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Abstract

If stiff inclusions are closely located, then the stress, which is the gradient of the
solution, may become arbitrarily large as the distance between two inclusions tends to
zero. In this paper we investigate the asymptotic behavior of the stress concentration
factor, which is the normalized magnitude of the stress concentration, as the distance
between two inclusions tends to zero. For that purpose we show that the gradient of
the solution to the case when two inclusions are touching decays exponentially fast
near the touching point. We also prove a similar result when two inclusions are closely
located and there is no potential difference on boundaries of two inclusions. We then
use these facts to show that the stress concentration factor converges to a certain
integral of the solution to the touching case as the distance between two inclusions
tends to zero. We then present an efficient way to compute this integral.
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1 Introduction and statement of results

In presence of closely located stiff inclusions embedded in the relatively weak matrix, high
stress concentration occurs in the narrow region between two inclusions. Such a phe-
nomenon typically occurs in fiber-reinforced materials and the stiff inclusions represent
the cross section of fibers. Recently, much effort has been devoted to quantitative under-
standing of this stress concentration. In this paper we continue our investigation on this
and establish an efficient method to compute the magnitude of the stress concentration
that immediately yields an asymptotic formula for the stress distribution and an optimal
estimate for the concentration.

∗This work is supported by Korean Ministry of Education, Sciences and Technology through NRF
grants Nos. 2010-0017532, 2013R1A1A1A05009699 and 2011-0009671.

†Department of Mathematics, Inha University, Incheon 402-751, Korea (hbkang@inha.ac.kr,
hdlee@inha.ac.kr).

‡Department of Mathematics, Hankuk University of Foreign Studies, Yongin-si, Gyeonggi-do 449-791,
Korea (gundam@hufs.ac.kr).

1



To describe the problem and results in a precise manner, let D0
1 and D0

2 be a pair of
(touching) bounded domains with C2,γ (γ > 0) boundaries such that

D0
1 ⊂ {(x, y) ∈ R2 | x < 0}, D0

2 ⊂ {(x, y) ∈ R2 | x > 0}, (1.1)

∂D0
1 ∩ ∂D0

2 = {(0, 0)}, (1.2)

and D0
1 and D0

2 are convex at (0, 0). The domains D0
1 and D0

2 are strongly convex at (0, 0)
if both D0

1 and D0
2 have positive curvatures there. By translating D0

2 by a positive number
ϵ along x-axis, while D0

1 is fixed, we obtain Dϵ
2, i.e.,

Dϵ
2 := D0

2 + (ϵ, 0) . (1.3)

When there is no possibility of confusion, we drop superscripts and denote

D1 := D0
1, D2 := Dϵ

2. (1.4)

For a given harmonic function h in R2, let uϵ be the solution to the problem
∆uϵ = 0 in R2 \ (D1 ∪D2),

uϵ = λj (constant) on ∂Dj , j = 1, 2,

uϵ(x)− h(x) = O(|x|−1) as |x| → ∞,

(1.5)

where the constants λi are determined by the conditions∫
∂D1

∂νuϵds =

∫
∂D2

∂νuϵds = 0. (1.6)

Here and throughout this paper ∂νuϵ denotes the outward normal derivative of uϵ on ∂Dj

(j = 1, 2). It is worth emphasizing that the constants λ1 and λ2 may or may not be
different depending on the given h.

As mentioned before, inclusionsD1 andD2 represent the two dimensional cross-sections
of two parallel elastic fibers embedded in an infinite elastic matrix and ϵ is the distance
between them. The solution uϵ represents the out-of-plane elastic displacement, and ∇uϵ
is proportional to the shear stress. The problem (1.5) may also be regarded as two di-
mensional conductivity equation in which case D1 and D2 represent perfect conductors of
infinite conductivity. It is worth mentioning that we consider the situation where there are
only two inclusions since our interest lies in estimating local high concentration of stress
in the narrow region between two inclusions. There is a study to estimate global stress in
a composite (with many inclusions) using a network approximation. We refer to [8] and
references therein for that. We also mention that the problem under consideration in this
paper has some connection with effective properties of composites with highly conducting
inclusion. See [25, Section 10.10] for this connection.

