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Abstract

In this paper we consider a purely quasi-incompressible elasticity model. We rigor-
ously establish asymptotic expansions of near- and far-field measurements of the tran-
sient elastic wave induced by a small elastic anomaly. Our proof uses layer potential
techniques for the modified Stokes system. Based on these formulas, we design asymp-
totic imaging methods leading to a quantitative estimation of elastic and geometrical
parameters of the anomaly.
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1 Introduction

An interesting approach to assessing elasticity is to use the acoustic radiation force of an
ultrasonic focused beam to remotely generate mechanical vibrations in organs [11, 14]. The
acoustic force is due to the momentum transfer from the acoustic wave to the medium. The
radiation force acts as a dipolar source. A spatio-temporal sequence of the propagation
of the induced transient wave can be acquired, leading to a quantitative estimation of the
viscoelastic parameters of the studied medium in a source-free region [6, 7].

The Voigt model has been chosen to describe the viscoelastic properties of tissues. Cathe-
line et al. [8] have shown that this model is well adapted to describe the viscoelastic response
of tissues to low-frequency excitations.

In this paper, we neglect the viscosity effect and only consider a purely quasi-incompressible
elasticity model. We derive asymptotic expansions of the perturbations of the elastic wave-
field that are due to the presence of a small anomaly in both the near- and far-field regions as
the size of the anomaly goes to zero. Then we design an asymptotic imaging method leading
to a quantitative estimation of the shear modulus and shape of the anomaly from near-field
measurements. Using time-reversal, we show how to reconstruct the location and geometric
features of the anomaly from the far-field measurements. We put a particular emphasis on
the difference between the acoustic and the elastic cases, namely, the anisotropy of the focal
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spot and the birth of a near fieldlike effect by time reversing the perturbation due to an
elastic anomaly.

The results of this paper extend those in [3] to transient wave propagation in elastic
media.

The paper is organized as follows. In Section 2 we rigorously derive asymptotic formulas
for quasi-incompressible elasticity and estimate the dependence of the remainders in these
formulas with respect to the frequency. Based on these estimates, we obtain in Section 3
formulas for the transient wave equation that are valid after truncating the high-frequency
components of the elastic fields. These formulas describe the effect of the presence of a small
elastic anomaly in both the near- and far-field. We then investigate in Section 4 the use
of time-reversal for locating the anomaly and detecting its overall geometric and material
parameters via the viscous moment tensor. An optimization problem is also formulated for
reconstructing geometric parameters of the anomaly and its shear modulus from near-field
measurements.

2 Asymptotic expansions

We suppose that an elastic medium occupies the whole space R3. Let the constants λ and
µ denote the Lamé coefficients of the medium, that are the elastic parameters in absence of
any anomaly. With these constants, Lλ,µ denotes the linear elasticity system, namely

Lλ,µu := µ∆u+ (λ+ µ)∇∇ · u. (1)

The traction on a smooth boundary ∂Ω is given by the conormal derivative ∂u/∂ν associated
with Lλ,µ,

∂u

∂ν
:= λ(∇ · u)N+ µ∇̂uN, (2)

where N denotes the outward unit normal to ∂Ω. Here ∇̂ denotes the symmetric gradient,
i.e.,

∇̂u := ∇u+∇uT , (3)

where the superscript T denotes the transpose.
The time-dependent linear elasticity system is given by

∂2t u− Lλ,µu = 0. (4)

The fundamental solution for the system (4) is given by G = (Gij) where

Gij =
1

4π

3γiγj − δij
r3

H
√
µ

α (x, t) +
1

4πα2

γiγj
r
δt= r

α
− 1

4πµ

γiγj − δij
r

δt= r√
µ
. (5)

Here r = |x|, γi = xi/r, α =
√
λ+ 2µ, δij denotes the Kronecker symbol, δ denotes the Dirac

delta function, and Hβ
α(x, t) is defined by

Hβ
α(x, t) :=

 t if
r

α
< t <

r

β
,

0 otherwise.
(6)

Note that (1/r3)Hβ
α(x, t) behaves like 1/r2 for times (r/α) < t < (r/β). See [1].
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Suppose that there is an elastic anomaly D, given by D = ϵB + z, which has the elastic
parameters (λ̃, µ̃). Here B is a C2-bounded domain containing the origin, z the location of
the anomaly, and ϵ a small positive parameter representing the order of magnitude of the
anomaly size.

For a given point source ȳ away from the anomaly D and a constant vector a, we consider
the following transient elastic wave problem in the presence of an anomaly:

∂2t u− Lλ,µu = δt=0δx=ȳa in (R3 \D)× R,

∂2t u− Lλ̃,µ̃u = 0 in D × R,

u
∣∣
+
− u

∣∣
− = 0 on ∂D × R,

∂u

∂ν

∣∣
+
− ∂u

∂ν̃

∣∣
− = 0 on ∂D × R,

u(x, t) = 0 for x ∈ R3 and t≪ 0,

(7)

where ∂u/∂ν and ∂u/∂ν̃ denote the conormal derivatives on ∂D associated respectively
with Lλ,µ and Lλ̃,µ̃. Here and throughout this paper the subscripts ± denote the limit from
outside and inside D, respectively.

As was observed in [11, 13], the Poisson ratio of human tissues is very close to 1/2,
which amounts to λ/µ and λ̃/µ̃ being very large. So we seek for a good approximation of

the problem (7) as λ and λ̃ go to +∞. To this end, let

p :=

{
λ∇ · u in (R3 \ D)× R,
λ̃∇ · u in D × R.

