωd is the surface area of the d − 1 dimensional unit sphere. Then
−∆Γ(x) = δ(x) in the distributional sense where δ is the Dirac delta func-
tion. The double layer potential and the single layer potential with density
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g on Ω is defined to be:

SΩg(x) :=
∫

∂Ω
Γ(x− y)g(y)dσy, x ∈ Rn, (1.2)

DΩg(x) :=
∫

∂Ω
〈νy,∇yΓ(x− y)〉f(y)dσy, x ∈ Rn \ ∂Ω (1.3)

where νy is the outer unit normal vector to ∂Ω at y ∈ ∂Ω. By the property
of the fundamental solution Γ,

DΩf and Sg are harmonic in Rn \ ∂Ω.

Therefore to solve DP [f ] it suffices to solve the following integral equation

Find φ ∈ L2(∂Ω) so that DΩφ|∂Ω = f on ∂Ω. (1.4)

This simple question involves a great deal of hard analysis and it is the
purpose of this note to explain the theory to solve (1.4).



Chapter 2

Boundary Value Problem on
C2-Domain

2.1 Layer Potentials on C2-domain.

Let Ω be a C2-domain. The main advantage of the C2 case over the Lipschitz
case in dealing with Dirichlet or Neumann problems is the following fact; If
Ω is a C2-domain, then

〈x− y, νy〉 = O(|x− y|2) ∀x, y ∈ ∂Ω, (2.1)

and hence ∣∣∣∣
∂

∂νy
Γ(x, y)

∣∣∣∣ +
∣∣∣∣

∂

∂νx
Γ(x, y)

∣∣∣∣ ≤
C

|x− y|d−2
. (2.2)

Since ∂Ω is a manifold of dimension d− 1, it thus follows that
∫

∂Ω

∣∣∣∣
∂

∂νy
Γ(x, y)

∣∣∣∣ dσ(y) ≤ C (2.3)

independently of x ∈ ∂Ω. This makes the theory for C2-domains much
easier than that for C1 or Lipschitz domains. You may notice that if the
given domain has C1,α boundary for some α > 0, then (2.2) holds with the
power d − 2 in the denominator of RHS replaced with d − 1 + α. So what
will be said in this chapter is true even if the domain is C1,α. But we will
continue to assume that the domain is C2 for simplicity.

To see (2.1), we may assume, after rotation and translation if necessary,
that y = 0 and near 0 (x′, xd) ∈ Ω is given by xd > ϕ(x′), where ϕ is a
defining function for Ω near 0 such that ϕ(0) = 0 and ∇ϕ(0) = 0. Then
ν0 = (0,−1) and it is easy to see (2.1). We make note of

∂

∂νy
Γ(x− y) =

1
ωd

〈y − x, νd〉
|x− y|d , x, y ∈ ∂Ω.
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Define the boundary integral operator KΩ by

KΩf(x) =
1
ωd

∫

∂Ω

〈y − x, νy〉
|x− y|d f(y)dσy, x ∈ ∂Ω.

Let us fix notations: for a function defined in Rd \ ∂Ω, set

u|±(x) := lim
t→+0

u(x + tνx), x ∈ ∂Ω,

when the limit exists. So the subscript + and − denote the approach from
outside and inside Ω, respectively.

Theorem 2.1 Let f ∈ C(∂Ω). Then

DΩf |±(P ) = (∓1
2
I +KΩ)f(P ), P ∈ ∂Ω. (2.4)

Proof. We first observe that

∫

∂Ω

∂

∂νy
Γ(x, y)dσ(y) =





1 if x ∈ Ω
1/2 if x ∈ ∂Ω
0 if x ∈ Rd \ Ω.

(2.5)

(2.5) can be proved using the Green theorem. We leave the proofs as an
exercise.

If x ∈ Ω, then by (2.5)

DΩf(x) =
∫

∂Ω

∂

∂νy
Γ(x− y)[f(y)− f(P )]dσ(y) + f(P ).

Let w(x) be the first function in the RHS of the above. If x = P − tνP , then
w(x) → w(P ) as t → 0. To prove this, for a given ε > 0, let δ > 0 be such
that |f(y)− f(P )| < ε whenever |y − P | < δ. Then

w(x)− w(P ) =
∫

∂Ω∩Bδ

∂

∂νy
Γ(x− y)[f(y)− f(P )]dσ(y)

−
∫

∂Ω∩Bδ

∂

∂νy
Γ(P − y)[f(y)− f(P )]dσ(y)

+
∫

∂Ω\Bδ

[
∂

∂νy
Γ(x− y)− ∂

∂νy
Γ(P − y)

]
[f(y)− f(P )]dσ(y)

= I1 + I2 + I3.

It easily follows from (2.3) that

|I2| ≤ Cε (2.6)
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Since ∣∣∣∣
∂

∂νy
Γ(x− y)− ∂

∂νy
Γ(P − y)

∣∣∣∣ ≤ C
|x− P |
|y − P |d , ∀y ∈ ∂Ω,

we get
|I3| ≤ CM |x− P |, (2.7)

where M is the maximum of f on ∂Ω. To estimate I1 we assume that P = 0
and near P , Ω is given by y = (y′, yd) with yd > ϕ(y′) where ϕ is a C2-
function such that ϕ(0) = 0 and ∇ϕ(0) = 0. With these coordinates, one
can show that ∣∣∣∣

∂

∂νy
Γ(x− y)

∣∣∣∣ ≤ C
|y′|2 + t

(|y′|2 + t2)d/2
,

and hence
|I1| ≤ Cε. (2.8)

Combining (2.6), (2.7), and (2.8), we can see that

lim sup
t→0

|w(x)− w(P )| ≤ Cε.

Since ε is arbitrary, we obtain

DΩf |−(P ) = (
1
2
I +KΩ)f(P ).

To see the other identity in (2.5), it suffices to notice that if x ∈ Rd \Ω,
then

DΩf(x) =
∫

∂Ω

∂

∂νy
Γ(x− y)[f(y)− f(P )]dσ(y),

which follows from (2.3). The rest of arguments are the same. This com-
pletes the proof. ¤

Let K∗Ω be the adjoint operator on L2(∂Ω). Then

KΩf(x) =
1
ωd

∫

∂Ω

〈y − x, νx〉
|x− y|d f(y)dσy, x ∈ ∂Ω.

Then in a similar way one can prove

Theorem 2.2 Let f ∈ C(∂Ω). Then

∂(SΩf)
∂ν

∣∣∣∣
±
(P ) = (±1

2
I +K∗Ω)f(P ), P ∈ ∂Ω. (2.9)

In order to solve DP [f ] and NP [g], it is now enough to solve the following
integral equation:

(
1
2
I +KΩ)φ = f on ∂Ω,
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and
(−1

2
I +KΩ)φ = g on ∂Ω.

Another advantage we can use for C2-domains is that the operator KΩ is
compact. In fact, this follows from (2.1). More generally, we have the
following theorem:

Theorem 2.3 For each α > 0, the operator Tα defined by

Tαf(x) :=
∫

∂Ω

f(y)
|x− y|d−1−α

dσ(y), x ∈ ∂Ω,

is compact on L2(∂Ω).