In general, ∇uϵ becomes arbitrarily large as the distance ϵ between two inclusions
tends to zero, and the problem is to derive pointwise estimates of ∇uϵ in terms of ϵ. This
problem was raised in [5] and there has been significant progress on it. It has been proved
that the generic blow-up rate of∇uϵ is 1/

√
ϵ in two dimensions [2, 3, 4, 6, 10, 14, 22, 26, 27],

and |ϵ ln ϵ|−1 in three dimensions [6, 7, 13, 15, 16, 17, 21]. We emphasize that the gradient
may or may not blow up depending on the given background harmonic function h. For
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example, in the configuration of this paper the gradient blows up if h(x, y) = x and it does
not if h(x, y) = y for circular inclusions D1 and D2. It is worth while to mention that the
insulating case in two dimensions can be treated by duality as done in [4] for example.
But the insulating case in three dimensions is an open problem: it is not even clear if the
gradient actually blows up in three dimensions. It is also worth while to mention that if
the conductivity of the inclusions is finite (away from ∞ and 0), ∇uϵ is bounded regardless
of ϵ [9, 19, 20].

Recently a better understanding of the stress concentration has been obtained: an
asymptotic behavior of ∇uϵ has been characterized by the singular function associated
with D1 and D2, as ϵ tends to 0. The singular function, denoted by qϵ, is the solution to
the following problem: 

∆qϵ = 0 in R2 \ (D1 ∪D2),

qϵ = constant on ∂Dj , j = 1, 2,

qϵ(x) = O(|x|−1) as |x| → ∞,∫
∂D1

∂νqϵds = −1,

∫
∂D2

∂νqϵds = 1.

(1.7)

We emphasize that the constant values of qϵ on ∂D1 and ∂D2 are different, so that ∇qϵ
blows up as ϵ→ 0.

Let us recall some important facts about qϵ: If D0
1 and D0

2 are disks, then qϵ is given
explicitly by

qϵ(x) :=
1

2π
(ln |x− p1| − ln |x− p2|) , (1.8)

where p1 ∈ D1 is the fixed point of the mixed reflection R1R2 where Rj is the reflection
with respect to ∂Dj , j = 1, 2, and p2 ∈ D2 is that of R2R1. We emphasize that these
points can be computed easily (see (4.11)). More generally, if D0

1 and D0
2 are strongly

convex at (0, 0), then let B1 and B2 be disks osculating to D1 and D2 at (0, 0) and (ϵ, 0),
respectively, and let qB,ϵ be the singular function associated with B1 and B2 as given in
(1.8). Then, it is proved in [1] that the behavior of ∇qϵ is almost explicitly described as

∇qϵ = ∇qB,ϵ(1 +O(ϵγ/2)) +O(1) (1.9)

when ∂Dj is C2,γ and γ ∈ (0, 1). Thus it follows that

∥∇qϵ∥∞ =

√
κ1 + κ2√

2π

1√
ϵ
+O(1), (1.10)

where κ2 and κ2 are the curvatures of D0
1 and D0

2 at (0, 0), respectively.
Using the singular function qϵ, the solution uϵ to (1.5) can be decomposed as

uϵ = αϵqϵ + rϵ (1.11)

where

αϵ =
uϵ|∂D2 − uϵ|∂D1

qϵ|∂D2 − qϵ|∂D1

. (1.12)
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Observe that rϵ is also constant on ∂D1 and ∂D2, and rϵ|∂D1 = rϵ|∂D2 , so that ∇rϵ is
bounded on bounded subsets of R2 \ (D1 ∪D2) (see [12]). It means that the term αϵ∇qϵ
is responsible for the blow-up of ∇uϵ, or more precisely,

∇uϵ = αϵ∇qϵ +O(1) as ϵ→ 0. (1.13)

In particular, αϵ represents the magnitude (normalized by |∇qϵ|) of the blow-up. So, it is
appropriate to call the constant αϵ the stress concentration factor.

The purpose of this paper is to analyze the stress concentration factor αϵ when D0
1

and D0
2 are convex at (0, 0). We are particularly interested in finding limϵ→0 αϵ (existence

of the limit is a part of the study).
There have been some work on the stress concentration factor. It is proved in [12] that

if D0
1 and D0

2 are disks, then

αϵ =
2r1r2
r1 + r2

(n · ∇h)(0, 0) +O(
√
ϵ) as ϵ→ 0, (1.14)

where rj is the radius of Dj , j = 1, 2, and n is the outward unit normal vector to ∂D1 at
(0, 0). An estimate for αϵ in terms of curvatures, size and ϵ was established in [22] under
the assumption that an inclusion has a much higher curvature than its size. It is also
proved in [1] that if D0

