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Abstract. In order to reconstruct small changes in the interface of an elastic
inclusion from modal measurements, we rigorously derive an asymptotic for-
mula which is in some sense dual to the leading-order term in the asymptotic
expansion of the perturbations in the eigenvalues due to interface changes
of the inclusion. Based on this (dual) formula we propose an algorithm to
reconstruct the interface perturbation. We also consider an optimal way of
representing the interface change and the reconstruction problem using in-
complete data. A discussion on resolution is included. Proposed algorithms
are implemented numerically to show their viability.

1. Introduction

In our recent work [ABFKL], we have proposed an original and promising opti-
mization approach for reconstructing interface changes of a conductivity inclusion
from measurements of eigenvalues and eigenfunctions associated with the trans-
mission problem for the Laplacian. The key identity, which naturally yields the
formulation of the proposed optimization problem, is a formula in some sense dual
to the leading-order expansion in the eigenvalue perturbations.

In this paper, we extend our approach to elasticity. We consider a soft elastic
inclusion inside a background medium. We first derive in Theorem 2.1 the leading-
order term in the perturbations in the eigenvalues of the Lamé system that are due
to small changes in the interface of the inclusion. We call this formula the direct
formula. Then, we provide in Theorem 3.1 an asymptotic formula which is in some
sense dual to the direct one. Our derivations of the direct formula are based on
fine gradient estimates together with Osborn’s result on spectral approximation
for compact operators. The dual formula follows from the direct formula by using
again fine gradient estimates.

The dual formula can be used successfully to provide a representation of the
changes in the shape of the inclusion by searching for such changes as linear com-
bination of what we will call “optimally illuminated vectors”. Our approach leads
to a robust reconstruction of the shape deformation. Indeed, the resolution limit
of our algorithm can be estimated. The viability of our reconstruction approach is
documented by a variety of numerical results.

The paper is organized as follows. In the next section we derive an asymptotic
formula for the eigenvalue perturbations due to shape deformation of the elastic
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inclusion. In section 3, we prove a key dual identity which naturally yields the for-
mulation of the proposed optimization problem. We find in section 4 a functional
whose minimizer yields the interface of the inclusion. We also provide optimal rep-
resentation of the changes in terms of the optimally illuminated vectors and discuss
the uniqueness of a solution to the minimization procedure and its robustness with
respect to error measurements. The resolution limit of our algorithm is quantified.
Note that our procedure is designed for a simple eigenvalue but the case of a mul-
tiple eigenvalue can be handled in exactly the same manner [AKL]. In section 5,
we generalize our procedure to the case where the measurements are done only on
an open part of the boundary. In section 6, we perform numerical experiments to
test the viability of the algorithm.

Many applications of our results in this paper are expected, especially in struc-
tural vibration testing of elastic structures [S].

2. Direct asymptotic formula

Throughout this paper, let Ck,α denote the Hölder space which consists of func-
tions having derivatives up to order k and such that the kth derivative is Hölder
continuous with exponent α, where 0 < α ≤ 1.

Let Ω ⊂ R2 be a bounded domain with C1,1 boundary representing the re-
gion occupied by an elastic material. Let D be an open subset of Ω such that
dist(∂Ω, ∂D) ≥ d0 > 0 representing an inclusion made of a different elastic mate-
rial. The boundary ∂D of D is assumed to be of class C2,1. Let C0 and C1 be the
elastic tensor fields in Ω \D and D, respectively.

We assume that both Ω \D and D are occupied by isotropic and homogeneous
materials; i.e., the elastic tensor fields C0 and C1 are of the following form:

(2.1) (Cm)ijlk = λmδijδkl + µm(δkiδlj + δkjδli) for i, j, k, l = 1, 2, m = 0, 1,

where (λ0, µ0) and (λ1, µ1) are the Lamé constants of Ω \ D and D, respectively,
and (λ0 − λ1)2 + (µ0 − µ1)2 6= 0. There is another way of expressing the isotropic
elastic tensor which will be useful later. Let I4 be the identity 4-tensor and I2 be
the identity 2-tensor (the 2× 2 identity matrix). Then Cm can be rewritten as

(2.2) Cm = λmI2 ⊗ I2 + 2µmI4, m = 0, 1.

We assume that there are two positive constants α0 and β0 such that

(2.3) min(µ0, µ1) ≥ α0, min(2λ0 + 2µ0, 2λ1 + 2µ1) ≥ β0,

which guarantees the strong convexity of C0 and C1. Given two 2 × 2 matrices A
and B we denote by A : B the contraction, i.e., A : B =

∑
ij aijbij .

Let CD = C0χΩ\D + C1χD and (u0, ω
2
0) ∈ H1(Ω) × R+ be the solution to the

following eigenvalue problem

(2.4)





∇ ·
(
CD∇̂u0

)
= −ω2

0u0 in Ω,

u0 = 0 on ∂Ω,

||u0||L2(Ω) = 1,

where ∇̂u0 = 1
2

(∇u0 + (∇u0)T
)

is the strain. Here and throughout the paper T
denotes the transpose.
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One can easily see from the equation in (2.4) that u0 satisfies the transmission
conditions along the interface ∂D:

(2.5)
{

ui
0 = ue

0,

(C1∇̂ui
0)ν = (C0∇̂ue

0)ν,

where ν is the outer normal unit vector field to ∂D and

(2.6) ue
0 = u0|Ω\D and ui

0 = u0|D.

Let τ be the unit tangential vector field to ∂D. The first identity in (2.5) shows
that

(∇ui
0)τ = (∇ue

0)τ on ∂D,

and hence

〈(∇̂ui
0)τ, τ〉 =

1
2

[〈(∇ui
0)τ, τ〉+ 〈τ, (∇ui

0)τ〉
]

= 〈(∇̂ue
0)τ, τ〉 on ∂D.

Therefore, we have

(2.7)





〈∇̂ui
0τ, τ〉 = 〈∇̂ue

0τ, τ〉,
λ1(∇ · ui

0) + 2µ1〈∇̂ui
0ν, ν〉 = λ0(∇ · ue

0) + 2µ0〈∇̂ue
0ν, ν〉

µ1〈∇̂ui
0ν, τ〉 = µ0〈∇̂ue

0ν, τ〉.
Observe that

∇ · ui
0 = tr(∇̂ui

0) = 〈∇̂ui
0τ, τ〉+ 〈∇̂ui

0ν, ν〉,
where tr(A) denotes the trace of the matrix A. It thus follows that

(2.8) ∇ · ui
0 =

λ0 + 2µ0

λ1 + 2µ1
∇ · ue

0 +
2(µ1 − µ0)
λ1 + 2µ1

〈∇̂ue
0τ, τ〉.