Thanks to Theorem 2.3, we can use the Fredholm alternative to investi-
gate the invertibility of the operator ±1

2I +KΩ.

Theorem 2.4 (Fredholm Alternative) Suppose that K is a compact op-
erator on a Hilbert space X. Then, I + K is onto if and only if I + K is
one to one.

For proofs of Theorem 2.3 and Theorem 2.4, see [9].

Theorem 2.5 Let X be one of L2(∂Ω), H1/2(∂Ω), and C(∂Ω), and let X0

be the space of f ∈ X satisfying
∫
∂Ω fdσ = 0. Then, 1

2I + KΩ is invertible
on X and −1

2I +KΩ is invertible on X0

Proof. To prove 1
2I +KΩ is onto L2(∂Ω), we prove that 1

2I +K∗Ω is one to
one. Suppose that

(
1
2
I +K∗Ω)φ = 0 on ∂Ω. (2.10)

We first observe that KΩ(1) = 1/2 which follows from (2.1) and (2.5). Thus

0 =
∫

∂Ω
(
1
2
I +K∗Ω)φdσ =

∫

∂Ω
(
1
2
I +KΩ)(1)φdσ =

∫

∂Ω
φdσ.

Let u(x) := SΩφ(x), x ∈ Rd \ Ω. Then u satisfies




∆u = 0 in Rd \ Ω,
∂u

∂ν

∣∣∣∣
+

= 0 on ∂Ω,

u(x) = O(|x|1−d) as |x| → ∞.

In fact, the second follows from (2.2) and (2.10) while the third can be shown
as follows: Since

∫
∂Ω φdσ = 0,

SΩφ(x) =
∫

∂Ω
[Γ(x− y)− Γ(x)]φ(y)dσ(y) = O(|x|1−d), |x| → ∞.
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We now prove that u = 0 in Rd \ Ω. Since

∫

Rd\Ω
|∇u|2 = −

∫

∂Ω
u

∂u

∂ν

∣∣∣∣
+

dσ = 0,

u is constant and this constant must be 0. Now since SΩφ is continuous in
Rd and harmonic in Ω, we get SΩφ = 0 in Ω and hence in Rd. It then follows
from (2.2) that

φ =
∂

∂ν
SΩφ

∣∣∣∣
+

− ∂

∂ν
SΩφ

∣∣∣∣
−

= 0.

To prove 1
2I+KΩ is onto L2

0(∂Ω), it suffices to prove that (1
2I+K∗Ω)φ = 0

and φ ∈ L2
0(∂Ω), then φ = 0. However the proof is almost the same. In fact,

we first prove that SΩφ = 0 in Ω, and then using the fact φ ∈ L2
0(∂Ω) we

prove SΩφ = 0 in Rd.
To prove the invertibility on the spaces H1/2(∂Ω) and C(∂Ω), it suffices

to notice that KΩ is improving regularity (see the following exercise). ¤

Exercise. For this we suppose d = 3 for simplicity. If ∂Ω is C2, prove the
following.

(1) KΩ : L2(∂Ω) → H1/2(∂Ω) bounded.

(2) KΩ : L2(∂Ω) → L6(∂Ω), L6(∂Ω) → L∞(∂Ω) bounded.

(2) KΩ : L∞(∂Ω) → Cα(∂Ω) bounded (α < 1).

Notice that the spaces are not optimal. (Hint. First localize the operator as
in the following section. Then you see that you end up with a convolution
operator. Then you can apply the generalized Young’s inequality, etc.)

2.2 Lipschitz domain

Before we move to the next section, let us take a look at the operator KΩ

when ∂Ω is only Lipschitz continuous. The main cause of serious difficulties
is the failure of (2.2) for the Lipschitz domains. For those, the following
holds:

∣∣∣∣
∂

∂νy
Γ(x, y)

∣∣∣∣ +
∣∣∣∣

∂

∂νx
Γ(x, y)

∣∣∣∣ ≤
C

|x− y|d−1
, x, y ∈ ∂Ω. (2.11)

In order to see the type of operators we will be considering, let us localize
the operator KΩ. Let {ζj : j = 1, ..., M} be a partition of unity for ∂Ω.
We further assume that for each j, the set ∪(supp(ζk)), where the union
is taken over all k such that supp(ζk) ∩ supp(ζj) 6= ∅, is represented by a
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Lipschitz ϕ as xd = ϕ(x′) after rotation and translation if necessary, where
x′ = (x1, ..., xd−1). Then

KΩf(x) =
∑

j,k

ζk(x)KΩ(ζjf)(x) :=
∑

j,k

Kjk(f)(x).

For those j, k with supp(ζk) ∩ supp(ζj) = ∅, it is easy to see that Kjk is
bounded on L2(∂Ω). But for those j, k with supp(ζk) ∩ supp(ζj) 6= ∅, it
becomes a completely different story. For such j, k the kernel of the operator
Kjk takes the form, after rotation and translation,

1
ωd

〈y − x, νy〉
|x− y|d =

1
ωd

(x′ − y′) · ∇ϕ(y′) + (ϕ(y′)− ϕ(x′))

[|x′ − y′|2 + |ϕ(x′)− ϕ(y′)|2] d
2

1√
1 + |∇ϕ(y′)|2 .

Therefore, the type kernels are

xj − yj

[|x′ − y′|2 + |ϕ(x′)− ϕ(y′)|2] d−1
2

or
ϕ(x′)− ϕ(y′)

[|x′ − y′|2 + |ϕ(x′)− ϕ(y′)|2] d
2

where ϕ is a Lipschitz function. More generally,

A(x′)−A(y′)

[|x′ − y′|2 + |ϕ(x′)− ϕ(y′)|2] d
2

(2.12)

where A and ϕ are Lipschitz functions.
The major part of the theory for this kind of operators is L2 bounded-

ness. In this lecture, we will prove a beautiful theorem of Coifman-McIntosh-
Meyer [2]. Their result was further generalized to the celebrated T1-theorem
due to David-Journé [6]. There are many prerequisites to understand the
CMM theorem. Among them are classical theory of singular integral oper-
ators, maximal functions, Carleson measures, BMO.



Chapter 3

Calderon-Zygmund Theory
of SIO

3.1 Preliminary

In this chapter, we study the Calderón-Zygmund theory of singular integral
operators. We first state two major theorems to be used in this chapter and
throughout this note, without proofs. For proofs, we refer to [15]

Theorem 3.1 (Marcinkiewicz Interpolation Theorem) Suppose that

(1) T : L1 + L∞ → L1 + L∞ sublinear, i.e., |T (f1 + f2)| ≤ |Tf1|+ |Tf2|,
(2) T is of weak type (pi, qi) (i = 1, 2, 1 ≤ pi ≤ qi ≤ ∞), i.e., there are

constants Ci such that for all positive number λ and f ∈ Lpi,

|{Tf > λ}| ≤
(

Ci‖f‖pi

λ

)qi

Let p = (1 − θ) 1
p1

+ θ 1
p2

and q = (1 − θ) 1
q1

+ θ 1
q2

(0 < θ < 1). Then T is
of (strong) type (p, q), i.e, there is a constant C depending only on C1, C2,
and θ such that

‖Tf‖q ≤ C‖f‖p.