1 and D0
2 are strongly convex at (0, 0), then

αϵ =

√
2π√

κ1 + κ2

1√
ϵ

∫
∂D1∪∂D2

h∂νqϵds
(
1 +O(ϵγ/2)

)
, (1.15)

and, as a consequence, that αϵ is bounded regardless of ϵ.
Observe that even if (1.9) yields a good information of qϵ on the narrow region in

between two inclusions, it is still difficult to evaluate the integral on the righthand side of
(1.15) since it requires global information of ∂νqϵ. In this paper, we present a new efficient
method for finding limϵ→0 αϵ. It turns out that the limit is given as a certain integral of
the solution u0 for the touching case, namely,

∆u0 = 0 in Ω,

u0 = λ0 on ∂Ω,

u0(x)− h(x) = O(|x|−1) as |x| → ∞,

(1.16)

where Ω := R2 \ (D0
1 ∪D0

2) and λ0 is a constant determined by the additional condition∫
Ω
|∇(u0 − h)|2dA <∞. (1.17)

To obtain the main result of this paper (Theorem 1.1), we first consider the touching
case problem (1.16). We show that there exists a unique solution u0 to (1.16) and∇u0(x, y)
decays exponentially fast as (x, y) approaches to (0, 0) in Ω (Theorem 2.1). It is worth
mentioning that Ω has cusps at the origin. We also prove a similar theorem for the residual
part rϵ in (1.11) (Theorem 3.1). This result was also obtained in [18] in a more general
context. However, we include a proof in this paper since it is completely different from
that in the paper mentioned above.

4



We prove these results in somewhat more general setting: We assume that the domains
D0

1 and D0
2 are convex at (0, 0) and their order of contact at the point is 2m for some

positive integer m. Thus, if ∂D0
j near (0, 0) is given as the graph of x = xj(y) (j = 1, 2),

then there are constants δ0 > 0 and cj > 0, j = 1, . . . , 4, such that

−c1y2m ≤ x1(y) ≤ −c2y2m and c3y
2m ≤ x2(y) ≤ c4y

2m, (1.18)

for |y| < δ0. If D
0
1 and D0

2 are strongly convex at (0, 0), then m = 1.
In terms of the solution u0 to (1.16) we obtain the following theorem regarding the

asymptotic behavior of the stress concentration factor.

Theorem 1.1 Suppose that ∂D0
j (j = 1, 2) are C2,γ for some γ > 0, D0

1 and D0
2 are

convex at (0, 0), and their order of contact at (0, 0) is 2m. Let u0 be the solution to (1.16)
and let

α0 :=

∫
∂D0

1

∂νu0 ds. (1.19)

Then,
αϵ = α0 +O

(
ϵ| log ϵ|2m−1

)
as ϵ→ 0. (1.20)

As an immediate consequence of Theorem 1.1 and (1.13), we obtain

∇uϵ = α0∇qϵ +O(1) as ϵ→ 0 (1.21)

in any bounded subset of R2 \ (D1 ∪ D2). Thus, the limit α0 can be regarded as an
alternative concentration factor. Moreover, if D0

1 and D0
2 are strongly convex at (0, 0),

then we have from (1.8) and (1.9) that

∇uϵ(x) =
α0

2π

(
x− p1

|x− p1|2
− x− p2

|x− p2|2

)
(1 +O(ϵγ/2)) +O(1). (1.22)

These formulas have some important consequences. As a first consequence, we have
the following identity (see section 4 for a proof):

lim
ϵ→0

√
ϵ|∇uϵ(ϵ/2, 0)| =

α0
√
κ1 + κ2√
2π

, (1.23)

where κi is the curvature of ∂D0
i at (0, 0) for i = 1, 2. Note that (ϵ/2, 0) is a point where

|∇uϵ| has a value close to the maximal concentration.
Another consequence of (1.21) and (1.22) is related to numerical computation of ∇uϵ.

Since high concentration of the gradient occurs in the narrow region, fine meshes may be
required to compute ∇uϵ. However, since (1.21) and (1.22) extract the major singular
term in an explicit way, it suffices to compute the residual term ∇rϵ for which only regular
meshes are required. This idea was exploited in [12] in the special case when Dj ’s are disks
using (1.8), (1.11) and (1.14). Implementation of this idea for the general case of strongly
convex domains will be the subject of the forthcoming work. It is worth mentioning that
there are some other methods to compute the solution when D1 and D2 are disks. See,
for examples, [11, 23].