We then obtain from (2.7) and (2.8) that

(C1∇̂ui
0)τ = λ1(∇ · ui

0)τ + 2µ1∇̂ui
0τ

= λ1(∇ · ui
0)τ + 2µ1〈∇̂ui

0τ, τ〉τ + 2µ1〈∇̂ui
0τ, ν〉ν

=
λ1(λ0 + 2µ0)

λ1 + 2µ1
(∇ · ue

0)τ +
2λ1(µ1 − µ0)

λ1 + 2µ1
〈∇̂ue

0τ, τ〉τ

+ 2µ1〈∇̂ue
0τ, τ〉τ + 2µ0〈∇̂ue

0τ, ν〉ν
= p(∇ · ue

0)τ + 2µ0∇̂ue
0τ + q〈∇̂ue

0τ, τ〉τ,(2.9)

where

(2.10) p :=
λ1(λ0 + 2µ0)

λ1 + 2µ1
and q :=

4(µ1 − µ0)(λ1 + µ1)
λ1 + 2µ1

.

If we define a new 4-tensor K by

(2.11) K := pI2 ⊗ I2 + 2µ0I4 + qI2 ⊗ (τ ⊗ τ),

then (2.9) can rewritten in the following condensed form:

(2.12) (C1∇̂ui
0)τ = (K∇̂ue

0)τ on ∂D.

The ε-perturbation, denoted by Dε, of the domain D is given by

∂Dε =
{

x̃ : x̃ = x + εh(x)ν(x), x ∈ ∂D

}
,
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where, we assume, h ∈ C1,1(∂D) with ‖h‖C1,1 ≤ H for some positive constant H
and ε is a positive small parameter.

Let CDε
= C0χΩ\Dε

+ C1χDε
and consider the solution (uε, ω

2
ε ) ∈ H1(Ω) × R+

of the eigenvalue problem on the perturbed domain:

(2.13)





∇ ·
(
CDε

∇̂uε

)
= −ω2

ε uε in Ω,

uε = 0 on ∂Ω,

||uε||L2(Ω) = 1.

The purpose of this section is to investigate the asymptotic behavior of the
eigenvalue of (2.13) as ε tends to 0 and the main result is the following.

Theorem 2.1. Let ω2
0 be a simple eigenvalue of the problem (2.4). Then, there

exists a simple eigenvalue of problem (2.13), denoted by ω2
ε , such that ω2

ε → ω2
0 as

ε → 0 and

(2.14) ω2
ε − ω2

0 = ε

∫

∂D

h(x)M[∇̂ue
0](x) : ∇̂ue

0(x) dσ(x) + O(ε1+β),

for some positive β and where

(2.15) M[∇̂ue
0] := (C1 − C0)C−1

1

(
(K∇̂ue

0τ)⊗ τ + (C0∇̂ue
0ν)⊗ ν

)
.

Here, ν, τ are respectively the outward normal vector and the tangent vector to ∂D.

Before proving Theorem 2.1, let us express M[∇̂ue
0] in more explicit forms. Put

C := (C1 − C0)C−1
1

for convenience and set

(2.16) Λ1 :=
1
2
I2 ⊗ I2, Λ2 := I4 −Λ1.

Since for any 2× 2 symmetric matrix A

I2 ⊗ I2(A) = (A : I2) I2 = tr(A) I2 and I4(A) = A,

one can immediately see that

Λ1Λ1 = Λ1, Λ2Λ2 = Λ2, Λ1Λ2 = Λ2Λ1 = 0.

With the notation (2.16), one can easily see that

C−1
1 =

1
2(λ1 + µ1)

Λ1 +
1

2µ1
Λ2,

which immediately yields
C = λI2 ⊗ I2 + 2µI4,

where

(2.17) λ =
λ1 − λ0 + µ1 − µ0

2(λ1 + µ1)
− µ1 − µ0

2µ1
, µ =

µ1 − µ0

2µ1
.

Straightforward computations yield

(K∇̂ue
0τ)⊗ τ + (C0∇̂ue

0ν)⊗ ν

= p(∇ · ue
0)τ ⊗ τ + 2µ0(∇̂ue

0τ)⊗ τ + q〈∇̂ue
0τ, τ〉τ ⊗ τ

+ λ0(∇ · ue
0)ν ⊗ ν + 2µ0(∇̂ue

0ν)⊗ ν

= p(∇ · ue
0)τ ⊗ τ + q〈∇̂ue

0τ, τ〉τ ⊗ τ + λ0(∇ · ue
0)ν ⊗ ν + 2µ0∇̂ue

0,
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and hence

C
(
(K∇̂ue

0τ)⊗ τ + (C0∇̂ue
0ν)⊗ ν

)

= λ(p + λ0 + 2µ0)(∇ · ue
0)I2 + λq〈∇̂ue

0τ, τ〉I2

+ 2µ
[
p(∇ · ue

0)τ ⊗ τ + q〈∇̂ue
0τ, τ〉τ ⊗ τ + λ0(∇ · ue

0)ν ⊗ ν + 2µ0∇̂ue
0

]
.

Therefore, as an operator, M can be expressed as

M = λ(p + λ0 + 2µ0)I2 ⊗ I2 + λqI2 ⊗ (τ ⊗ τ) + 2µp(τ ⊗ τ)⊗ I2(2.18)

+ 2µq(τ ⊗ τ)⊗ (τ ⊗ τ) + 2µλ0(ν ⊗ ν)⊗ I2 + 4µµ0I4 .

We will prove Theorem 2.1 using Osborn’s result in [O] concerning estimates for
the eigenvalues of a sequence of self-adjoint compact operators.

Let T : L2(Ω) → L2(Ω) be the operator given by Tf = v0 where v0 is the
solution to

(2.19)

{
∇ ·

(
CD∇̂v0

)
= f in Ω,

v0 = 0 on ∂Ω,

and let Tε : L2(Ω) → L2(Ω) be the operator given by Tεf = vε where vε is the
solution to

(2.20)

{
∇ ·

(
CDε∇̂vε

)
= f in Ω,

vε = 0 on ∂Ω.