Remark. When q = ∞, the weak type (p, q) means the strong type (p, q).

Another important ingredient is the Hardy-Littlewood maximal opera-
tor. For an integrable function f , define

Mf(x) := sup
r>0

1
|Cr(x)|

∫

Cr(x)
|f(y)|dy, x ∈ Rn, (3.1)

where Cr(x) is either Br(x), a ball centered at x with radius r, or Qr(x), a
cube centered at x with the side length r.

11
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Theorem 3.2 The Hardy-Littlewood maximal operator M is of weak type
(1, 1) and (∞,∞), and hence is of strong type (p, p) for all p, 1 < p ≤ ∞.

Lemma 3.3 (Calderon-Zygmund Decomposition) Let f ≥ 0, ‖f‖1 <
∞, and α > 0 be a fixed number. Then there exists non-overlapping dyadic
cubes {Qi} such that

(1) f ≤ α a.e. x ∈ Rn \ ∪jQj,

(2) α < −
∫

Qj

f ≤ 2nα,

where −
∫

Qj

f =
1
|Qj |

∫

Qj

f = fQj .

Before proving Lemma 3.3, let us state another lemma which is equiva-
lent to Lemma 3.3.

Let Qj be the cubes in CZ-decomposition. Let

g := fχRn\∪Qj
+

∑

j

fQjχQj and b =
∑

j

bj :=
∑

j

(f − fQj )χQj

where χQj is the characteristic function of Qj . Then f = g + b. Each bj

satisfies
‖bj‖1 ≤

∫

Qj

|f |+ |fQj | ≤ 2n+1α|Qj |.

We also have

∑

j

|Qj | ≤
∑

j

1
α

∫

Qj

|f | ≤ 1
α

∫

∪Qj

|f | ≤ 1
α
‖f‖1,

and hence

‖g‖2
2 =

∫

Rn

|g|2

≤ 2
[ ∫

Rn\∪Qj

|f |2 +
∞∑

j=1

∫

Qj

|fQj |2
]

≤ 2
[
α

∫

Rn\∪Qj

|f |+ 22nα2
∑

j

|Qj |
]

≤ 2
[
α‖f‖1 + 22nα‖f‖1

]

= 2(22n + 1)α‖f‖1.

So we have the following lemma which is, in fact, equivalent to the CZ-
decomposition.
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Lemma 3.4 (CZ-Decomposition) Let f ∈ L1 and α > 0. Then f can
be decomposed as f = g + b = g +

∑∞
j=1 bj so that

(1) ‖g‖2
2 ≤ 22n+2α‖f‖1,

(2) supp bj ⊂ Qj and {Qj} is mutually non-overlapping,

(3) ‖bj‖1 ≤ 2n+1α|Qj |,

(4)
∫
Qj

bj = 0 ∀j,

(5)
∑

j |Qj | ≤ 1
α‖f‖1.

Proof of Lemma 3.3. For any integer k, let Dk be the collection of all dyadic
cubes with side length 2−k. So each Q ∈ Dk is a closed cube whose corners
are of the form (l12−k, ..., ln2−k) where l1, ...ln are integers. Observe that
any two different cubes in Dk are mutually non-overlapping, i.e., they only
share, if any, sides which is of measure zero. We also observe that each Q in
Dk contains exactly 2n cubes in Dk+1, while each cube in Dk+1 is contained
in exactly one cube in Dk.

Let α > 0 be given. Since f ∈ L1, there exists j such that

−
∫

Q
f < α

for all Q ∈ Dj . Assume j = 0 without loss of generality. Let

F1 = {Q ∈ D1 : −
∫

Q
f > α}.

If Q ∈ D1 \ F1, then bisect the sides of Q to have 2n sub-cubes. Define

F2 = {Q ∈ D2 : −
∫

Q
f > α, and Q * Q̃ for any Q̃ ∈ F1}.

Repeat this procedure indefinitely (if necessary) to have the classes Fk,
k = 1, 2, ... Enumerate all members of ∪kFk by {Qj}. If Qj ∈ Fk for some
k, then there exists Q̃ ∈ Dk−1 containing Qj . Since Q̃ /∈ Fk−1, we have

α ≤ 1
|Qj |

∫

Qj

f =
2n

|Q̃|

∫

Q
f ≤ 2n −

∫

Q̃
f ≤ 2nα.

If x ∈ Rn \ ∪jQj , then there exists a sequence {Cj} of cubes such that

C1 ⊃ C2 ⊃ · · · ,
⋂

j

Cj = {x}, and Cj ∈ Dj \ Fj .
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By definition of Fj , −
∫
Cj

f < α for all j. It then follows from the Lebesgue
differentiation theorem that

f(x) = lim
j→∞

1
|Cj |

∫

Cj

f(y)dy ≤ α a.e. x.

Note that the Lebesgue differentiation theorem used in the proof is
slightly different from the usual differentiation theorem which asserts that

lim
r→0

1
|B(x, r)|

∫

B(x,r)
f(y)dy = f(x) a.e. x.

Such difference causes no trouble. In fact, if we define a maximal function

M1f(x) := sup
Q:cube
x∈Q

1
|Q|

∫

Q
|f(y)|dy,

one can easily shows that M1f(x) ≤ CMf(x) for some constant C depend-
ing only on the dimension n. Following the proof of the usual Lebesgue
differentiation theorem (e.g., [13]), one can prove the desired differentiation
theorem. ¤

3.2 Singular Integral Operators

The singular integral operators are defined as follows.

Definition 3.5 An integral kernel k(x, y) (x, y ∈ Rn) is called a standard
kernel if for x, y ∈ Rn,

(1) |k(x, y)| ≤ C

|x− y|n ,

(2) |∇xk(x, y)|+ |∇yk(x, y)| ≤ C

|x− y|n+1

for some constant C.

Observe that the kernel of the type (2.12) in which we are interested is
a standard kernel on Rd−1. Moreover it is skew symmetric, i.e.,

k(y, x) = −k(x, y), x, y ∈ Rd−1.

We will assume throughout this lecture that the kernel k(x, y) is skew sym-
metric.

The singular integral operator (SIO) T corresponding to the kernel k(x, y)
is defined defined as a Cauchy principal value: for each f ∈ C∞

0 (Rn)

Tf(x) = p.v.
∫

Rn

k(x, y)f(y)dy = lim
ε→0

∫

|x−y|>ε
k(x, y)f(y)dy. (3.2)
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We first prove that the limit exists for each f ∈ C∞
0 (Rn). For each ε > 0,

let
kε(x, y) = k(x, y)χ{|x−y|>ε},

and let Tε be the integral operator defined by kε(x, y). Then kε(x, y) is also
skew-symmetric. So we get for all f, g ∈ C∞

0 (Rn)

〈Tεf, g〉 =
1
2

∫∫
kε(x, y)

[
f(x)g(y)− f(y)g(x)

]
dxdy.