The last subject of this paper is regarding computation of α0. It turns out that,
thanks to exponentially decaying property of the solution to the touching case, α0 can
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be computed numerically only using regular meshes by truncating the narrow region near
(0, 0).

This paper is organized as follows. We investigate the touching case in section 2. In
section 3 we obtain an estimate for the gradient of the residual term rϵ. Section 4 is to
prove Theorem 1.1. In the last section we present a way to compute good approximations
of α0.

2 The solution for the touching case

In this section we prove the following theorem regarding the problem (1.16).

Theorem 2.1 Suppose that ∂D0
j (j = 1, 2) are C2,γ for some γ > 0, D0

1 and D0
2 are

convex at (0, 0), and their order of contact at (0, 0) is finite. Then, there is a unique
solution u0 to (1.16), and there are positive constants A, C and δ such that

|∇u0(x, y)| ≤ C exp

(
− A

|y|

)
(2.1)

for |y| ≤ δ and x1(y) < x < x2(y), where x1 and x2 are the defining functions of ∂D0
1 and

∂D0
2 near (0, 0).

The estimate (2.1) follows from

|u0(x, y)− λ0| ≤ C exp

(
− A

|y|

)
(2.2)

by a standard estimate for harmonic functions. Here the constants A and C may differ
at each occurrence. In fact, since ∂D0

j are C2,γ and u0 − λ0 = 0 on ∂D0
j , one can show

that u0(x, y) − λ0 can be extended by reflection (after the conformal transformations to
outside a disk) as harmonic functions for (x, y) satisfying

x1(y)− sy2m < x < x2(y)

and
x1(y) < x < x2(y) + sy2m

for some s > 0, and the same estimate (2.2) holds for the extended functions. Here 2m is
the order of contact at (0, 0). So, for each (x, y) ∈ R2 \ (D0

1 ∪D0
2), there is r > 0 such that

r > ty2m for some t > 0 and u0 is harmonic in Br(x, y). (Br(c) denotes the disk of radius
r with the center at c.) So, we have

|∇u0(x, y)| ≤
C

r3

∫
Br(x,y)

|u0 − λ0| dA ≤ C

y6m
exp

(
− A

|y|

)
≤ C ′ exp

(
−A

′

|y|

)
(2.3)

for some constant A′ and C ′, which is the desired estimate.
The rest of this section is devoted to proving existence and uniqueness of u0, and (2.2).

To construct the solution to (1.16) we use the transformation 1/z, following [24]. Identify
x = (x, y) in the plane with z = x+ iy and let

Φ(z) =
1

z
.
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Define
Ω̃ := Φ(Ω), Γ1 := Φ(∂D0

1), Γ2 := Φ(∂D0
2).

Note that Γ1 and Γ2 are simple curves lying in the left and right half spaces, respectively,
and Ω̃ is the region enclosed by Γ1 and Γ2. Since ∂D

0
j is C2,γ(γ > 0) and D0

j is convex at
(0, 0) for j = 1, 2, one can easily see that there are constant a < b such that

Ω̃ ⊂ {w = ξ + iη | a < ξ < b}. (2.4)

Moreover, Γ1 near ∞ is given by ξ = ψ1(η) for some function ψ1 satisfying

ψ1(η) ≤ −C1|η|2−2m (2.5)

for some constant C1 > 0, and Γ2 near ∞ is given by ξ = ψ2(η) for some function ψ2

satisfying
ψ2(η) ≥ C2|η|2−2m (2.6)

for some constant C2 > 0. In fact, we have

ψ1(η) =
x1(y)

y2 + x1(y)2
with η =

−y
y2 + x1(y)2

(2.7)

on ∂D0
1 near (0, 0). Thanks to (1.18), we have

a < ψ1(η) ≤
−c1y2m

y2 + x1(y)2
≤ −C1|η|2−2m.

Thus we have (2.5). (2.6) can be proved similarly.
We need the following lemma whose proof will be given after completing the proof of

Theorem 2.1.