Clearly T (:= T0) and {Tε}ε>0 are linear and self-adjoint operators.
We claim that Tε is a compact operator. In fact, by standard energy estimates

based on Korn and Poincaré inequalities, we have that for all ε ≥ 0,

‖Tεf‖H1(Ω) = ‖vε‖H1(Ω) ≤ C‖∇vε‖L2(Ω) ≤ C‖∇̂vε‖L2(Ω) ≤ C‖f‖L2(Ω),

where the constant C is independent of ε. Since the embedding of H1(Ω) into
L2(Ω) is compact, we conclude that Tε is compact. Moreover, since the constant C
is independent of ε, the sequence of operators (Tε)ε≥0 is collectively compact.

We now prove that Tεf converges to Tf in L2(Ω) for every f ∈ L2(Ω). We first
observe a simple relation

(2.21)
∫

Ω

CDε∇̂(vε − v0) : ∇̂(vε − v0) =
∫

Dε4D

(C0 − C1)∇̂v0 : ∇̂(vε − v0).

The strong convexity assumption (2.3) on CDε and Korn’s inequality yield
∫

Ω

CDε∇̂(vε − v0) : ∇̂(vε − v0) ≥ C

∫

Ω

|∇̂(vε − v0)|2 ≥ C

∫

Ω

|∇(vε − v0)|2,

where C depends only on α0, β0 and Ω. On the other hand, by Hölder’s inequality,
we get ∫

Dε4D

(C0 − C1) ∇̂v0 : ∇̂(vε − v0) dx

≤ max {2|µ0 − µ1|, |λ0 − λ1|} ‖∇v0‖L2(Dε4D)‖∇(vε − v0)‖L2(Ω).

We then obtain from the above two inequalities and (2.21) that

‖∇(vε − v0)‖L2(Ω) ≤ C‖∇v0‖L2(Dε4D).
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It then follows from Poincaré’s inequality that

(2.22) ‖vε − v0‖H1(Ω) ≤ C‖∇v0‖L2(Dε4D).

Since ∇v0 ∈ L2(Ω) and |Dε4D| → 0 as ε → 0, we get ‖vε−v0‖H1(Ω) → 0 as ε → 0.
In particular, ‖vε − v0‖L2(Ω) = ‖Tεf − Tf‖L2(Ω) → 0 as ε → 0.

So, a theorem of Osborn [O] yields

(2.23)
∣∣∣∣

1
ω2

ε

− 1
ω2

0

+ 〈(T − Tε)u0, u0〉
∣∣∣∣ ≤ C‖(T − Tε)u0‖2L2(Ω),

where C is independent of ε and u0 is the solution of (2.4). Furthermore, if uε is
the solution to (2.13), then

(2.24) ‖uε − u0‖L2(Ω) ≤ C‖(T − Tε)u0‖L2(Ω).

Let us state some regularity results on uε and u0 that will be used in the sequel:
There is a constant C independent of ε such that

(2.25) ‖uε‖C1,α(D̄ε) + ‖uε‖C1,α(Ωd0/2\Dε) ≤ C,

for some α > 0. This estimate extends the regularity results obtaind by De Giorgi
and Nash in the scalar case (cf., for instance, [GT]) to the case of bidimensional
elliptic systems.

Let Ωd0/2 := {x ∈ Ω : dist(x, ∂Ω) > d0/2} for some d0 > 0. Li and Nirenberg
proved in [LN] that uε ∈ C1,α(D̄ε) ∩ C1,α(Ω\Dε) for some α ∈ (0, 1), and there is a
constant C depending on the ellipticity constants α0 and β0, d0, and C1,1 norm of
Dε such that

(2.26) ‖uε‖C1,α(D̄ε) + ‖uε‖C1,α(Ωd0/2\Dε) ≤ C(‖uε‖L2(Ω) + ‖uε‖L∞(Ωd0/2)).

Since uε ∈ H1(Ω) and its norm is bounded regardless of ε, it follows from the
Sobolev embedding theorem that uε ∈ Lq(Ω) for q > 2 independently of ε. Then,
by Theorem A.1, it follows that ∇uε ∈ L2+η

loc (Ω) for some η > 0. Again by Sobolev
embedding theorem, this implies that uε ∈ Cγ

loc(Ω) with γ = 1 − 2
2+η . Finally,

recalling that ‖uε‖L2(Ω) = 1, we obtain (2.25).
Let us now evaluate the right-hand side of (2.24). We know that Tu0 = − 1

ω2
0
u0

and Tεu0 = ṽε where ṽε is the solution to

(2.27)

{
∇ ·

(
CDε∇̂ṽε

)
= u0 in Ω,

ṽε = 0 on ∂Ω.

Let ũ0 = − 1
ω2

0
u0, then

(2.28)

{
∇ ·

(
CD∇̂ũ0

)
= u0 in Ω,

ũ0 = 0 on ∂Ω.

Hence, one can show in the same way as for (2.22) that

‖ṽε − ũ0‖2H1(Ω) ≤ C‖∇u0‖2L2(Dε4D),

and by the regularity estimates (2.25)

‖∇u0‖L2(Dε4D) ≤ C|Dε4D|1/2,

which implies

(2.29) ‖ṽε − ũ0‖H1(Ω) ≤ C|Dε4D|1/2
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for some constant C independent of ε.
We now prove the following estimate

(2.30) ‖ṽε − ũ0‖L2(Ω) ≤ C|Dε4D|1/2+η

for η > 0. To this end, we need the following lemma whose proof will be given in
Appendix A.

Lemma 2.2. Let C = (Cijkl) be an L∞(Ω) strongly convex elliptic tensor field,
F ∈ L∞(ω) 2× 2 matrix-valued function, where ω ⊂ Ω is a measurable set. Let ϕ
be a solution to

(2.31)

{
∇ ·

(
C∇̂ϕ

)
= ∇ · (χωF ) in Ω,

ϕ = 0 on ∂Ω.

Then,

(2.32) ‖ϕ‖L2(Ω) ≤ C|ω|1/2+η‖F‖L∞(ω),

where η > 0.

We apply the above lemma to the function ṽε− ũ0. Observe that ṽε− ũ0 satisfies
{
∇ ·

(
C∇̂(ṽε − ũ0)

)
= ∇ · ((CD − Cε)∇̂ṽε) in Ω,

ṽε − ũ0 = 0 on ∂Ω,

and hence we get

(2.33) ‖ṽε − ũ0‖L2(Ω) ≤ C|Dε4D|1/2+η‖∇ṽε‖L∞(ω).