One can show by modifying a little the argument in [4] that as λ and λ̃ go to +∞ with λ̃/λ
of order one, the displacement field u can be represented in the form of the following series:

u(x, t) = u0(x, t) + (
1

λ
χ(R3 \D) +

1

λ̃
χ(D)) u1(x, t)

+ (
1

λ2
χ(R3 \D) +

1

λ̃2
χ(D)) u2(x, t) + . . . ,

p = p0 + (
1

λ
χ(R3 \D) +

1

λ̃
χ(D)) p1 + (

1

λ2
χ(R3 \D) +

1

λ̃2
χ(D)) p2 + . . . ,

where the leading-order term (u0(x, t), p0(x)) is solution to the following homogeneous time-
dependent Stokes system

∂2t u0 −∇ · (µ̃χ(D) + µχ(R3 \D))∇u0 −∇p0 = δt=0δx=ya in R3 × R,

∇ · u0 = 0 in R3 × R,

u0(x, t) = 0 for x ∈ R3 and t≪ 0.

(8)

The inverse problem considered in this paper is to image an anomaly D with shear
modulus µ̃ inside a background medium of shear modulus µ ̸= µ̃ from near-field or far-field
measurements of the transient elastic wave u(x, t) (approximated by u0(x, t)) that is the
solution to (7) (approximated by (8)).

In order to design an accurate and robust algorithm to detect the anomaly D incorpo-
rating the fact that D is of small size of order ϵ, we will derive an asymptotic expansion of
u0 as ϵ → 0. As shown in [2], this scale separation methodology yields to efficient medical
imaging algorithms.
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2.1 Layer potentials for the Stokes system

We begin by reviewing some basic facts on layer potentials for the Stokes system, which we
shall use in the next subsection. Relevant derivations or proofs of these facts can be found
in [12] and [4].

We consider the following modified Stokes system:{
(∆ + κ2)v −∇q = 0,

∇ · v = 0.
(9)

Let ∂i =
∂
∂xi

. The fundamental tensor Γκ = (Γκij)
3
i,j=1 and F = (F1, F2, F3) to (9) in three

dimensions are given by
Γκij(x) = −δij

4π

e
√
−1κ|x|

|x|
− 1

4πκ2
∂i∂j

e
√
−1κ|x| − 1

|x|
,

Fi(x) = − 1

4π

xi
|x|3

.

(10)

If κ = 0, let

Γ0
ij(x) = − 1

8π

(δij
|x|

+
xixj
|x|3

)
. (11)

Then Γ0 = (Γ0
ij) together with F is the fundamental tensor for the standard Stokes system

given by {
∆v −∇q = 0,

∇ · v = 0.

One can easily see that

Γκij(x) = Γ0
ij(x)−

δijκ
√
−1

6π
+O(κ2) (12)

uniformly in x as long as |x| is bounded.
For a bounded C2-domain D and κ ≥ 0, let

SκD[φ](x) :=
∫
∂D

Γκ(x− y)φ(y)dσ(y),

QD[φ](x) :=

∫
∂D

F(x− y) · φ(y) dσ(y),
x ∈ R3 (13)

for φ = (φ1, φ2, φ3) ∈ L2(∂D)3. When κ = 0, S0
D is the single layer potential for the Stokes

system. It is worth emphasizing that SκD[φ](x) is a vector while QD[φ](x) is a scalar, and
the pair (SκD[φ],QD[φ]) is a solution to (9).

By abuse of notation, let
∂u

∂N
= (∇̂u)N on ∂D.

We define the conormal derivative ∂/∂n (for the Stokes system) on ∂D by

∂v

∂n

∣∣∣∣
±
=

∂v

∂N

∣∣∣∣
±
− q
∣∣
± N
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for a pair of solutions (v, q) to (9). It is well-known that

∂SκD[φ]
∂n

∣∣∣∣
±
= (±1

2
I + (KκD)∗)[φ] a.e. on ∂D, (14)

where KκD is the boundary integral operator defined by

KκD[φ](x) := p.v.

∫
∂D

[
∂

∂N(y)
(Γκ(x− y)φ(y)) + F(x− y)N(y) · φ(y)

]
dσ(y) (15)

for almost all x ∈ ∂D and (KκD)∗ is the L2-adjoint operator of K−κ
D :

(KκD)∗[φ](x) := p.v.

∫
∂D

[
∂

∂N(x)
(Γκ(x− y)φ(y)) + F(x− y) · φ(y)N(x)

]
dσ(y). (16)

Here p.v. denotes the Cauchy principal value.
Let H1(∂D) := {φ ∈ L2(∂D), ∂φ/∂τ ∈ L2(∂D)}, ∂/∂τ being the tangential derivative.

The operator S0
D is bounded from L2(∂D)3 into H1(∂D)3 and invertible in three dimensions.