Lemma 2.2 Let ψj (j = 1, 2) be as defined by (2.7), and let a and b be the constants such
that

a < ψ1(η) < ψ2(η) < b (2.8)

for all η > L, where L is a large number. Let R be a domain given by

R := {(ξ, η) | η > L, ψ1(η) < ξ < ψ2(η)}, (2.9)

and let U be the solution in H1(R) to the problem
∆U = 0 in R,
U = 0 on ξ = ψj(η), j = 1, 2,
U = φ on Γ := {(ξ, L) | ψ1(L) < ξ < ψ2(L)},

(2.10)

where φ is a bounded function. Then there are positive constants A and C such that

|U(ξ, η)| ≤ Ce−Aη (2.11)

for all η > L.
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Because of (2.4), the Poincaré inequality holds in Ω̃: for all ũ ∈ H1
0 (Ω̃) (the standard

Sobolev space with the zero trace)

∥ũ∥2
L2(Ω̃)

≤ C∥∇ũ∥2
L2(Ω̃)

(2.12)

for some constant C. So, one can apply the Lax-Milgram Theorem to show that for
f ∈ H−1(Ω̃) there exists a unique solution ṽ ∈ H1

0 (Ω̃) to{
∆ṽ = f in Ω̃,

ṽ = 0 on ∂Ω̃.
(2.13)

We choose r0 > 0 such that

D0
1 ∪D0

2 ⊂ Br0/2(0).

Let χ be a smooth function such that χ(z) = 1 if z ∈ Br0(0) and χ(z) = 0 if z /∈ B2r0(0).
For h given in (1.16), let

f(w) = ∆w

(
χ

(
1

w

)
h

(
1

w

))
,

and let ṽ be the solution to (2.13) with this f . Then one can check that u0 given by

u0(z) = h(z) +

(
ṽ

(
1

z

)
− χ(z)h(z)− ṽ(0)

)
(2.14)

is the solution to (1.16) and the constant value λ0 is given by −ṽ(0). The uniqueness of
the solution follows easily from the maximum principle.

Now, we show (2.2). If z ∈ Br0(0) \D0
1 ∪D0

2, then we have

u0(z)− λ0 = ṽ

(
1

z

)
. (2.15)

Choose L so large that the support of f lies in between two lines η = ±L. Let
Ω̃±L := Ω̃ ∩ {±η > L}, respectively. The boundedness of ṽ(ξ ± (L + 1)i) can be shown
easily by a standard estimate for harmonic functions similarly to (2.3), since ṽ = 0 on
∂Ω̃±L ∩ ∂Ω̃ and ṽ ∈ L2(Ω̃). We thus apply Lemma 2.2 to obtain

|ṽ(ξ + iη)| ≤ C1e
−A1|η| for |η| > L+ 1 (2.16)

for some positive constant A1 and C1. We may choose a small positive number δ1 so that
Φ(x, y) ∈ Ω̃+(L+1)∪ Ω̃−(L+1) for all x+ iy satisfying |y| < δ1 and x1(y) < x < x2(y). Then,
by (2.15) and (2.16), we have

|u0(x, y) + ṽ(0)| = |ṽ (ξ + ηi)| ≤ C2e
−A1|η| ≤ C3e

−A2
|y| , (2.17)

for |y| < δ1. The last inequality follows from (2.7), since |x1(y)| ≃ |y|2m. Here and
throughout this paper, a ≃ b stands for 1

C a ≤ b ≤ Ca for some constant C independent of
ϵ. This completes the proof of Theorem 2.1. □
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Proof of Lemma 2.2. By translating and scaling if necessary, we may assume a = 0, b = π
and L = 0. Let

R̃ := {(ξ, η) | η > 0, 0 < ξ < π}.

Decompose φ as φ = φ+ − φ− where φ± are nonnegative and bounded, and then extend
φ± to [0, π]×{0} by assigning 0 outside Γ, and denote them by φ̃±. Let V± be a solution
in H1(R̃) to 

∆V± = 0 in R̃,
V±(0, η) = V±(π, η) = 0, η > 0,
V±(ξ, 0) = φ̃±(ξ), 0 ≤ ξ ≤ π.