Furthermore, according to (2.26), we have

(2.34) ‖ṽε‖C1,α(D̄ε) + ‖ṽε‖C1,α(Ωd0/2\Dε) ≤ C(‖ṽε‖L2(Ω) + ‖u0‖L∞(Ωd0/2)).

Since ‖ṽε‖H1(Ω) ≤ C‖u0‖L2(Ω) ≤ C, it follows from (2.25) that

(2.35) ‖ṽε‖C1,α(D̄ε) + ‖ṽε‖C1,α(Ωd0/2\Dε) ≤ C.

The desired estimate (2.30) now follows from (2.33), (2.34), and (2.35), and we
conclude that

(2.36) ‖(Tε − T )u0‖L2(Ω) = ‖ṽε − ũ0‖L2(Ω) ≤ Cε1/2+η.

It also follows from (2.24) that

(2.37) ‖uε−u0‖L2(Ω) ≤ Cε1/2+η.

The following lemma holds.

Lemma 2.3. There exists a constant C independent of ε such that

(2.38) ‖∇(ṽε − ũ0)‖L∞(∂Dε\D) + ‖∇(ṽε − ũ0)‖L∞(∂Dε∩D) ≤ Cε
α

2(α+2) .

Proof. To prove (2.38) we make use of a mean value property for biharmonic func-
tions (see [BF, Theorem 4.1]).

Let 2ε < d < d0/2 and let

(2.39) Ωε
d := {x ∈ Ω\(D ∪Dε) : dist(x, ∂(Ω\(D ∪Dε))) > d }.
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Since∇(ṽε−ũ0) is biharmonic in Ω\(D∪Dε), we may apply the mean value theorem
at points y ∈ Ωε

d:

∇(ṽε − ũ0)(y) =
12
π


 4

d4

∫

B d
2
(y)

(ṽε − ũ0)⊗ r dx− 1
d4

∫

B d
2
(y)

r2∇(ṽε − ũ0) dx


 ,

where r(x) = x − y and r = |r|. It then follows from the Hölder inequality and
(2.29) that

(2.40) ‖∇(ṽε − ũ0)‖L∞(Ωε
d) ≤ Cd−2ε

1
2 ,

where C is independent of ε.
Set

ṽe
ε = ṽε|Ω\D and ṽi

ε = ṽε|D,

as in (2.6). For y ∈ ∂Dε\D, let yd denote the closest point to y in the set Ωε
d. By

(2.35), we obtain
|∇ṽe

ε (y)−∇ṽe
ε (yd)| ≤ Cdα.

Likewise, we have
|∇ũ0(y)−∇ũ0(yd)| ≤ Cdα.

It then follows from (2.40) that

|∇(ṽe
ε − ũe

0)(y)| ≤ |∇ṽe
ε (y)−∇ṽe

ε (yd)|+ |∇ṽe
ε (yd)−∇ũe

0(yd)|
+ |∇ũe

0(yd)−∇ũe
0(y)|

≤ C(dα + d−2ε1/2).

Minimizing the right-hand side of the above inequality with respect to d, we get

‖∇(ṽe
ε − ũe

0)‖L∞(∂Dε\D) ≤ Cε
α

2(α+2) .

In a similar way one can prove that

‖∇(ṽi
ε − ũi

0)‖L∞(∂Dε∩D) ≤ Cε
α

2(α+2)

to complete the proof. ¤

Proof of Theorem 2.1. We begin by computing the term 〈(T −Tε)u0, u0〉 appearing
in (2.24). In view of (2.27) and (2.28), we have

〈(T − Tε)u0, u0〉 = 〈ũ0 − ṽε, u0〉

= − 1
ω2

0

∫

Ω

u2
0 −

∫

Ω

u0ṽε

=
1
ω2

0

∫

Ω

(CDε − CD)∇̂ṽε : ∇̂u0

=
1
ω2

0

∫

Dε\D
(C1 − C0)∇̂ṽi

ε : ∇̂ue
0 −

1
ω2

0

∫

D\Dε

(C1 − C0)∇̂ṽe
ε : ∇̂ui

0.

Let xt := x + th(x)ν(x) for x ∈ ∂D and t ∈ [0, ε]. We get, for ε small enough,

(2.41)

1
ω2

0

∫

Dε\D
(C1 − C0)∇̂ṽi

ε : ∇̂ue
0dx

=
1
ω2

0

∫ ε

0

∫

∂D∩{h>0}
h(x)(C1 − C0)∇̂ṽi

ε(xt) : ∇̂ue
0(xt) dσ(x) dt + O(ε2),
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and

(2.42)
− 1

ω2
0

∫

D\Dε

(C1 − C0)∇̂ṽe
ε : ∇̂ui

0 dx

=
1
ω2

0

∫ ε

0

∫

∂D∩{h<0}
h(x)(C1 − C0)∇̂ṽe

ε (xt) : ∇̂ui
0(xt) dσ(x) dt + O(ε2).

Using the gradient estimates (2.34) and (2.25) for ṽε and u0, we can approximate

(C1 − C0)∇̂ṽi
ε(xt) : ∇̂ue

0(xt) = (C1 − C0)∇̂ṽi
ε(xε) : ∇̂ue

0(xε) + O(εα)

for ε sufficiently small. It thus follows from the transmission conditions (2.5) and
(2.12) for the function ṽε that

∇̂ṽi
ε(xε) = C−1

1

(
(C1∇̂ṽi

ε(xε)τ)⊗ τ + (C1∇̂ṽi
ε(xε)ν)⊗ ν

)

= C−1
1

(
(K∇̂ṽe

ε (xε)τ)⊗ τ + (C0∇̂ṽe
ε (xε)ν)⊗ ν

)
.

We then get using Lemma 2.3 that

∇̂ṽi
ε(xε) =

1
ω2

0

C−1
1

(
(K∇̂ue

0(xε)τ)⊗ τ + (C0∇̂ue
0(xε)ν)⊗ ν

)
+ O(ε

α
2(α+2) )

for some γ > 0 and hence

∇̂ṽi
ε(xε) =

1
ω2

0

C−1
1

(
(K∇̂ue

0(x)τ)⊗ τ + (C0∇̂ue
0(x)ν)⊗ ν

)
+ O(ε

α
2(α+2) ).

Thus we get

1
ω2

0

∫

Dε\D
(C1 − C0)∇̂ṽi

ε : ∇̂ue
0dx

=
ε

ω4
0

∫

∂D∩{h>0}
h(x)M[∇̂ue

0](x) : ∇̂ue
0(x) dσ(x) + O(ε1+

α
2(α+2) ),

for α > 0, where M[∇̂ue
0] is given by (2.15).