Since |f(x)g(y)− f(y)g(x)| ≤ C|x− y|, it is now clear that they converge as
ε → 0.

The main theorem of this chapter is the following which is already clas-
sical.

Theorem 3.6 Let T be a SIO. If T is bounded on L2, then

(1) |{|Tf | > λ}| ≤ C‖f‖1

λ
, ∀f ∈ L1, ∀λ > 0,

(2) T is bounded on Lp, 1 < p < ∞.

Remark. The meaning of Tf for f ∈ L1 is not clear yet. In view of the
CZ-decomposition, it is reasonable to define it by

Tf = Tg +
∞∑

j=1

Tbj , when f = g +
∞∑

j=1

bj .

Since g ∈ L2, Tg makes sense. We will give a meaning to Tbj after intro-
ducing the notion of BMO in the next chapter.

Theorem 3.6 says that an SIO which is bounded on L2 is automatically
of weak type (1, 1), and hence bounded on Lp, 1 < p < ∞.

Proof of Theorem 3.6. Let f ∈ L1 and λ > 0. Let f = g + b be the CZ-
decomposition with respect to λ and {Qj} be those cubes in Lemma 3.4.
Note that

|{|Tf | > λ}| ≤ |{|Tg| > λ

2
}|+ |{|Tb| > λ

2
}|.

By Lemma 3.4 (1), we have

|{|Tg| > λ

2
}| ≤

∫

{|Tg|> λ
2
}

|Tg|2
(λ

2 )2
dx ≤ 4

λ2
‖Tg‖2

2

≤ C

λ2
‖g‖2

2 ≤
C

λ2
22n+2λ‖f‖1 =

C

λ
‖f‖1.



16 CHAPTER 3. CALDERON-ZYGMUND THEORY OF SIO

Let A = {x 6∈ ∪∞j=1(2Qj) : |Tb| > λ/2 }. Then, { |Tb| > λ/2 } ⊂
∪∞j=1(2Qj) ∪A. By Lemma 3.4 (5), we have

|
∞⋃

j=1

(2Qj)| ≤
∞∑

j=1

|2Qj | = 2n
∞∑

j=1

|Qj | ≤ 2n

λ
‖f‖1.

Suppose x 6∈ 2Qj and let yj be the center of Qj . By Lemma 3.4 (4), we
have

Tbj(x) =
∫

Qj

k(x, y)bj(y)dy

=
∫

Qj

[k(x, y)− k(x, yj)]bj(y)dy

=
∫

Qj

∇yk(x, ξ) · (y − yj)bj(y)dy

for some point ξ ∈ Qj . Since x 6∈ 2Qj , |x− yj | ≈ |x− ξ| independently of x
and hence

|∇yk(x, ξ)| ≤ C

|x− ξ|n+1
≤ C

|x− yj |n+1
.

Thus Lemma 3.4 (3) leads to

|Tbj(x)| ≤ C

∫

Qj

|y − yj |
|x− yj |n+1

|bj(y)|dy

≤ C

|x− yj |n+1
l(Qj)

∫

Qj

|bj(y)|dy

≤ C

|x− yj |n+1
λ|Qj |1+ 1

n ,

where l(Qj) denotes the side length of Qj . It then follows that
∫

Rn\2Qj

|Tbj(x)|dx ≤ Cλ|Qj |1+ 1
n

∫

Rn\2Qj

1
|x− yj |n+1

dx

≤ Cλ|Qj |1+ 1
n

∫

|x|>Cl(Qj)

1
|x|n+1

dx ≤ Cλ|Qj |.

As a consequence, we have from Lemma 3.4 (5)

|A| ≤ 2
λ

∫

A
|Tb|

≤ 2
λ

∞∑

j=1

∫

Rn\(2Qj)
|Tbj(x)| ≤ C

λ
λ
∞∑

j=1

|Qj |

≤ C

λ
‖f‖1.
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This proves the weak (1, 1) property of T .
The strong (p, p) property for 1 < p < 2 follows from the Marcinkiewicz

Interpolation Theorem.
If 2 < p < ∞, let T ∗ be the adjoint operator of T. Then T ∗ is also a

CZO. Thus ‖T ∗f‖q ≤ Cq‖f‖q, 1 < q < 2. By duality, we have boundedness
of T on Lp. In fact,

|(Tf, g)| = |(f, T ∗g)| ≤ ‖f‖p‖T ∗g‖q ≤ Cq‖f‖p‖g‖q

where 1
p + 1

q = 1. Hence

‖Tf‖p = sup
g

|(Tf, g)|
‖g‖q

≤ Cq‖f‖p.

This completes the proof. ¤

Define
T∗f(x) = sup

ε>0
|Tεf(x)|, x ∈ Rn.

The following lemma is due to Cotlar.

Lemma 3.7 Suppose T is bounded on L2. Then there is a constant C > 0
such that for all f ∈ C∞

0 (Rn)

T∗f(x) ≤ C(Mf(x) +MTf(x)) x ∈ Rn (3.3)

where M is the Hardy-Littlewood maximal function. As a consequence, we
have

‖T∗f‖p ≤ Cp‖f‖p ∀f ∈ Lp, 1 < p < ∞. (3.4)

Proof. Suppose that x = 0 without loss of generality. If y ∈ Bε/2(0), then

Tεf(y)− Tεf(0) =
∫

|y−z|>ε
k(y, z)f(z)dz −

∫

|z|>ε
k(0, z)f(z)dz

=
∫

|z|>ε
[k(y, z)− k(0, z)]f(z)dz

+
∫

Bε(0)\Bε(y)
k(y, z)f(z)dz −

∫

Bε(y)\Bε(0)
k(y, z)f(z)dz

:= I1 + I2 + I3

For all y ∈ Bε/2(0) and z ∈ (Bε(0)\Bε(y)) ∪ (Bε(y)\Bε(0)), |y − z| ≥ ε
2 , and

hence

|I2|+ |I3| ≤ C

εn

∫

Bε(0)
|f(z)|dz +

C

εn

∫

B2ε(0)
|f(z)|dz ≤ CMf(0).
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By mean value theorem, for y ∈ Bε/2(0) and z /∈ Bε(0),

|k(y, z)− k(0, z)| ≤ C|y|
|z|n+1

≤ Cε

|z|n+1
.

It then follows that

|I1| ≤ Cε

∫

|z|>ε

|f(z)|
|z|n+1

dz

= Cε

∞∑

j=0

∫

2jε<|z|≤2j+1ε

|f(z)|
|z|n+1

dz ≤ CMf(0).

Thus we have for y ∈ Bε/2(0),

|Tεf(0)| ≤ |Tεf(y)|+ |Tεf(y)− Tεf(0)| ≤ |Tεf(y)|+ CMf(0).