Moreover, one can see that for κ small

∥SκD[φ]− S0
D[φ]∥H1(∂D) ≤ Cκ∥φ∥L2(∂D) (17)

for all φ ∈ L2(∂D)3, where C is independent of κ. It is also well-known that the singular
integral operator (K0

D)
∗ is bounded on L2(∂D)3. Similarly to (17), one can see that for κ

small
∥(K−κ

D )∗[φ]− (K0
D)

∗[φ]∥L2(∂D) ≤ Cκ∥φ∥L2(∂D)

for some constant C independent of κ, which in view of (14) yields∥∥∥∥∥∂(SκD[φ])∂n

∣∣∣∣
±
− ∂(S0

D[φ])

∂n

∣∣∣∣
±

∥∥∥∥∥
L2(∂D)

≤ Cκ∥φ∥L2(∂D). (18)

2.2 Derivation of asymptotic expansions

Recall that ȳ is a point source in R3 such that |ȳ − z| ≫ ϵ. Taking the Fourier transform of
(8) in the t-variable yields

(∆ +
ω2

µ
)û0 −

1

µ
∇p̂0 =

1

µ
δx=ȳ a in R3 \D,

(∆ +
ω2

µ̃
)û0 −

1

µ̃
∇p̂0 = 0 in D,

û0|+ − û0|− = 0 on ∂D,

(p̂0|− − p̂0|+)N+ µ
∂û0

∂N

∣∣∣
+
− µ̃

∂û0

∂N

∣∣∣
−
= 0 on ∂D,

∇ · û0 = 0 in R3,

(19)

subject to the radiation condition:
p̂0(x) → 0 as r = |x| → +∞,

∂r∇× û0 −
√
−1

ω
√
µ
∇× û0 = o(

1

r
) as r = |x| → +∞ uniformly in

x

|x|
,

(20)
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where û0 and p̂0 denote the Fourier transforms of u0 and of p0, respectively. We say that
(û0, p̂0) satisfies the radiation condition if (20) holds.

Let

Û0(x, ω) : =
1

µ
Γ

ω√
µ (x− ȳ)a, (21)

q̂0(x) : = F(x− ȳ) · a. (22)

Then the pair (Û0(x, ω), q̂0(x)) satisfies (∆ +
ω2

µ
)Û0 −

1

µ
∇q̂0 =

1

µ
δx=ȳ a in R3,

∇ · Û0 = 0 in R3.

(23)

In view of (19) and (23), it is proper to expect that û0 converges to Û0 as ϵ tends to

0. We shall derive an asymptotic expansion for û0 − Û0 as ϵ tends to zero and carefully
estimate the dependence of the remainder on the frequency ω.

Let w = û0 − Û0 and introduce

p :=


1

µ
(p̂0 − q̂0) in R3 \D,

1

µ̃
(p̂0 − q̂0) in D.

Then the pair (w, p) satisfies

(∆ +
ω2

µ
)w −∇p = 0 in R3 \D,

(∆ +
ω2

µ̃
)w −∇p = (

1

µ
− 1

µ̃
)(ω2Û0 −∇q̂0) in D,

w|+ −w|− = 0 on ∂D,

µ(
∂w

∂N

∣∣∣
+
− p|+N)− µ̃(

∂w

∂N

∣∣∣
−
− p|−N) = (µ̃− µ)

∂Û0

∂N
on ∂D,

∇ ·w = 0,

(w, p) satisfies the radiation condition.

(24)

Therefore, we can represent (w, p) as

w(x) =


(
1

µ
− 1

µ̃
)

∫
D

Γ
ω√
µ̃ (x− y)(ω2Û0(y)−∇q̂0(y)) dy + S

ω√
µ̃

D [φ](x) in D,

S
ω√
µ

D [ψ](x) in R3 \D,
(25)

and

p(x) =

 (
1

µ
− 1

µ̃
)

∫
D

F(x− y) · (ω2Û0(y)−∇q̂0(y)) dy +QD[φ](x) in D,

QD[ψ](x) in R3 \D,
(26)
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where (φ,ψ) is the solution to the following system of integral equations

S
ω√
µ̃

D [φ](x)− S
ω√
µ

D [ψ](x) = (
1

µ
− 1

µ̃
)

∫
D

Γ
ω√
µ̃ (x− y)(ω2Û0(y)−∇q̂0(y)) dy,

µ
∂S

ω√
µ

D [φ]

∂n

∣∣∣
+
(x)− µ̃

∂S
ω√
µ̃

D [ψ]

∂n

∣∣∣
−
(x) = (µ̃− µ)

∂Û0

∂N

+(
µ̃

µ
− 1)

∂

∂N

∫
D

Γ
ω√
µ̃ (x− y)(ω2Û0(y)−∇q̂0(y)) dy

−(
µ̃

µ
− 1)

∫
D

F(x− y) · (ω2Û0(y)−∇q̂0(y)) dy N.

(27)

In order to prove the unique solvability of (27), let us make a change of variables: Re-
calling that D is of the form D = ϵB + z, we put

φ̃(x̃) = φ(ϵx̃+ z), x̃ ∈ ∂B, (28)

and define similarly ψ̃. Then after scaling, (27) takes the form
S

ϵω√
µ̃

B [φ̃](x̃)− S
ϵω√
µ

B [ψ̃](x̃) = A(x̃),

µ̃
∂S

ϵω√
µ̃

B [φ̃]

∂n

∣∣∣
−
(x̃)− µ

∂S
ϵω√
µ

D [ψ̃]

∂n

∣∣∣
+
(x̃) = B(x̃),

x̃ ∈ ∂B (29)

where A = (A1, A2, A3) and B = (B1, B2, B3) are defined in an obvious way, namely

A(x̃) = ϵ(
1

µ
− 1

µ̃
)

∫
B

Γ
ϵω√
µ̃ (x̃− ỹ)(ω2Û0(ϵỹ + z)−∇q̂0(ϵỹ + z)) dỹ, (30)

and

B(x̃) = (µ̃− µ)
∂Û0

∂N
(ϵx̃+ z)

+ ϵ(
µ̃

µ
− 1)

∂

∂N

∫
B

Γ
ϵω√
µ̃ (x̃− ỹ)(ω2Û0(ϵỹ + z)−∇q̂0(ϵỹ + z)) dỹ (31)

− ϵ(
µ̃

µ
− 1)

∫
D

F(x̃− ỹ) · (ω2Û0(ϵỹ + z)−∇q̂0(ϵỹ + z)) dy N(x̃).