Since φ̃± ≥ 0, we have V± ≥ 0, and by the maximum principle, we have

−V− ≤ U ≤ V+ in R̃. (2.18)

One can find the solutions V± by separation of variables. In fact, we have

V±(ξ, η) =

∞∑
n=1

a±n sinnξ e−nη,

where a±n is the Fourier coefficients of φ±. In particular, we have

|V±(ξ, η)| ≤

( ∞∑
n=1

|a±n |2
)1/2( ∞∑

n=1

e−2nη

)1/2

≤ Ce−η. (2.19)

for η ≥ 1. Even for 0 < η < 1, this inequality holds with another constant C since φ̃± are
bounded. Thus, (2.11) follows from (2.18). This completes the proof. □

3 The behavior of ∇rϵ in the narrow region

In this section, we consider the behavior of the gradient of rϵ given in (1.11) in the narrow
region between D1 and D2 which we denote by Nδ for δ > 0, namely,

Nδ := {(x, y) | x1(y) < x < x2(y) + ϵ, |y| < δ} . (3.1)

Recall that rϵ satisfies
∆rϵ = 0 in Ω := R2 \D1 ∪D2,

rϵ|∂D1 = rϵ|∂D2 = constant,

rϵ(x)− h(x) = O(|x|−1) as |x| → ∞.

(3.2)

In the previous section, it has been shown that ∇u0 is decreasing exponentially near
origin. The following theorem shows that ∇rϵ has such a decay property. As mentioned
in Introduction, this result was also obtained in [18] in a more general setting. But two
proofs are completely different.
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Theorem 3.1 Suppose that ϵ is sufficiently small. There are positive constants A, C and
δ independent of ϵ > 0 such that

|∇rϵ(x, y)| ≤ C exp

(
− A√

ϵ+ |y|

)
(3.3)

for any (x, y) ∈ Nδ.

We prove the following lemma from which Theorem 3.1 follows by a standard elliptic
estimate as explained briefly in the previous section.

Lemma 3.2 Suppose that ϵ is sufficiently small. There are positive constants A, C and
δ independent of ϵ such that

|rϵ(x, y)− rϵ|∂D1 | ≤ C exp

(
− A√

ϵ+ |y|

)
(3.4)

for any (x, y) ∈ Nδ.

Proof. As before we identify points (x, y) in R2 with z = x+ iy in C. Choose two disks
B1 and B2 whose centers are on the real axis such that

Bj ⊂ Dj , j = 1, 2, ∂B1 ∩ ∂D1 = {0}, and ∂B2 ∩ ∂D2 = {ϵ}.

Let cj and ρj be the center and radius, respectively, of Bj for j = 1, 2. It is convenient to
assume that c2 = 1 + ϵ so that ρ2 = 1. Let

Φ1(z) =
1

z − (1 + ϵ)
(3.5)

which is the reflection with respect to ∂B2 (and translation), and

Ω1 := Φ1 (Ω) , B3 := Φ1(B1), B4 = Φ1(B2), (3.6)

and let cj and ρj be the center and radius of Bj . Then, c4 = 0, ρ4 = 1, and ρ3 = c3−Φ1(0).
Observe that

Ω1 ⊂ B4 \B3, (3.7)

the reflected domain Ω1 touches ∂B3 and ∂B4 at Φ1(0) and Φ1(ϵ), respectively, and

dist (∂B3, ∂B4) = Φ1(0)− Φ1(ϵ) = − 1

1 + ϵ
+ 1 = ϵ+O(ϵ2). (3.8)

Let
S :=

{
w | w = ξ + iη ∈ B4 \B3, ξ < c3, |η| < ρ3/2

}
. (3.9)

Then one can choose δ independently of ϵ so that Φ1(Nδ) ⊂ S. Let

r̃ϵ(w) := rϵ ◦ Φ−1
1 (w)− rϵ|∂D1 , w ∈ Ω1. (3.10)

If z = x + iy ∈ Nδ and w = ξ + iη = Φ1(z), then η ≃ y. Thus in order to prove (3.4), it
suffices to show

|r̃ϵ(w)| ≤ C exp

(
− A√

ϵ+ |η|

)
(3.11)

for any w ∈ Φ1(Nδ).
We now transform B3 so that the transformed disk becomes concentric to B4 (B4 is

the unit disc). For that purpose let us write a lemma which can be easily verified.
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Lemma 3.3 Let Bρ(c) be a disk such that Bρ(c) ⊂ B1(0). Then there is α with |α| < 1
and ρ∗ > 0 such that the Möbius transform φα defined by

φα(w) =
w − α

1− ᾱw
(3.12)

maps Bρ(c) onto Bρ∗(0). In fact, α is given by

α =
[
(|c|2 − ρ2 + 1)−

√
(|c|2 − ρ2 + 1)2 − 4|c|2

] c

2|c|2
. (3.13)

It is worth mentioning that Möbius transforms are automorphisms on B1(0).
Let Φ2 be the Möbius transform defined by (3.12) and (3.13) with c = c3 and ρ = ρ3,

and let B5 = Bρ5(c5) := Φ2(B3). Then c5 = 0. Since ρ3 = c3 +
1

1+ϵ , one can see from
(3.13) that α is real and satisfies

α = −1 + β
√
ϵ+ (1 +

1

c
)ϵ+O(ϵ

√
ϵ), (3.14)

where

β =

√
2(c3 + 1)

|c3|
.