Similarly, we get

− 1
ω2

0

∫

D\Dε

(C1 − C0)∇̂ṽi
ε : ∇̂ue

0dx

=
ε

ω4
0

∫

∂D∩{h<0}
h(x)M[∇̂ue

0](x) : ∇̂ue
0(x) dσ(x) + O(ε1+

α
2(α+2) ).

We finally conclude that

〈(T − Tε)u0, u0〉 =
ε

ω4
0

∫

∂D

h(x)M[∇̂ue
0](x) : ∇̂ue

0(x) dσ(x) + O(ε1+
α

2(α+2) ),

which together with (2.23) yields Theorem 2.1. This completes the proof. ¤
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3. Dual asymptotic formula

Let (u0, ω
2
0) be the solution to (2.4). For g ∈ L2(∂Ω) such that

∫
∂Ω

g·(CD∇̂u0)ν =
0, let wg be a solution to

(3.1)
{ ∇ · (CD∇wg) = ω2

0wg in Ω,
wg = g on ∂Ω.

Multiplying the first equation in (3.1) by uε and integrating over Ω we get

ω2
0

∫

Ω

wg · uε =
∫

Ω

CD∇̂uε : ∇̂wg.

Since
∫

∂Ω
g · (CD∇̂u0)ν = 0 and

ω2
ε

∫

Ω

wg · uε =
∫

Ω

CDε
∇̂uε : ∇̂wg −

∫

∂Ω

g · C0(∇̂uε − ∇̂u0)ν,

we obtain∫

∂Ω

g · C0(∇̂uε − ∇̂u0)ν + (ω2
ε − ω2

0)
∫

Ω

wg · uε =
∫

Ω

(CDε
− CD)∇̂uε : ∇̂wg.

Since ω2
ε − ω2

0 = O(ε) and ‖uε−u0‖L2(Ω) ≤ Cε1/2+η, we get, for ε small enough,

(3.2)

∫

∂Ω

g · C0(∇̂uε − ∇̂u0)ν + (ω2
ε − ω2

0)
∫

Ω

wg · u0

=
∫

Ω

(CDε − CD)∇̂uε : ∇̂wg + O(ε1+β),

for some β > 0.
We now prove the following theorem. The asymptotic formula in this theorem

can be regarded as a dual formula to that of ω2
ε − ω2

0 in (2.13). It plays a key role
in our reconstruction procedure in later sections.

Theorem 3.1. The following asymptotic formula holds as ε → 0:

(3.3)

∫

∂Ω

g · C0(∇̂uε − ∇̂u0)ν + (ω2
ε − ω2

0)
∫

Ω

wg · u0

= ε

∫

∂D

h(x)M[∇̂ue
0](x) : ∇̂we

g(x)dσ(x) + O(ε1+β)

for some β > 0.

To prove (3.3), it suffices, thanks to (3.2), to show that

−
∫

Ω

(CDε − CD)∇̂uε : ∇̂wg

= −ε

∫

∂D

h(x)M[∇̂ue
0](x) : ∇̂we

g(x)dσ(x) + O(ε1+β).

This can be proved following the same lines of the proof of Theorem 2.1 in the
previous section, as long as we have proper estimates for uε and wg. The required
estimates are

(3.4) ‖wg‖C1,α(D̄) + ‖wg‖C1,α(Ωd0/2\D) ≤ C

and

(3.5) ‖∇(ue
ε − ue

0)‖L∞(∂Dε\D) + ‖∇(ui
ε − ui

0)‖L∞(∂Dε∩D) ≤ Cεγ
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for some constant C independent of ε and γ > 0. The rest of this section is devoted
to proving (3.4) and (3.5).

The estimate (3.4) holds since ∇·(CD∇̂)+ω2
0 with Dirichlet boundary conditions

is well posed on the subspace of H1(Ω) orthogonal to u0 and, on the other hand,
u0 itself satisfies such an estimate.

In order to prove (3.5), let 2ε < d < d0/2 and Ωε
d be defined as in (2.39). Clearly,

the function φε := ∇(uε − u0) is a solution to the following equation in Ω\D ∪Dε:

∇ ·
(
C0∇̂φε

)
+ ω2

ε φε = (ω2
0 − ω2

ε )∇u0.

By standard regularity results for elliptic systems with constant coefficients, ∇u0

and φε belong to L2+η
loc for some η > 0. Now, from a generalization of Meyer’s

theorem to systems (see Appendix A) we have

(3.6) ‖∇φε‖L2+η(Ωε
d) ≤ C

(
d−1+ 2

2+η ‖∇φε‖L2(Ωε
d/2)

+
∣∣ω2

0 − ω2
ε

∣∣ ‖u0‖H1(Ωε
d/2)

)
.

We now apply Caccioppoli’s inequality on φε to have

‖∇φε‖L2(Ωε
d/2)

≤ C
(
d−2‖φε‖L2(Ωε

d/3)
+

∣∣ω2
0 − ω2

ε

∣∣ ‖∇u0‖L2(Ωε
d/3)

)
.

Since
∣∣ω2

0 − ω2
ε

∣∣ ≤ Cε and ‖φε‖L2(Ωε
d/3)

≤ C
√

ε, we have

(3.7) ‖∇φε‖L2(Ωε
d/2)

≤ C
(
d−2

√
ε + ε

)
.

Inserting (3.7) into (3.6), we obtain

(3.8) ‖∇φε‖L2+η(Ωε
d) ≤ C

(
d−3+ 2

2+η
√

ε + ε
)
≤ Cd−3+ 2

2+η
√

ε.

On the other hand, since ‖φε‖L2(Ωε
d/2)

≤ C
√

ε, we have from the Sobolev embedding
theorem and (3.7) that

(3.9) ‖φε‖L2+η(Ωε
d) ≤ C‖φε‖H1(Ωε

d/2)
≤ Cd−2

√
ε.

Using the Sobolev imbedding theorem again, it follows from (3.9) and (3.8) that

‖φε‖L∞(Ωε
d) ≤ Cd−3+ 2

2+η
√

ε.

Now, let y ∈ ∂Dε\D and let yd denote the closest point to y in the set Ωε
d. From

the gradient estimates for uε and u0, we have

(3.10) |∇ue
ε(y)−∇ue

ε(yd)| ≤ Cdα,

which yields

|∇(ue
ε − ue

0)(y)| ≤ |∇ue
ε(y)−∇ue

ε(yd)|+ |∇ue
ε(yd)−∇ue

0(yd)|
+ |∇ue

0(yd)−∇ue
0(y)|

≤ C(dα + d−3+ 2
2+η ε1/2) .