If |Tεf(y)| ≤ 1
2 |Tεf(0)| for some y ∈ Bε/2(0), (3.3) follows.

Suppose |Tεf(y)| > 1
2 |Tεf(0)| for all y ∈ Bε/2(0). Let χ be the charac-

teristic function of Bε(0). Since Tεf(y) = Tf(y)− T (fχ)(y), we have

Bε/2(0) ⊂ E1 ∪ E2

where

E1 = {y ∈ Bε/2(0) : |Tf(y)| > 1
4
|Tεf(0)|}

E2 = {y ∈ Bε/2(0) : |T (fχ)(y)| > 1
4
|Tεf(0)|}.

One can easily get

1
4
|Tεf(0)||E1| ≤

∫

Bε/2(0)
|Tf(y)|dy.

Since T is of weak type (1, 1), we have

1
4
|Tεf(0)||E2| ≤ C

∫

Bε(0)
|f(y)|dy.

Hence

|Bε/2(0)|1
4
|Tε(0)| ≤ 1

4
|Tε(0)|(|E1|+ |E2|)

≤ C(
∫

Bε/2(0)
|Tf(y)|dy +

∫

Bε(0)
|f(y)|dy).

It thus follows that

Tεf(0) ≤ C(MTf(0) +Mf(0))

for all ε > 0. This completes the proof. ¤

As a consequence of (3.4) we can prove that the limit in (3.2) exists for
all f ∈ Lp, 1 < p < ∞.
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Lemma 3.8 Let f ∈ Lp, 1 < p < ∞. Then

Tf(x) = lim
ε→0

∫

|x−y|>ε
k(x, y)f(y)dy, for a.e. x ∈ Rn.

Proof. Let λ > 0 and

A :=
{

x : lim sup
ε→0

|Tεf(x)− Tf(x)| > λ

}
.

For a given δ > 0, choose g ∈ C∞
0 (Rn) such that ‖f − g‖p ≤ δ. Then

lim sup
ε→0

|Tεf(x)− Tf(x)| ≤ |T∗(f − g)(x)|+ |T (f − g)(x)|,

and hence

A ⊂ {|T∗(f − g)(x)| > λ/2} ∪ {|T (f − g)(x)| > λ/2}.

It then follows from (3.4) that

|A| ≤ C

(
δ

λ

)p

.

Since δ is arbitrary, |A| = 0. This completes the proof. ¤

3.3 Convolution Operators

Theorem 3.6 says that for the Lp-boundedness of a SIO, the main question
is L2-boundedness. We list some conditions on the kernel which guaran-
tee L2-boundedness of the SIO of the convolution type Tf(x) = (k ∗ f)(x).
An essential property is “the cancellation property”. Since for convolu-
tion operators one may apply Fourier transform and Plancherel identity,
L2-boundedness of those operators can be derived without much difficulty.
Proofs of the following theorems can be found in [13].

Theorem 3.9 If k(x) satisfies

(1) |k(x)| ≤ C

|x|n ,

(2)
∫

|x|>2|y|
|k(x−y)−k(x)|dx ≤ C for all y 6= 0 (Hörmander condition),

(3)
∫

R1<|x|<R2

k(x)dx = 0 for all 0 < R1 < R2 < ∞ (Cancellation),

then T is bounded on Lp (1 < p < ∞).
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Theorem 3.10 Let Ω ∈ C1(Sn−1) and
∫
Sn−1 Ω(x)dσ(x) = 0. Define Ω(x) =

Ω( x
|x|) for x 6= 0. Then the operator T defined by

Tf(x) = p.v.
∫

Rn

Ω(y)
|y|n f(x− y)dy

is bounded on Lp (1 < p < ∞).

Here are two important convolution operator which fall in the case of
Theorem 3.10.

• Hilbert transform.

Hf(x) :=
1
π

p.v.
∫

R1

1
y
f(x− y)dy.

• Riesz transform.

Rj(x) = cnp.v.
∫

Rn

yj

|y|n+1
f(x− y)dy.

Observe that the operator (2.12) is not a convolution type. The L2-
boundedness of the non-convolution type SIO is a very hard question and
this problem has been one of the central theme in the harmonic analysis and
potential theory.

For the operators of type (2.12) there is a impressive result due to
Coifman-McIntosh-Meyer [2]. The main purpose of this lecture note is to
reproduce, with details, their proof. The method of CMM was further de-
veloped to produce the celebrated T1-theorem by David-Journé [6]. If time
permits, we will discuss about the T1-theorem. But I don’t think time
would.



Chapter 4

Carleson Measures and BMO

4.1 Carleson Measure

The concept of Calreson measures came out in solving the follwing problem
which was solved by Carleson.

Problem. Characterize those positive measures µ on Rn+1
+ = {(x, y) ∈

Rn × R1 : y > 0} for which the following holds;
∫∫

Rn
+

|Ptf(x)|2dµ(x, t) ≤ C

∫

Rn

|f(x)|2dx ∀f ∈ L2(Rn), (4.1)

where Ptf is the Poisson extention of f in Rn+1
+

A necessary condition can be easily found: Let Q be a cube in Rn and
f = χ2Q. If x ∈ Q and t ≤ l = l(Q), then since B(x, l) ⊂ 2Q we have

Ptf(x) = cn

∫

Rn

t

[|x− y|2 + t2]
n+1

2

f(y)dy

≥ cn

∫

B(x,l)

t

[|x− y|2 + t2]
n+1

2

dy

= C

∫

|y|≤l

t

[|y|2 + t2]
n+1

2

dy

= C

∫

|y|≤l/t

1

[|y|2 + 1]
n+1

2

dy

Since t ≤ l, it follows that Ptf(x) ≥ C for some constant C. Therefore, if
(4.1) holds, then

µ(Q× [0, l]) ≤ C

∫

Q×[0,l]
|Ptf(x)|2dµ(x, t)

≤ C

∫

Rn

|f(x)|2dx

≤ C|Q| .

21
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For each cube Q ⊂ Rn, define the tent over Q by

T (Q) := Q× [0, l(Q)] ⊂ Rn+1
+ .

We have seen that if (4.1) holds, then µ(T (Q)) ≤ C|Q| .

Definition 4.1 A positive measure µ on Rn+1
+ is called a Carleson measure

if there is a constant C > 0 such that

µ(T (Q)) ≤ C|Q| for every cube Q ⊂ Rn.

If µ is a Carleson measure, the Carleson norm is defined to be

‖µ‖C := sup
Q

µ(T (Q))
|Q|

For example, dµ(x, t) = ϕ(t)dxdt is a Carleson measure if and only if
ϕ ∈ L1(R+). In particular, 1

t dxdt is not a Carleson measure
We will prove that being a Carleson measure is also sufficient for µ to

satisfy (4.1).

Lemma 4.2 (Whitney decomposition Lemma) Let Ω be an open set
in Rn such that Ωc 6= ∅. Then Ω = ∪∞j=1Qj where

(1) F = {Qj} is mutually non-overlapping dyadic cubes,

(2) There are constants C1 and C2 so that

C1l(Qj) ≤ dist(Qj , Ωc) ≤ C2l(Qj) for all j.