We emphasize that the normal vector N above is that on ∂B.
We may rewrite (29) as

T (φ̃, ψ̃) = (A,B), (32)

where T is an operator from L2(∂B)3 × L2(∂B)3 into H1(∂B)3 × L2(∂B)3 defined by

T (φ̃, ψ̃) =

 S
ϵω√
µ̃

B −S
ϵω√
µ

B

µ̃
∂

∂n
S

ϵω√
µ̃

B |− −µ ∂

∂n
S

ϵω√
µ

B |+


 φ̃

ψ̃

 .

We then decompose the operator T as

T = T0 + Tϵ, (33)
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where

T0(φ̃, ψ̃) :=

 S0
B −S0

B

µ̃
∂

∂n
S0
B |− −µ ∂

∂n
S0
B |+


 φ̃

ψ̃

 ,

and Tϵ = T − T0. Then by (17) and (18), it follows that

||Tϵ(φ̃, ψ̃)||H1(∂B)×L2(∂B) ≤ Cϵω(||φ̃||L2(∂B) + ||ψ̃||L2(∂B)). (34)

Note that S0
B is invertible, and since | µ̃+µ

2(µ̃−µ) | >
1
2 , the operator − (µ̃+µ)

2(µ̃−µ)I + (K0
B)

∗ is

invertible as well (see [4]). Thus one can see that T0 is also invertible. In fact, one can
readily check that the solution is explicit.

Lemma 2.1 For (f ,g) ∈ H1(∂B)3 × L2(∂B)3 the solution (φ̃, ψ̃) = T −1
0 (f ,g) is given by

φ̃ = ψ̃ + (S0
B)

−1[f ], (35)

ψ̃ =
1

µ̃− µ

(
− (µ̃+ µ)

2(µ̃− µ)
I + (K0

B)
∗
)−1

[
−µ̃(−1

2
I + (K0

B)
∗)(S0

B)
−1[f ] + g

]
. (36)

In view of (33) and (34), one can see that there is ϵ0 > 0 such that T is invertible as
long as ϵω ≤ ϵ0. Moreover T −1 takes the form

T −1 = T −1
0 + E, (37)

where the operator E satisfies

∥E(f ,g)∥L2(∂B)×L2(∂B) ≤ Cϵω(∥f∥H1(∂B) + ∥g∥L2(∂B)), (38)

for some constant C independent of ϵ and ω.
Suppose that ϵω ≤ ϵ0 < 1. Let (φ̃ω, ψ̃ω) be the solution to (29). Then by (37) we have

(φ̃ω, ψ̃ω) = T −1
0 (A,B) + E(A,B).

In view of (30) we have
∥A∥H1(∂B) ≤ Cϵ(ω2 + 1). (39)

On the other hand, according to (31), B can be written as

B(x̃) = (µ̃− µ)∇̂Û0(z, ω)N(x̃) +B1(x̃),

where B1 satisfies
∥B1∥L2(∂B) ≤ Cϵ(ω2 + 1). (40)

Therefore, we have

(φ̃ω, ψ̃ω) = (µ̃− µ)T −1
0

(
0, ∇̂Û0(z, ω)N

)
+ T −1

0 (A,B1) + E(A,B). (41)

Because of (38), (39), and (40), the last two terms in the above equation are error terms
satisfying

∥T −1
0 (A,B1) + E(A,B)∥L2(∂B)×L2(∂B) ≤ Cϵ(ω2 + 1).
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We also need to derive asymptotic expansions for ∂φ̃ω

∂ω and ∂ψ̃ω

∂ω . By differentiating both
sides of (29) with respect to ω, we obtain

S
ϵω√
µ̃

B

[∂φ̃ω
∂ω

]
(x̃)− S

ϵω√
µ

B

[∂ψ̃ω
∂ω

]
(x̃) =

∂A(x̃)

∂ω
−
∫
∂B

∂

∂ω
Γ

ϵω√
µ̃ (x̃− ỹ)φ̃ω(ỹ)dσ(ỹ)

+

∫
∂B

∂

∂ω
Γ

ϵω√
µ (x̃− ỹ)ψ̃ω(ỹ)dσ(ỹ) (42)

and

µ̃
∂

∂n
S

ϵω√
µ̃

B

[∂φ̃ω
∂ω

]∣∣∣∣
−
(x̃)− µ

∂

∂n
S

ϵω√
µ

B

[∂ψ̃ω
∂ω

]∣∣∣∣
+

(x̃) =
∂B(x̃)

∂ω

− ∂

∂n

∫
∂B

∂

∂ω
Γ

ϵω√
µ̃ (x̃− ỹ)φ̃ω(ỹ)dσ(ỹ) +

∂

∂n

∫
∂B

∂

∂ω
Γ

ϵω√
µ (x̃− ỹ)ψ̃ω(ỹ)dσ(ỹ) (43)

on ∂B.
Straightforward computations using (10) and (30) show that the right-hand side of the

equality in (42) is of order ϵ(ω+ 1) in the H1(∂B)-norm. We can also show using (31) that
∂G1

∂ω is also of order ϵ(ω+1) in the L2(∂B)-norm. Thus, using the same argument as before,
we readily obtain

(
∂φ̃ω

∂ω
,
∂ψ̃ω

∂ω
) = (µ̃− µ)T −1

0

(
0, ∇̂(

∂Û0

∂ω
)(z, ω)N

)
+O(ϵ(ω + 1)), (44)

where the equality holds in L2(∂B)3 × L2(∂B)3.
In view of (41) and (44), applying Lemma 2.1 (with f = 0) yields the following result.