To compute ρ5, we observe that Φ2(− 1
1+ϵ) ∈ ∂B5, and from (3.14) that

Φ2(−
1

1 + ϵ
) =

− 1
1+ϵ − α

1 + α
1+ϵ

= −1 + γ
√
ϵ+O(ϵ),

where γ = 2/β. So, we have
ρ5 = 1− γ

√
ϵ+O(ϵ). (3.15)

We emphasize that (3.15) implies in particular that

dist (∂B5, ∂B4) = γ
√
ϵ+O(ϵ), (3.16)

since B4 = B1(0).
The proof of the following lemma will be given later in this section. Here arg(z) for

z ̸= 0 is supposed to take a value in [0, 2π).

Lemma 3.4 Suppose that ϵ is sufficiently small. There exists a constant C > 0 indepen-
dent of ϵ such that

arg (Φ2 (w)) ≥
C
√
ϵ

|η|+
√
ϵ

(3.17)

for w = ξ + ηi ∈ S with η ≥ 0, and

2π − arg (Φ2 (w)) ≥
C
√
ϵ

|η|+
√
ϵ

(3.18)

for η ≤ 0.
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Let us introduce one more transformation Φ3:

Φ3(ζ) = log ζ (3.19)

with the branch cut on the positive real axis. Then Φ3 maps (B4\B5)\{positive real axis}
onto the rectangle (a0, 0)× (0, 2π) where a0 = log ρ5 < 0. We emphasize that

a0 = −γ
√
ϵ+O(ϵ), (3.20)

which is a consequence of (3.15).
Let θ0 be the constant on the righthand side of (3.17) with η = ρ3/2, i.e.,

θ0 :=
C
√
ϵ

ρ3
2 +

√
ϵ
. (3.21)

Define Φ := Φ3 ◦Φ2, and Rθ0 := (a0, 0)× (θ0, 2π− θ0). Then Φ−1(Rθ0)∩Ω1 is a bounded
subset of Ω1. Define

Ωθ0 := Φ(Φ−1(Rθ0) ∩ Ω1). (3.22)

Then Ωθ0 is a connected subset of Rθ0 and has two lateral boundaries denoted by l1 and
l2. Let

řϵ(r, θ) := (r̃ϵ ◦ Φ−1)(r, θ), (r, θ) ∈ Ωθ0 , (3.23)

where r̃ϵ is given in (3.10). Then, řϵ satisfies{
∆řϵ = 0 in Ωθ0 ,
řϵ = 0 on l1 ∪ l2.

(3.24)

We have the following lemma whose proof will be given at the end of this section.

Lemma 3.5 There is a constant C such that for (r, θ) ∈ Ωθ0

|řϵ(r, θ)| ≤ C exp

(
− π

|a0|
(θ − θ0)

)
if θ ≤ π (3.25)

and

|řϵ(r, θ)| ≤ C exp

(
− π

|a0|
(2π − θ0 − θ)

)
if θ ≥ π. (3.26)

The desired inequality (3.11) follows from (3.25) and (3.26). To see this, we first
observe that if r + iθ = Φ3 ◦ Φ2(w), then e

r+iθ = Φ2(w), in other words, θ = argΦ2(w).
Because of (3.20) and (3.21), we have θ0/|a0| ≤ C for some constant C independent of
ϵ provided that ϵ is sufficiently small. Observe that if w = ξ + iη ∈ S and η > 0, then
θ = argΦ2(w) < π. So it follows from Lemma 3.4 and (3.25) that

|r̃ϵ(w)| ≤ C exp

(
− π

|a0|
θ

)
≤ C1 exp

(
− A√

ϵ+ |η|

)
.