Proof. For each integer j, let Ωj := {x ∈ Ω : 2
√

n 2−j < dist(x,Ωc) ≤
4
√

n 2−j}, Dj be the collection of all dyadic cubes with side length 2−j ,
Fj := {Qj : Q∩Ωj 6= ∅}, and F ′ = ∪jFj . Then ∪Q∈F ′ = Ω. If Q ∈ F ′, then
there is x ∈ Q∩Ωj where Q ∈ Dj , and hence dist(x,Ωc) ≥ 2

√
n2−j . It thus

follows that

dist(Q,Ωc) ≥ dist(x,Ωc)−√n l(Q)

≥ 2
√

n2−j −√nl(Q) ≥ √
nl(Q).

And
dist(Q,Ωc) ≤ dist(x,Ωc) +

√
nl(Q) ≤ 5

√
nl(Q).

Since F ′ consist of dyadic cubes, any two of members of F ′ are either
mutually non-overlapping or one contains the other. So, for each Q ∈ F ′
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there exists
∼
Q∈ F ′ which is maximal with respect to the inclusion relation.

In fact, if Q, Q̃ ∈ F ′ and Q ⊂ Q̃, then

l(Q̃) ≤ 1
C1

dist(Q̃,Ωc)

≤ 1
C1

dist(Q,Ωc) ≤ C2

C1
l(Q).

Let F be the collection of all maximal elements of F ′. This F does the job. ¤

For functions u defined on Rn+1
+ , define the non-tangential maximal func-

tion by
Nu(x) = sup

(y,t)∈Γ(x)
|u(y, t)| (x ∈ Rn)

where Γ(x) is the cone defined by Γ(x) = {(y, t) : t > |y − x|}.
Let us prove a useful lemma.

Lemma 4.3
N (Ptf)(x) ≤ CMf(x), x ∈ Rn. (4.2)

Proof. Put

Ptf(y) = cn

∫

Rn

t

[|y − z|2 + t2]
n+1

2

f(z)dz

= cn




∫

|z−y|≤t
+

∞∑

j=1

∫

2j−1t<|z−y|≤2jt




:= cn(I0 +
∞∑

j=1

Ij).

If (y, t) ∈ Γ(x) and |z − y| ≤ t, then |x− z| ≤ 2t, and hence

|I0| ≤ 1
tn

∫

|z−y|≤2t
|f(z)|dz ≤ CMf(x).

If (y, t) ∈ Γ(x) and 2j−1t < |z − y| ≤ 2jt, then |z − x| ≤ 2j+1t, and hence

|Ij | ≤ 1
2j−1

1
(2j−1t)n

∫

|z−y|≤2j+1t
|f(z)|dz ≤ C

2j−1
Mf(x),

for each j. This completes the proof. ¤

Theorem 4.4 If µ is a Carleson measure and u is continuous in Rn+1
+ .

Then
µ({(x, t) : |u(x, t)| > λ}) ≤ C|{x : Nu(x) > λ}|. (4.3)
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Proof. For λ > 0, let Gλ := {x : |Nu(x)| > λ}. Since u is continuous,
Gλ is open. We may assume Gλ 6= Rn since otherwise there is nothing to
prove. Let {Qj} be the cubes in the Whitney decomposition lemma for Gλ.
Suppose |u(x, t)| > λ. Then x ∈ Gλ and hence x ∈ Qj for some j. Thus
there exists yj ∈ Gc

λ such that

C1l(Qj) ≤ dist(yj , Qj) ≤ C2l(Qj)

and hence
C1l(Qj) ≤ |yj − x| ≤ C3l(Qj).

Since yj /∈ Gλ, (x, t) /∈ Γ(yj). Thus

t < |x− yj | ≤ C3l(Qj).

Therefore, (x, t) ∈ Qj×[0, C3l(Qj)]. Since µ is a Carleson measure, it follows
that

µ({(x, t) : |u(x, t)| > λ}) ≤ µ(
⋃

j

Qj × [0, C3l(Qj)])

≤
∑

j

µ(Qj × [0, C3l(Qj)])

≤ C
∑

j

|Qj | = C|Gλ|.

This completes the proof. ¤

Finally, we are ready to prove

Theorem 4.5 µ is a Calreson measure if and only if (4.1) holds.

Proof. Recall that
∫

X
|u(x)|pdµ = p

∫ ∞

0
λp−1µ({x ∈ X : |u(x)| > λ})dλ,

for any positive measure on a measurable space X if 1 ≤ p < ∞. So it
follows from (4.2) and (4.3) that

∫∫

Rn+1
+

|Ptf(x)|pdµ(x, t) = p

∫ ∞

0
λp−1µ({(x, t) : |Ptf(x)| > λ})dλ

≤ Cp

∫ ∞

0
λp−1|{N (Ptf)(x) > λ}|dλ

≤ Cp

∫ ∞

0
λp−1|{(Mf > λ}|dλ

= C‖Mf‖p
p ≤ Cp‖f‖p

p.

This completes the proof. ¤
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4.2 Bounded Mean Oscillation

Definition 4.6 A function f ∈ L1
loc(Rn) is called a function of bounded

mean oscillation (BMO) if

‖f‖∗ = sup
Q
−
∫

Q
|f(x)− fQ|dx < ∞.

If this is the case, ‖f‖∗ is called the BMO-norm of f .

Remark Let us observe a few facts on BMO functions.

1. It is easy to see that f is constant if and only if ‖f‖∗ = 0. If we define
an equivalence relation ∼ by

f ∼ g ⇐⇒ f − g = constant a.e,

then BMO/∼ is a Banach space.

2. If α ∈ C, then

−
∫

Q
|f − fQ| ≤ −

∫

Q
|f − α|+−

∫

Q
|α− fQ| ≤ 2−

∫

Q
|f − α|.

Thus we have

1
2
−
∫

Q
|f − fQ| ≤ inf

α
−
∫

Q
|f − α| ≤ −

∫

Q
|f − fQ|.

Therefore
‖f‖′∗ := sup

Q
inf
α∈C−

∫

Q
|f − α|

defines an equivalent norm for BMO.

3. L∞ ⊂ BMO. In fact, ‖f‖∗ ≤ 2‖f‖∞.

4. log |x| ∈ BMO(Rn). We give a proof for the case n = 1. Let Q = [a, b]
and assume that −b < a < b, b > 0. (The other case can be treated in
similar ways.)

1
|Q|

∫

Q
|f − f(b)|dx =

1
b− a

∫ b

a
| log |x| − log b|dx

= − 1
b− a

∫ b

a
log

|x|
b

dx

= − b

b− a

∫ 1

a
b

log |y|dy.
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If a
b > 1

2 , then log |y| is bounded and hence

I ≤ C
b

b− a

∫ 1

a
b

dx ≤ C.

If a
b ≤ 1

2 , then b
b−a ≤ 2 and hence

I ≤ 2
∫ 1

−1
log |y|dx ≤ C.