Proposition 2.2 Let (φ̃ω, ψ̃ω) be the solution to (29). There exists ϵ0 > 0 such that if
ϵω < ϵ0, then the following asymptotic expansions hold:

φ̃ω =

(
−(µ̃+ µ)

2(µ̃− µ)
I + (K0

B)
∗
)−1

[∇̂Û0(z, ω)N] +O(ϵ(ω2 + 1)), (45)

ψ̃ω =

(
−(µ̃+ µ)

2(µ̃− µ)
I + (K0

B)
∗
)−1

[∇̂Û0(z, ω)N] +O(ϵ(ω2 + 1)), (46)

and

∂φ̃ω

∂ω
=

(
−(µ̃+ µ)

2(µ̃− µ)
I + (K0

B)
∗
)−1

[∇̂ ∂

∂ω
Û0(z, ω)N] +O(ϵ(ω + 1)), (47)

∂ψ̃ω

∂ω
=

(
−(µ̃+ µ)

2(µ̃− µ)
I + (K0

B)
∗
)−1

[∇̂ ∂

∂ω
Û0(z, ω)N] +O(ϵ(ω + 1)), (48)

where all the equalities hold in L2(∂B).

We are now ready to derive the inner expansion for w. Let Ω be a domain containing D
and let Ω̃ = 1

ϵΩ− z. After a change of variables, (25) and (26) take the forms:

w(ϵx̃+ z, ω) =


ϵ2(

1

µ
− 1

µ̃
)

∫
B

Γ
ϵω√
µ̃ (x̃− ỹ)(ω2Û0(ϵỹ + z)−∇q̂0(ϵỹ + z)) dỹ

+ϵS
ϵω√
µ̃

B [φ̃ω](x̃) in B,

ϵS
ϵω√
µ

B [ψ̃ω](x̃) in R3 \B,

(49)
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and

p(ϵx̃+ z, ω) =


ϵ(
1

µ
− 1

µ̃
)

∫
B

F(x̃− ỹ) · (ω2Û0(ϵỹ + z)−∇q̂0(ϵỹ + z)) dỹ

+ϵQB [φ̃
ω](x̃) in B,

ϵQB [ψ̃
ω](x̃) in R3 \B.

(50)

Since ∥∥S ϵω√
µ

B [φ̃ω]− S0
B [φ̃

ω]
∥∥
H1(∂B)

≤ Cϵω∥φ̃ω∥L2(∂B),

we have

w(ϵx̃+ z, ω) =

{
ϵS0
B [φ̃

ω](x̃) +O(ϵ2(ω2 + 1)), x̃ ∈ B,

ϵS0
B [ψ̃

ω](x̃) +O(ϵ2(ω + 1)), x̃ ∈ Ω̃ \B.
It then follows from (45) and (46) that

w(ϵx̃+ z, ω) = ϵS0
B

(
− (µ̃+ µ)

2(µ̃− µ)
I + (K0

B)
∗
)−1

[∇̂Û0(z, ω)N](x̃) +O(ϵ2(ω2 + 1)) (51)

for x̃ ∈ Ω̃.
On the other hand, we have

∂w

∂ω
(ϵx̃+ z, ω) =


ϵS

ϵω√
µ̃

B

[
∂φ̃ω

∂ω

]
(x̃) +O(ϵ2(ω + 1)), x̃ ∈ B,

ϵS
ϵω√
µ

B

[
∂ψ̃ω

∂ω

]
(x̃) +O(ϵ2), x̃ ∈ Ω̃ \B.

Therefore, from (47) and (48) we obtain that

∂w

∂ω
(ϵx̃+ z, ω) = ϵS0

B

(
− (µ̃+ µ)

2(µ̃− µ)
I + (K0

B)
∗
)−1

[∇̂ ∂

∂ω
Û0(z, ω)N](x̃) +O(ϵ2(ω + 1)) (52)

for x̃ ∈ Ω̃.
Let

v(x̃) := S0
B

(
− (µ̃+ µ)

2(µ̃− µ)
I + (K0

B)
∗
)−1

[∇̂Û0(z, ω)N](x̃),

q(x̃) := QB

(
− (µ̃+ µ)

2(µ̃− µ)
I + (K0

B)
∗
)−1

[∇̂Û0(z, ω)N](x̃).

It is easy to check that (v, q) is the solution to

µ∆v −∇q = 0 in R3 \B,
µ̃∆v −∇q = 0 in B,

v|− − v|+ = 0 on ∂B,

(qN− µ̃
∂v

∂N
)

∣∣∣∣
−
− (qN− µ

∂v

∂N
)

∣∣∣∣
+

= (µ̃− µ)∇̂Û0(z, ω)N on ∂B,

∇ · v = 0 in R3,

v(x̃) → 0 as |x̃| → +∞,

q(x̃) → 0 as |x̃| → +∞.