Choosing d = ε
1

2(3+α− 2
2+η

) , we get

|∇(ue
ε − ue

0)(y)| ≤ Cεγ ,

where γ = α

2(3+α− 2
2+η ) , and hence

‖∇(ue
ε − ue

0)‖L∞(∂Dε\D) ≤ Cεγ .
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In a similar way, one can show that

‖∇(ui
ε − ui

0)‖L∞(∂Dε∩D) ≤ Cεγ .

4. Reconstruction procedure

The inverse problem we consider in this section is to recover some information
about h from the variations of the modal parameters (ωε−ω0,C0(∇̂uε−∇̂u0)ν|∂Ω)
associated with the eigenvalue problem (2.13).

The dual asymptotic formula can be used to reconstruct some information about
h from measurements of ω2

ε −ω2
0 and C0(∇̂uε−∇̂u0)ν on ∂Ω. In fact, we minimize

over h the functional

(4.1)

L∑

l=1

∣∣∣∣
∫

∂Ω

gl · C0(∇̂uε − ∇̂u0)ν + (ω2
ε − ω2

0)
∫

Ω

wgl
· u0

−ε

∫

∂D

h(x)M[∇̂ue
0](x) : ∇̂we

gl
(x)dσ(x)

∣∣∣∣
2

for functions gl ∈ L2(∂Ω) satisfying
∫

∂Ω
gl · (CD∇̂u0)ν = 0 for l = 1, . . . , L.

The best choice of g1, . . . , gL is such that the functions

M[∇̂ue
0] : ∇̂we

gl
on ∂D

are highly oscillating. Let

V :=
{

g ∈ L2(∂Ω) :
∫

∂Ω

g · (CD∇̂u0)ν = 0
}

and define Λ : V → L2(∂D) by

(4.2) Λ(g) := M[∇̂ue
0] : ∇̂we

g on ∂D,

where wg is the solution to (3.1). The best choice of {g1, . . . , gL} is then to take
them as a basis of the image space of Λ∗Λ, where Λ∗ : L2(∂D) → V(∂Ω) is the
adjoint of Λ. Moreover, one should look for the changes h as a linear combination
of M[∇̂ue

0] : ∇̂we
g|∂D for g ∈ Image(Λ∗Λ):

h(x) =
L∑

l=1

αlvgl
,

where

(4.3) vgl
:= M[∇̂ue

0] : ∇̂we
gl

on ∂D, l = 1, . . . , L,

L is the dimension of Image(Λ∗Λ), and gl are the significant singular vectors of
Λ. We call the vectors vgl

, l = 1, . . . , L, the optimally illuminated vectors. The
minimization procedure reduces then to

(4.4)

min
αl′ ,l′=1,...,L

L∑

l=1

∣∣∣∣
∫

∂Ω

gl · C0(∇̂uε − ∇̂u0)ν + (ω2
ε − ω2

0)
∫

Ω

wgl
· u0

−ε

L∑

l′
αl′

∫

∂D

vgl′ (x)vgl
(x)

∣∣∣∣
2

.
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This quadratic minimization problem has a unique solution which is stable with
respect to the measurements vector given by

(
∫

∂Ω

g1 · C0(∇̂uε − ∇̂u0)ν, . . . ,

∫

∂Ω

gL · C0(∇̂uε − ∇̂u0)ν).

This implies that if h is a linear combination of the optimally illuminated vectors,
then it can be uniquely reconstructed from the measurements in a robust way.
Moreover, the resolution limit in reconstructing the changes h is given by

(4.5) δ =
1

maxl(||∂wgl
/∂τ ||L2(∂D)/||wgl

||L2(∂D))
.

See [AGJK].

5. Incomplete measurements

Suppose that C0(∇̂uε−∇̂u0)ν is measured only in an open part Γ1 of the bound-
ary ∂Ω. For g ∈ L2(∂Ω) such that g = 0 on Γ2 and

∫
Γ1

g · (CD∇̂u0)ν = 0, let wg be
the solution to (3.1). As in Theorem 3.1, we can prove that the following asymptotic
formula holds as ε → 0:

(5.1)

∫

Γ1

g · C0(∇̂uε − ∇̂u0)ν + (ω2
ε − ω2

0)
∫

Ω

wg · u0

= ε

∫

∂D

h(x)M[∇̂ue
0](x) : ∇̂we

g(x)dσ(x) + O(ε1+β)

for some β > 0. Define

Vloc :=
{

g ∈ L2(∂Ω) : g = 0 on Γ2 and
∫

Γ1

g · (CD∇̂u0)ν = 0
}

.

Consider Λloc : Vloc → L2(∂D) given by

Λloc(g) := M[∇̂ue
0] : ∇̂we

g on ∂D,

where wg is the solution to (3.1).
In the case of incomplete measurements, the optimally illuminated vectors are

given by (4.3) for g significant (right) singular vector of Λloc. The minimization
procedure follows the one with complete measurements. However, the resolution in
reconstructing h is not uniform. The ‘illuminated region’ would be better recon-
structed than the non-illuminated one.

6. Numerical results

We present several examples of the interface reconstruction. For computations,
the background domain Ω is assumed to be the unit disk centered at the origin,
and the inclusion D is a disk centered at (0, 0.1) with the radius 0.4. The Lamé
constants of Ω \ Dε and Dε are given by (λ0, µ0) = (1, 1) and (λ1, µ1) = (1.5, 2),
respectively.

We represent the perturbation function h as

h =
18∑

p=0

apΦ(θ),

where

(6.1) Φ0(θ) = 1, Φ2p−1(θ) = cos pθ, Φ2p(θ) = sin pθ, p = 1, . . . , 9.
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We use the first eigenvalue and the corresponding (two) eigenfunctions of D and
Dε, which are denoted by u0,j and uε,j (j = 1, 2), respectively. The eigenvalue,
eigenfunctions, and wgil

in the following are simulated using the PDE Toolbox of
MATLAB. Numerical computation reveals that the first eigenvalue has multiplicity
two, which may be two very close simple eigenvalues. Even though the theory
developed in previous sections is for simple eigenvalues, this does not cause any
trouble. We simply superpose the algebraic systems to minimize the functional
(4.1) (see below).