5. signx · log |x| /∈ BMO(R1). In general, |f | ∈ BMO does not imply
f ∈ BMO. Being a BMO function is not simply a size condition.

Theorem 4.7 (John-Nirenberg inequality) There are constants C1, C2 >
0 such that for all f ∈ BMO, cube Q , λ > 0,

|{x ∈ Q : |f(x)− fQ| > λ}| ≤ C1|Q| exp(− C2

‖f‖∗λ). (4.4)

Proof. Fix a cube Q. By considering g = C(f−fQ)χQ if necessary, we may
assume fQ = 0 and ‖f‖∗ = 1. Here“dyadic” means dyadic with respect to
Q. Apply CZ-decomposition with α = 2 to obtain mutually non-overlapping
dyadic cubes {Q1

j} such that

(1) |f(x)| ≤ 2 a.e. on E1 := Q\
⋃

j

Q1
j ,

(2) 2 < −
∫

Q1
j

|f | ≤ 2n+1 for all j,

(3)
∑

j

|Q1
j | ≤

1
2

∫

Q
|f | = 1

2

∫

Q
|f − fQ| ≤ 1

2
‖f‖∗|Q| = 1

2
|Q|.

To each (f−fQ1
j
)χQ1

j
apply CZ-decomposition with α = 2 to obtain mutually

non-overlapping dyadic cubes {Q2
j} such that

(1’) |f − fQ1
j
| ≤ 2 a.e. on E2 :=

⋃

j

Q1
j\

⋃

k

Q2
k,

(2’) 2 < −
∫

Q2
k

|f − fQ1
j
| ≤ 2n+1 for all j, k such that Q2

k ⊂ Q1
j ,

(3’)
∑

k

|Q2
k| =

∑

j

∑

Q2
k⊂Q1

k

|Q2
k| ≤

1
2

∑

j

∫

Q1
j

|f − fQ1
j
|

≤ 1
2

∑

j

|Q1
j | =

1
22
|Q|.
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Note that for almost all x ∈ E2,

|f(x)| ≤ |f(x)− fQ1
j
|+ |fQ1

j
| ≤ (2n + 1) · 2.

Repeat this process to obtain Ek and {Qk
j } (k = 1, 2, · · · ) so that for

almost all x ∈ Ek,

|f(x)| ≤ |f(x)− fQk−1
j
|+ |fQk−1

j
− fQk−2

j
|+ · · ·+ |fQ1

j
|

≤ 2 +−
∫

Qk−1
j

|f − fQk−2
j
|+ · · ·+ |fQ1

j
|

≤ 2 + (k − 1)2n+1 = (1 + (k − 1)2n) · 2.

We also have

|Q\
k⋃

l=1

El| =
∣∣

k⋂

l=1

(Q\El)
∣∣ ≤ ∣∣⋃

j

Qk
j

∣∣

≤
∑

j

|Qk
j | ≤ 2−k|Q| ∀k.

Let λ > 0 be a number. If λ < 4, there is nothing to prove. Suppose λ ≥ 4
and choose k so that

2((k − 1)2n + 1) ≤ λ < (k · 2n + 1).

Then

|{x ∈ Q : |f(x)| > λ}| ≤ |{x ∈ Q : |f(x)| > 2((k − 1)2n + 1)}|

≤ |Q\
k⋃

l=1

El|

≤ 2−k|Q| ≤ e−c2λ|Q|.
This completes the proof. ¤

The following is the original version of John-Nirenberg inequality.

Corollary 4.8 There exist constants C, α > 0 such that for all cube Q and
f ∈ BMO,

−
∫

Q
exp

(
α

‖f‖∗ |f(x)− fQ|
)

dx ≤ C. (4.5)

Proof. Fix Q and for λ > 0 let

Eλ := {x ∈ Q : |f(x)− fQ| > λ}

=
{

x ∈ Q : exp
(

α|f(x)− fQ|
‖f‖∗

)
> exp

(
αλ

‖f‖∗

)}
.
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Let η = exp( αλ
‖f‖∗ ). Then it follows from (4.4) that

−
∫

Q
exp(

α

‖f‖∗ |f(x)− fQ|)dx =
1
|Q|

∫ ∞

0
|Eλ|dη

≤ 1
|Q|

∫ ∞

0
C1|Q| exp

(−C2λ

‖f‖∗

)
exp

(
αλ

‖f‖∗

)
α

‖f‖∗dλ

< C

if α < C2. This completes the proof. ¤

Corollary 4.9 For 1 ≤ p < ∞, let

‖f‖p,∗ = sup
(
−
∫

Q
|f − fQ|p

) 1
p

.

Then ‖f‖p,∗ ≈ ‖f‖∗.

Proof. It follows from Jensen’s inequality that

‖f‖∗ ≤ ‖f‖p,∗.

If ‖f‖∗=1, then

−
∫

Q
|f − fQ|p ≤ C(p, α)−

∫

Q
eα|f−fQ|dx ≤ Cp.

Hence ‖f‖p,∗ ≤ Cp, and the proof is complete. ¤

4.3 BMO and Carleson Measures

Let ψ ∈ C∞(Rn) be such that




|ψ(x)|+ |∇ψ(x)| ≤ C(1 + |x|)−n−1,∫

Rn

ψ(x)dx = 0.
(4.6)

For t > 0, define
ψt(x) = t−nψ(t−1x),

and
Qtf(x) = (f ∗ ψt)(x).

We are going to prove
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Theorem 4.10 If f ∈BMO, then

dµ(x, t) =
|Qtf(x)|2

t
dxdt

is a Carleson measure and the Carleson norm

Cµ ≤ C||f ||2∗.

Notice that since dxdt
t is not a Carleson measure, the estimate |Qtf(x)| ≤

C‖f‖∗ is not enough to prove Theorem 4.10.
For example, let

φ(x) := P1(x) = cn
1

(1 + |x|2)n+1
2

,

the Poisson kernel. Then Pt(x) = φt(x) and hence the Poisson extension is
given by

Ptf(x) = (f ∗ φt)(x).

Let
ψ(x) := ∇φ(x) = (ψ1(x), . . . , ψn(x)).

Then each ψj satisfies the condition (4.6). Let

Qj
tf(x) = (f ∗ ψj

t )(x), j = 1, · · · , n.

It follows from Theorem 4.10 that if f ∈ BMO, then |Qj
tf(x)|2 dxdt

t is a
Carleson measure. Note that

∇xφt(x) = t−1ψt(x),

and hence

|∇xPtf(x)|2 = |∇xφt ∗ f(x)|2 =
1
t2

n∑

j=1

|Qj
tf(x)|2.

So we have the following Theorem from Theorem 4.10.

Theorem 4.11 If f ∈BMO, then t|∇xPtf(x)|2dxdt is a Carleson measure
and its Carleson norm is less than C||f ||2∗.