(53)
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We finally obtain the following theorem from (51) and (52).

Theorem 2.3 Let Ω be a small region containing D and let

R(x, ω) = û0(x, ω)− Û0(x, ω)− ϵv

(
x− z

ϵ

)
, x ∈ Ω. (54)

There exists ϵ0 > 0 such that if ϵω < ϵ0, then

R(x, ω) = O(ϵ2(ω2 + 1)), ∇xR(x, ω) = O(ϵ(ω2 + 1)), x ∈ Ω. (55)

Moreover,

∂R

∂ω
(x, ω) = O(ϵ2(ω + 1)), ∇x

(
∂R

∂ω

)
(x, ω) = O(ϵ(ω + 1)), x ∈ Ω. (56)

Note that the estimates for ∇xR in (55) and ∇x(
∂R
∂ω ) in (56) can be derived using (49).

We now derive the outer expansion of u0. To this end, let us first recall the notion of
the viscous moment tensor (VMT) from [4]. Let (vkℓ, p), for k, ℓ = 1, 2, 3, be the solution to

µ∆vkℓ −∇p = 0 in R3 \B,
µ̃∆vkℓ −∇p = 0 in B,

vkℓ|− − vkℓ|+ = 0 on ∂B,

(pN− µ̃
∂vkℓ
∂N

)

∣∣∣∣
−
− (pN− µ

∂vkℓ
∂N

)

∣∣∣∣
+

= 0 on ∂B,

∇ · vkℓ = 0 in R3,

vkℓ(x̃)− x̃keℓ +
δkℓ
3

3∑
j=1

x̃jej = O(|x̃|−2) as |x̃| → +∞,

p(x̃) = O(|x̃|−3) as |x̃| → +∞.

(57)

Here (e1, e2, e3) is the standard basis of R3.
The VMT V (µ̃, µ,B) = (Vijkℓ)i,j,k,ℓ=1,2,3 is defined by

Vijkℓ(µ̃, µ,B) := (µ̃− µ)

∫
B

∇vkℓ(x̃) : ∇̂(x̃iej) dx̃, (58)

where : denotes the contraction of two matrices, i.e., A : B =
∑3
ij=1 aijbij .

Since (û0 − Û0, p̂0 − q̂0) satisfies

(∆ +
ω2

µ
)(û0 − Û0)−

1

µ
∇(p̂0 − q̂0) = 0 in R3 \D,

(∆ +
ω2

µ
)(û0 − Û0)−

1

µ
∇(p̂0 − q̂0) = ω2

(
1

µ
− 1

µ̃

)
û0 −

(
1

µ
− 1

µ̃

)
∇p̂0 in D,

(û0 − Û0)
∣∣
+
− (û0 − Û0)

∣∣
− = 0 on ∂D,

− 1

µ
(p̂0 − q̂0)

∣∣
+
N+

∂

∂N
(û0 − Û0)

∣∣
+

= − 1

µ
(p̂0 − q̂0)

∣∣
−N+

∂

∂N
(û0 − Û0)

∣∣
− +

µ̃− µ

µ

∂û0

∂N

∣∣∣∣
−

on ∂D,

∇ · (û0 − Û0) = 0 in R3,

(59)
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together with the radiation condition, the integration of the first equation in (59) against

the Green’s function Γ
ω√
µ (x, y) over y ∈ R3 \ D and the divergence theorem give us the

following representation formula:

û0(x) = Û0(x) + (
µ̃

µ
− 1)

∫
∂D

Γ
ω√
µ (x, y)

∂û0

∂N

∣∣∣∣
−
(y)dσ(y)

− (
1

µ
− 1

µ̃
)

∫
D

Γ
ω√
µ (x, y)∇p̂0(y) dy + ω2(

1

µ
− 1

µ̃
)

∫
D

Γ
ω√
µ (x, y)û0(y) dy. (60)

It follows from the inner expansion in Theorem 2.3 that, for y ∈ ∂D,

∂û0

∂N
(y) =

∂Û0

∂N
(y) +

∂v

∂N

(
y − z

ϵ

)
+O(ϵ) (61)

and, for x ∈ D,

∇p̂0(x) = µ̃△û0 + ω2û0 =
µ̃

ϵ
(△v)

(
x− z

ϵ

)
+O(1) =

1

ϵ
(∇q)

(
x− z

ϵ

)
+O(1). (62)

Since

µ̃

∫
∂D

∂û0

∂N

∣∣∣∣
−
(y) dσ(y)−

∫
D

∇p̂0(y) dy = −ω2

∫
D

û0(y) dy,

we obtain that for x far away from z, the following outer expansion holds:

û0(x) ≈ Û0(x)− ϵ3
3∑

i,j,ℓ=1

∂iΓ
ω√
µ

ℓj (x, z)

[
(
µ̃

µ
− 1)

∫
∂B

(
∂Û0

∂N
(z) +

∂v

∂N

∣∣∣∣
−
(ξ)

)
j

ξi dσ(ξ)

(
1

µ
− 1

µ̃
)

∫
B

∂jq(ξ)ξi dξ

]
eℓ,

where ∂iΓ
ω√
µ

ℓj (x, z) is the differentiation with respect to the x variable and
(
∂v
∂N

)
j
is the j-th

component of ∂v
∂N , which we may further simplify as follows

(û0 − Û0)(x)

≈ −ϵ3( µ̃
µ
− 1)

3∑
i,j,ℓ=1

[
∂iΓ

ω√
µ

ℓj (x, z)

∫
B

∂jvi(ξ) + ∂ivj(ξ) + ∂jÛ0i(z) + ∂iÛ0j(z) dξ

]
eℓ.