For the test function wg, which is a solution to (3.1), we use

(6.2) gil = (cil, dil) +





(cos lθ, 0) for i = 1,

(0, cos lθ) for i = 2,

(sin lθ, 0) for i = 3,

(0, sin lθ) for i = 4,

l = 1, . . . , L(= 5),

and corresponding solutions are denoted by wgil
. They are such that

∫
Ω

wgil
·u0,j 6=

0. Moreover, the constants (cil, dil) are chosen to fulfil the orthogonality conditions
∫

∂Ω

gil · (CD∇̂u0,j)ν = 0, j = 1, 2.

In order to minimize the functional (4.1), we construct a 40× 19 matrix M as

M
(
20(j − 1) + 4(l − 1) + i, p

)
= ε

∫

∂D

Φp(x)M[∇̂ue
0,j ](x) : ∇̂we

gil
(x)dσ(x),

where 1 ≤ j ≤ 2, 1 ≤ l ≤ 5, 1 ≤ i ≤ 4, and 0 ≤ p ≤ 18. The measurements vector
B is 40-dimensional vector given by

B(20(j−1)+4(l−1)+ i) =
∫

∂Ω

gil · C0(∇̂uε,j − ∇̂u0,j)ν + (ω2
0 − ω2

ε )
∫

Ω

wgil
· u0,j .

We then compute the coefficients ap’s of h using the formula

(6.3) (a0, . . . , a18) =
(
MT M + δI19

)−1
MT B,

where I19 is the 19× 19 identity matrix and δ is the regularization parameter.

Example 1. In this example, h(θ) = 1 + 2 cos pθ, p = 0, 3, 6, 9, and ε = 0.03.
Here and in the examples that follow, we assume that ε is known and reconstruct
h. The regularization parameter δ is set to be 10−3, 10−3, 10−5, 2 · 10−6 for each
p = 0, 3, 6, 9. Figure 1 shows results of reconstruction with well chosen δ. It shows
that the reconstruction algorithm works pretty well if the perturbation h is not
highly oscillating. Even when h is highly oscillating, the reconstructed interface
∂D̃ε reveals general information of the shape of the interface. Table 1 shows the
ratio of symmetric differences |D̃ε4D| and |Dε4D| for ε = 0.02, 0.03, 0.04 with
various regularization parameters δ, where D̃ is the reconstructed inclusion. It
shows that the ratio is close to 1 for well-chosen δ.

The next example is to show the result of minimizing the functional (4.4) us-
ing the optimally illuminated vectors. To compute the significant eigenvalues and
eigenvectors, we use the basis given in (6.2). To make the index simpler, we denote
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−1 0 1

−1

−0.1

1

−1 0 1

−1

−0.1

1

−1 0 1

−1

−0.1

1

−1 0 1

−1

−0.1

1

Figure 1. The solid grey curves represent the interfaces, which
are perturbations of disks, given by the dashed grey curves. The
perturbation is given by εh where ε = 0.03. The black curves are
the reconstructed interfaces.

gil as gp, p = 1, . . . , 20. For j = 1, 2, let Λj be the operator defined in (4.2) using
u0,j , which is one of two eigenfunctions corresponding the first eigenvalue, and let

Λ∗jΛj(gp) =
20∑

l=1

d(j)
pq gq for p = 1, . . . , 20,

We then compute (d(j)
pq ) by solving the matrix equation

(6.4)
( ∫

∂D

Λ∗j (gp)Λj(gq)dσ
)

= (d(j)
pq )·

( ∫

∂Ω

gpgqdσ
)
.

It turns out that, for each j = 1, 2, (d(j)
pq ) has six significant eigenvalues counting

multiplicities as shown in Figure 2.
Let c(j,i) = (c(j,i)

p )20p=1, i = 1, . . . , 6, be significant eigenvectors of (d(j)
pq ), and

define

φ
(j)
i =

20∑

l=1

c(j,i)
p gp(x), j = 1, 2, i = 1, . . . , 6.

We note that φ
(j)
i , i = 1, . . . , 6, are significant eigenvectors of Λ∗jΛj , j = 1, 2.

In example 2, we look for h as a linear combination of Λj(φ
(j)
i ), j = 1, 2, i =

1, . . . , 6.

Example 2 [Minimization using significant eigenvectors] . In this example,
we look for h as the linear combination of Λj(φ

(j)
i ), j = 1, 2, 1 ≤ i ≤ 6. The actual
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p δ |D̃ε4D|
|Dε4D|

ε = 0.02 ε = 0.03 ε = 0.04
0 10−2 0.8835 0.8411 0.8127

10−3 0.5622 0.4130 0.3447
10−4 0.4527 0.5210 0.6647
10−5 0.8558 1.1803 1.4565

3 10−2 0.7667 0.7244 0.7821
10−3 0.6484 0.7769 1.0457
10−4 0.6371 0.8967 1.3637
10−5 1.1516 1.6356 2.2430

6 10−2 0.9977 1.0196 1.0577
10−3 0.9950 1.1380 1.4119
10−4 0.9137 1.1642 1.6217
10−5 1.0286 1.3878 1.9081

9 10−2 1.0103 1.0419 1.0928
10−3 1.0741 1.2865 1.6192
10−4 1.1330 1.4803 1.9743
10−5 1.1339 1.5083 1.9957

Table 1. For h(θ) = 1 + 2 cos pθ, p = 0, 3, 6, 9, the area difference
ratio |D̃ε4D|

|Dε4D| is presented, where D̃ε is the reconstructed inclusion.

0 2 4 6 8 10 12 14 16 18 20
0

0.5

1

1.5

2

2.5

3

3.5

 

 

eigenvalues of (d(1)
pq

)

eigenvalues of (d(2)
pq

)

Figure 2. Significant eigenvalues of Λ∗jΛj , j = 1, 2. There are 6
such eigenvalues.

perturbation is given by h = Λ1(φ
(1)
3 ) and h = 2Λ1(φ

(1)
2 )−Λ2(φ

(2)
1 ). The example in

Figure 3 shows the reconstruction of the inclusion. It shows that the minimization
using the optimally illuminated vectors is as effective as that using (4.1) or (6.3) (see
also Example 4). We emphasize that in this reconstruction h is represented using
only 12 basis functions Λj(φ

(j)
i ), while in the previous reconstruction 19 functions
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(Φp) are used. Moreover, representing h in terms of the optimally illuminated
vectors avoids to compute a basis for functions defined on the boundary of the
unperturbed inclusion.

−1 0 1

−1

−0.1

1

−1 0 1

−1

−0.1

1

Figure 3. Reconstruction in the case where h is expressed in
terms of the significant eigenvectors of Λ∗jΛj , j = 1, 2.