In order to prove Theorem 4.10, we need the following Lemmas

Lemma 4.12 If ψ ∈ C∞(Rn) satisfies (4.6), then there exists a constant C
depending only on the constants in (4.6) such that

|ψ̂(ξ)| ≤ C
|ξ| 1

n+2

1 + |ξ| . (4.7)
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Proof. If |ξ| ≤ 1, then

|ψ̂(ξ)| =
∣∣∣∣
∫

Rn

ψ(x)e−2πix·ξdx

∣∣∣∣

=
∣∣∣∣
∫

Rn

ψ(x)[e−2πix·ξ − 1]dx

∣∣∣∣

≤ C

∫

Rn

|ψ(x)|min(|x||ξ|, 1)dx

= C
[ ∫

|x|<δ
+

∫

|x|≥δ

]

:= I1 + I2.

Here δ > 0 is to be chosen later. We have

I1 ≤
∫

|x|<δ
|ψ(x)||x||ξ|dx

≤ C|ξ|
∫

|x|<δ

|x|
(1 + |x|)n+1

dx

≤ Cδn+1|ξ|.
On the other hand, we get

I2 ≤
∫

|x|≥δ
|ψ(x)|dx ≤ C

∫

|x|≥δ
|x|−n−1dx ≤ Cδ−1.

Choose δ = |ξ|− 1
n+2 to obtain (4.7) for |ξ| ≤ 1.

If |ξ| > 1, assume without loss of generality that |ξ1| ≥ 1√
n
|ξ|. Write

x = (x1, x
′) = (x1, x2, . . . , xn). Then

ψ̂(ξ) =
∫

Rn

ψ(x)e−2πix·ξdx

=
∫

x′∈Rn−1

[ ∫ ∞

−∞
ψ(x)e−2πix1·ξ1dx1

]
e−2πix′·ξ′dx′.

Integration by parts yields
∫ ∞

−∞
ψ(x)e−2πix1ξ1dx1 =

∫ ∞

−∞

−1
2πiξ1

∂

∂x1
e−2πix1·ξ1ψ(x)dx1

=
∫ ∞

−∞

1
2πiξ1

∂

∂x1
ψ(x)e−2πix1·ξ1dx1.

Thus we get

|ψ̂(ξ)| ≤ C

|ξ1|
∫

Rn

|∇ψ(x)|dx ≤ C

|ξ| .

This completes the proof. ¤
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Corollary 4.13 There is C > 0 independent of ξ such that

∫ ∞

0
|ψ̂(tξ)|2 dt

t
≤ C.

Proof. Let s = t|ξ|. Then

∫ ∞

0
|ψ̂(tξ)|2 dt

t
=

∫ ∞

0
|ψ̂(s

ξ

|ξ|)|
2 ds

s

≤ C
( ∫ 1

0
s

2
n+2

ds

s
+

∫ ∞

1

1
s2

dx
)
≤ C.

This completes the proof. ¤

Lemma 4.14 If ψ satisfies (4.6), then there is C depending only on the
constants in (4.6) such that

∫ ∞

0

∫

Rn

|Qtf(x)|2 dxdt

t
≤ C

∫

Rn

|f(x)|2dx ∀f ∈ L2(Rn).

Proof. Since ψ̂t(ξ) = ψ̂(tξ), Q̂tf(ξ) = ψ̂(tξ)f̂(ξ). Thus

∫ ∞

0

∫

Rn

|Qtf(x)|2 dxdt

t
=

∫ ∞

0

∫

Rn

|ψ̂(tξ)|2|f̂(ξ)|2dξ
dt

t

≤ C

∫

Rn

|f(x)|2dx.

This completes the proof. ¤

Lemma 4.15 There is C > 0 such that for f ∈BMO and cube Q with the
center at 0, ∫

(2Q)c

|f(y)− f2Q|
|y|n+1

dy ≤ C
1

l(Q)
||f ||∗.

Proof. On 2k+1Q\2kQ, |y| ≈ 2k l(Q). Therefore

∫

(2Q)c

|f(y)− f2Q|
|y|n+1

dy =
∞∑

k=1

∫

2k+1Q\2kQ

|f(y)− f2Q|
|y|n+1

dy

≤ C

∞∑

k=1

1
(2k l(Q))n+1

∫

2k+1Q
|f(y)− f2Q|dy
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The triangular inequality yields
∫

2k+1Q
|f(y)− f2Q|dy

≤
∫

2k+1Q
|f(y)− f2k+1Q|+

k∑

j=1

∫

2k+1Q
|f2j+1Q − f2jQ|

≤ ||f ||∗|2k+1Q|+ |2k+1Q|
k∑

j=1

|f2j+1Q − f2jQ|.

However,

|f2j+1Q − f2jQ| ≤
∫

2jQ
− |f(y)− f2j+1Q| ≤ C||f ||∗,

and hence
∫

2k+1Q
|f(y)− f2Q|dy ≤ C|2k+1Q|||f ||∗(1 + k).

It thus follow that
∫

(2Q)c

|f(y)− f2Q|
|y|n+1

dy ≤ C
∞∑

k=1

1 + k

2k
· 1
l(Q)

||f ||∗ ≤ C

l(Q)
||f ||∗.

This completes the proof. ¤

Proof of Theorem 4.10. Let Q be a cube and assume Q = Qr(0) without
loss of generality. Let f ∈ BMO. Since

∫
Rn ψt(x)dx = 0,

Qtf(x) = Qt(f − f2Q)(x).

Let f1 = (f − f2Q)χ2Q and f2 = (f − f2Q)χ(2Q)c . Then Qtf = Qtf1 + Qtf2.
Thus

dµ = |Qtf(x)|2 dxdt

t
≤ 2

(
|Qtf1(x)|2 dxdt

t
+ |Qtf2(x)|2 dxdt

t

)

:= 2(dµ1 + dµ2).

By Lemma 4.14, we have

µ1(Q× [0, r]) ≤
∫ ∞

0

∫

Rn

|Qtf1(x)|2 dxdt

t

≤ C

∫

Rn

|f1(x)|2dx

= C

∫

2Q
|f(x)− f2Q|2dx

≤ C||f ||2∗|Q|.
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For dµ2, we first observe that

|Qtf2(x)| =
∣∣∣∣∣
∫

(2Q)c

t−nψ(t−1(x− y))(f(y)− f2Q)dy

∣∣∣∣∣

≤ C

∫

(2Q)c

t−n · 1

(1 + |x−y|
t )n+1

|f(y)− f2Q|dy

≤ Ct

∫

(2Q)c

1
|x− y|n+1

|f(y)− f2Q|dy.

If x ∈ Q and 0 ≤ t ≤ r = l(Q), and y ∈ (2Q)c, then |x − y| ≈ |y|.
Therefore,

|Qtf2(x)| ≤ Ct

∫

(2Q)c

|f(y)− f2Q|
|y|n+1

dy.

It then follows from Lemma 4.15 that

µ2(Q× [0, r]) =
∫ r

0

∫

Q
|Qtf2(x)|2 dxdt

t

≤ C

∫ r

0

∫

Q
t2

1
r2
||f ||2∗

dxdt

t

= C||f ||2∗|Q|.

This completes the proof. ¤
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