(63)
Here vj denotes the j-th component of v.

Since

v(ξ) =
3∑

p,q=1

∂qÛ0(z)pvpq(ξ)−∇Û0(z)ξ, (64)

we have

(û0 − Û0)(x)

≈ −ϵ3( µ̃
µ
− 1)

3∑
i,j,ℓ,p,q=1

[
∂iΓ

ω√
µ

ℓj (x, z)∂qÛ0(z)p

∫
B

∂j(vkl)i(ξ) + ∂i(vkl)j(ξ) dξ

]
eℓ.

(65)

We have the following theorem for the outer expansion.
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Theorem 2.4 Let Ω′ be a compact region away from D, namely dist(Ω′, D) ≥ C > 0 for
some constant C, and let

R(x, ω) = û0(x, ω)− Û0(x, ω) +
ϵ3

µ

3∑
i,j,p,q,ℓ=1

Vijkl∂iΓ
ω√
µ

ℓj (x, z)∂qÛ0(z)peℓ. (66)

There exists ϵ0 > 0 such that if ϵω < ϵ0, then

R(x, ω) = O(ϵ4(ω3 + 1)), x ∈ Ω′. (67)

Moreover,
∂R

∂ω
(x, ω) = O(ϵ4(ω2 + 1)), x ∈ Ω′. (68)

3 Far- and near-field asymptotic formulas in the tran-
sient regime

Recall that the inverse Fourier transform, U0, of Û0 satisfies
(∂2t − µ∆)U0(x, t)−∇F = δx=ȳδt=0a in R3 × R,
∇ ·U0 = 0 in R3 × R,
U0(x, t) = 0 for x ∈ R3 and t≪ 0.

For ρ > 0, we define the operator Pρ on tempered distributions by

Pρ[ψ](t) =

∫
|ω|≤ρ

e−
√
−1ωtψ̂(ω) dω, (69)

where ψ̂ denotes the Fourier transform of ψ. The operator Pρ truncates the high-frequency
component of ψ.

One can easily show that Pρ[U0] satisfies

(∂2t −∆)Pρ[U0](x, t)−∇Pρ[F ](x− y) = δx=ȳψρ(t)a in R3 × R,
∇ · Pρ[U0] = 0 in R3 × R,

(70)

where

ψρ(t) :=
2 sin ρt

t
=

∫
|ω|≤ρ

e−
√
−1ωtdω.

The purpose of this section is to derive and asymptotic expansions for Pρ[u0 −U0](x, t).
For doing so, we observe that

Pρ[u0](x, t) =

∫
|ω|≤ρ

e−
√
−1ωtû0(x, ω)dω, (71)

where û0 is the solution to (19). Therefore, according to Theorem 2.3, we have

Pρ[u0 −U0](x, t)− ϵ

3∑
p,q=1

∂qPρ[U0](z, t)p[vpq(x)− xpeq] =

∫
|ω|≤ρ

e−
√
−1ωtR(x, ω)dω.
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Suppose that |t| ≥ c0 for some positive number c0 (c0 is of order the distance between ȳ and
z). Then, integrating by parts gives∣∣∣∣∣

∫
|ω|≤ρ

e−
√
−1ωtR(x, ω)dω

∣∣∣∣∣ =
∣∣∣∣∣1t
∫
|ω|≤ρ

d

dω
e−

√
−1ωtR(x, ω)dω

∣∣∣∣∣
≤ 1

|t|
(|R(x, ρ)|+ |R(x,−ρ)|) +

∫
|ω|≤ρ

∣∣∣∣ ∂∂ωR(x, ω)
∣∣∣∣ dω

≤ Cϵ2ρ2.

Thus we arrive at the following theorem.

Theorem 3.1 Suppose that ρ = O(ϵ−α) for some α < 1
2 . Then

Pρ[u0 −U0](x, t) = ϵ

3∑
p,q=1

∂qPρ[U0](z, t)p[vpq(x)− xpeq] +O(ϵ2(1−α)).

We now derive a far-field asymptotic expansion for Pρ[u0 −U0]. Let G∞(x, y, t) be the

inverse Fourier transform of Γ
ω√
µ (x, y). Note that G∞ is the limit of G given by (5) as

α→ +∞. It then follows that

Pρ[G∞](x, y, t) =

∫
|ω|≤ρ

e−
√
−1ωtΓ

ω√
µ (x, y)dω

=
1

4π

3γiγj − δij
r3

[
ϕρ(t)− ϕρ(t−

r
√
µ
)

]
− 1

4πµ

γiγj − δij
r

ψρ(t−
r
√
µ
), (72)

where ϕρ(t) :=
∫ t
0
ψρ(s)ds.