Example 3 [Incomplete measurements]. In this example, we use the data
only measured on the part of ∂Ω, that is {eiθ : θ ∈ [0, π]}. We look for h as
the linear combination of Λj(φ

(j)
i ), j = 1, 2, 1 ≤ i ≤ 6. Here the domain of Λj

is restricted to the functions supported on {eiθ : θ ∈ [0, π]}. The example in
Figure 4 shows the reconstruction of the inclusion, which is given by h = Λ1(φ

(1)
3 )

and h = 2Λ1(φ
(1)
2 ) − Λ2(φ

(2)
1 ). Even with incomplete data the reconstructions are

pretty accurate. See the next example for reconstruction of more general shapes.

−1 0 1

−1

−0.1

1

−1 0 1

−1

−0.1

1

Figure 4. Reconstruction from incomplete measurements.

Example 4. Figure 5 shows the reconstruction of an inclusion which is given by
εh = 0.04(1 + 2 cos 3θ) (the first row), shifted to the top by 0.2 (the second row),
and an ellipse (the third row). The left column is the results obtained using (6.3),
the middle one by using significant eigenfunctions of Λ∗jΛj , j = 1, 2, and the right
column is obtained using the incomplete measurements on {eiθ : θ ∈ [0, π]}. In this
example, the left and middle column give similar results, and the reconstructed
images are very close to the real ones. The incomplete measurement gives worse
images, but upper part which is the illuminated region is better reconstructed.



18 H. AMMARI ET AL.

−1 0 1

−1

−0.1

1

−1 0 1

−1

−0.1

1

−1 0 1

−1

−0.1

1

−1 0 1

−1

−0.1
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Figure 5. The left column is obtained using (6.3), the middle one
by using the significant eigenfunctions of Λ∗jΛj , j = 1, 2. In the
right column we use incomplete measurements.

7. Conclusion

In this paper we have first derived the leading-order term in the asymptotic for-
mula for the eigenvalue perturbation due to small changes of the interface in an
elastic body. The derivation is rigorous and based on fine estimates of the gradient
of the solution to the transmission problem of the Lamé system. We then derived a
dual asymptotic formula for the eigenvalue perturbation. We have also considered
an optimal way of representing the interface perturbation using optimally illumi-
nated vectors. Our representation is optimal: following [AGJK] one can easily prove
that one has uniqueness and Lipschitz stability for the reconstruction of the changes
spanned by the optimally illuminated vectors. Based on the dual asymptotic for-
mula, we have proposed optimization approaches for reconstructing the interface
changes from either complete or incomplete data. We have performed numerical
experiments to test the viability of the proposed algorithms. The presented results
clearly exhibit their effectiveness.
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Appendix A. Useful estimates

We state without proof a generalization of Meyer’s theorem concerning the regu-
larity of solutions to systems with bounded coefficients. For η > 0, define H1,2+η(Ω)
by

H1,2+η(Ω) :=
{

u ∈ L2+η(Ω),∇u ∈ L2+η(Ω)
}

and let H−1,2+η(Ω) be its dual. Introduce

H1,2+η
loc (Ω) :=

{
u ∈ H1,2+η(K) ∀K ⊂⊂ Ω

}
.

Theorem A.1. There exists η > 0 such that if u ∈ H1(Ω) is solution to

∇ ·
(
C∇̂u

)
= f in Ω,

where C ∈ L∞(Ω) is a strongly convex tensor and f ∈ H−1,2+η(Ω) then u ∈
H1,2+η

loc (Ω) and for any two disks Bρ ⊂ B2ρ ⊂ Ω

‖∇u‖L2+η(Bρ) ≤ C(‖f‖H−1,2+η(B2ρ) + ρ
2

2+η ‖∇u‖L2(B2ρ)).

The above theorem has been proved by Campanato in [C] in the case of strongly
elliptic systems but it is possible to extend it to more general systems. See [LN]. In
[BFM] a detailed proof of Theorem A.1 is given, which extends the proof contained
in [C] to strongly convex systems.

Proof of Lemma 2.2. We have∫

Ω

C∇̂ϕ : ∇̂ϕ =
∫

Ω

χωF : ∇̂ϕ.

Hence by the Cauchy–Schwarz inequality and Korn’s inequality we immediately get

‖∇ϕ‖L2(Ω) ≤ ‖F‖L∞(ω)|ω|1/2

and therefore,
‖ϕ‖H1(Ω) ≤ ‖F‖L∞(ω)|ω|1/2.

Let ψ be the unique solution to

(A.1)

{
∇ ·

(
C∇̂ψ

)
= ϕ in Ω,

ψ = 0 on ∂Ω.

We have

(A.2) ‖∇ψ‖L2(Ω) ≤ ‖ϕ‖H1(Ω).

By Theorem A.1, since ϕ ∈ H1(Ω) there exists η > 0 such that

‖∇ψ‖L2+η(ω) ≤ C(‖∇ψ‖L2(ω′) + ‖ϕ‖L2+η(ω′)),

where ω ⊂ ω′ ⊂ Ω. Finally, inserting (A.2) into the last inequality and using
Sobolev immersion theorem we readily get

‖∇ψ‖L2+η(ω) ≤ C‖ϕ‖L2+η(Ω).

By the Gagliardo-Nirenberg inequality, we have that

‖ϕ‖L2+η(Ω) ≤ C‖∇ϕ‖1−α
L2(Ω)‖ϕ‖α

L2(Ω)
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with α = η
η+2 . Hence

‖ϕ‖L2+η(Ω) ≤ C|ω| 1
η+2 ‖ϕ‖

η
η+2

L2(Ω).

Multiplying the equation for ψ by ϕ, integrating by parts and applying Hölder’s
inequality, we obtain ∫

Ω

ϕ2dx = −
∫

Ω

C∇̂ϕ · ∇̂ψ =
∫

Ω

χωF · ∇̂ψ

and consequently, ∫

Ω

ϕ2dx ≤ ‖F‖L∞(ω)‖∇ψ‖L2+η(ω)|ω|
η+1
η+2

≤ C|ω|‖ϕ‖
η

η+2

L2(Ω).

Hence, we get
‖ϕ‖L2(Ω) ≤ C|ω| η+2

η+4 ,

which shows that
‖ϕ‖L2(Ω) ≤ C|ω|1/2+γ ,

where γ = η
2(η+4) . This completes the proof. ¤.
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