From Theorem 2.4, we get∫
|ω|≤ρ

e−
√
−1ωt(û0(x, ω)− Û0(x, ω)) dω

= −ϵ
3

µ

∫
|ω|≤ρ

e−
√
−1ωt

 3∑
i,j,p,q,ℓ=1

Vijpq∂iΓ
ω√
µ

ℓj (x, z)∂qÛ0(z)peℓ

 dω

+

∫
|ω|≤ρ

e−
√
−1ωtR(x, ω) dω,

where the remainder is estimated by∫
|ω|≤ρ

e−
√
−1ωtR(x, ω) dω = O(ϵ4(1−

3
4α)).
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Since∫
|ω|≤ρ

e−
√
−1ωt

 3∑
i,j,p,q,ℓ=1

Vijpq∂iΓ
ω√
µ

ℓj (x, z)∂qÛ0(z)peℓ

 dω

= µ−1

∫
|ω|≤ρ

e−
√
−1ωt

 3∑
i,j,p,q,k,ℓ=1

Vijpq∂iΓ
ω√
µ

ℓj (x, z)∂qΓ
ω√
µ

pk (z, ȳ)akeℓ

 dω

= µ−1

∫
R

 3∑
i,j,p,q,k,ℓ=1

Vijpq∂iPρ[G∞]ℓj(x, z, t− τ)∂qPρ[G∞]pk(z, ȳ, τ)akeℓ

 dτ,

the following theorem holds.

Theorem 3.2 Let Û0(x, ω) :=
1
µΓ

ω√
µ (x − ȳ)a. Suppose that ρ = O(ϵ−α) for some α < 1

2 .

Then for |x− z| ≥ C > 0, the following far-field expansion holds

Pρ[u0 −U0](x, t)

= − ϵ3

µ2

∫
R

 3∑
i,j,p,q,k,ℓ=1

Vijpq∂iPρ[G∞]ℓj(x, z, t− τ)∂qPρ[G∞]pk(z, ȳ, τ)akeℓ

 dτ

+O(ϵ4(1−
3
4α)).

(73)

Note that if we plug (72) in the far-field formula (73) then we can see that, unlike the
acoustic case investigated in [3], the perturbation Pρ[u0 −U0](x, t) can be seen not only as
a polarized wave emitted from the anomaly but it contains, because of the term (1/r3)ϕρ(t)
in (72), a near fieldlike term which does not propagate.

4 Asymptotic imaging

4.1 Far-field imaging: time-reversal

We present a time-reversal technique for detecting the location z of the anomaly from mea-
surements of the perturbations at x away from the location z. As in the acoustic case,
the main idea is to take advantage of the reversibility of the elastic wave equation in a
non-viscous medium in order to back-propagate signals to the sources that emitted them
[5, 10].

Let S be a sphere englobing the anomaly D. Consider, for simplicity, the harmonic
regime, we get∫

S

[
∂Γ

ω√
µ

∂n
(x, z)Γ

ω√
µ (x, y)− Γ

ω√
µ (x, z)

∂Γ
ω√
µ

∂n
(x, y)

]
dσ(x) = 2

√
−1ℑmΓ

ω√
µ (y, z),

for y ∈ Ω, and therefore, for w(x) := û0(x, ω)− Û0(x, ω), it follows that∫
S

[
∂w

∂n
(x, ω)Γ

ω√
µ (x, z)−w(x, ω)

∂Γ
ω√
µ

∂n
(x, z)

]
dσ(x)

= 2
√
−1

ϵ3

µ
∇Û0(z, ω)V (µ̃, µ,B)∇zℑmΓ

ω√
µ (y, z) +O(ϵ4ω3),
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if ω > 1.
This shows that the anti-derivative of time-reversal perturbation focuses on the location

of the anomaly with an anisotropic focal spot. Because of the structure of the Green function
Γ

ω√
µ (y, z), time-reversing the perturbation gives birth to a near fieldlike effect. Moreover, the

diffraction limit depends on the direction. It is, unlike the acoustic case, anisotropic. These
interesting findings were experimentally observed and first reported in [9]. Our asymptotic
formula (73) clearly explains them.

4.2 Near-field imaging: optimization approach

Set Ω to be a window containing the anomaly D. Theorem 3.1 suggests to reconstruct
the shape and the shear modulus of the elastic inclusion D by minimizing the following
functional:∫ T+∆T

T−∆T

||Pρ[u0 −U0](x, t)− ϵ

3∑
p,q=1

∂qPρ[U0](z, t)p[vpq(x)− xpeq]||2L2(Ω),

where T = |ȳ − z|/√µ is the arrival time and ∆T is a window time. One can add a total
variation regularization term.

The choice of the space and time window sizes are critical. If they are too large, then noisy
images are obtained. If they are too small, then resolution is poor. The optimal window
sizes are related to the signal-to-noise ratio of the recorded near-field measurements. They
express the trade-off between resolution and stability. This will be the subject of a next
paper.

5 Conclusion

In this paper we have rigorously establish asymptotic expansions of near- and far-field mea-
surements of the transient elastic wave induced by a small elastic anomaly. We have proved
that, after truncation of the high-frequency component, the perturbation due to the anomaly
can be seen not only as a polarized wave emitted from the anomaly but it contains unlike the
acoustic case a near fieldlike term which does not propagate. We have also shown that time-
reversing this perturbation gives birth to a near fieldlike effect. Moreover, the diffraction
limit is anisotropic. We have then explained the experimental findings reported in [9].

In this paper we have only considered a purely quasi-incompressible elasticity model. In
a forthcoming work, we will consider the problem of reconstructing a small anomaly in a
viscoelastic medium from wavefield measurements. Expressing the ideal elastic field without
any viscous effect in terms of the measured field in a viscous medium, we will generalize the
methods described here to recover the viscoelastic and geometric properties of an anomaly
from wavefield measurements.
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