For w = u+ iv ∈ S with η ≤ 0, θ = argΦ2(w) ≥ π. Lemmas 3.4 and 3.5 also yield

|r̃ϵ(w)| ≤ C exp

(
− π

|a0|
(2π − θ)

)
≤ C2 exp

(
− A1√

ϵ+ |η|

)
.
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So we have (3.11) and the proof of Lemma 3.2 is completed. □
Let us now prove Lemma 3.4 and Lemma 3.5.

Proof of Lemma 3.4. In this proof, we shall consider the case when w = ξ + ηi ∈ S with
η ≥ 0 only. We first note that

ImΦ2(w) =
η(1− α2)

(1− αξ)2 + α2η2
.

Using (3.14) one can see that
1− α2 ≥ C

√
ϵ

if ϵ is sufficiently small, since |ξ| ≤ 1
2ρ3 ≤

1
2 . We observe that for w = ξ + iη ∈ S,

1 + ξ ≤ 1 + c3 −
√
ρ23 − η2 = 1 + c3 − ρ3 +

η2

ρ3 +
√
ρ23 − η2

≤ ϵ+
η2

ρ3
,

since w ∈ B4 \B3 and dist (∂B3, ∂B4) = − 1
1+ϵ + 1 ≤ ϵ by (3.8).

If η ≥
√
ϵ, then

ImΦ2(w) ≥ C1
η
√
ϵ

ϵ+ η2
≥ C2

√
ϵ

η

by (3.14) and the property that η
ρ3

≤ 1. Since |Φ2(w)| ≥ 1
2 by (3.15), we have

sin(argΦ2(w)) =
ImΦ2(w)

|Φ2(w)|
≥ 2C2

√
ϵ

η
.

Thus we have

argΦ2(w) ≥ C3

√
ϵ

η
. (3.27)

If 0 ≤ η <
√
ϵ, then there exists w0 = ξ0 + iη0 with |η0| =

√
ϵ so that

argΦ2(w) ≥ argΦ2(w0),

so it follows from (3.27) that
argΦ2(w) ≥ C3.

This proves (3.17). □
Proof of Lemma 3.5. By definition, Ωθ0 is a subset of Rθ0 , and ∂Ωθ0 ∩ ∂Rθ0 belongs to
θ = θ0 or 2π − θ0. We define functions ψ± in Rθ0 as the solutions to

∆ψ± = 0 in Rθ0 ,
ψ±(r, θ) = 0 on ∂Rθ0 \ ∂Ωθ0 ,
ψ±(r, θ) = max {±řϵ(r, θ), 0} on ∂Rθ0 ∩ ∂Ωθ0 .

(3.28)

It was shown in [1] that ∥rϵ − h∥L∞(Ω) is bounded independently of ϵ. So, there is a
constant M independent of ϵ > 0 such that

|ψ±(r, θ)| ≤M for all (r, θ) ∈ Rθ0 , (3.29)
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and it can be shown in the same way as (2.18) in the previous section that

−ψ− ≤ řϵ ≤ ψ+ in Ωθ0 . (3.30)

So to prove (3.26) it suffices to show

|ψ±(r, θ)| ≤ C exp

(
− π

|a0|
(2π − θ0 − θ)

)
for θ ∈ [π, 2π − θ0]. (3.31)

We prove (3.31) only for ψ+ since the proof for ψ− is identical. The solution ψ+ can
be found explicitly:

ψ+ = ψe
+ + ψo

+

where ψe
+ and ψo

+ are the even and odd parts about θ = π given by

ψe
+(r, θ) =

∞∑
n=1

αn sin

(
nπ

|a0|
r

)
cosh

(
nπ

|a0|
(θ − π)

)

ψo
+(r, θ) =

∞∑
n=1

βn sin

(
nπ

|a0|
r

)
sinh

(
nπ

|a0|
(θ − π)

)
for some constants αn and βn.

Suppose that θ ≥ π. Then we have

∣∣ψe
+(r, θ)

∣∣ ≤ ∞∑
n=1

|αn| exp
(
nπ

|a0|
(θ − π)

)

≤ 2

∞∑
n=1

|αn| cosh
(
nπ

|a0|
(π − θ0)

)
exp

(
− nπ

|a0|
(2π − θ0 − θ)

)
Note that( ∞∑

n=1

|αn|2 cosh2
(
nπ

|a0|
(π − θ0)

))1/2

=

(
2

|a0|

)1/2

∥ψe
+(·, 2π − θ0)∥L2([a0,0]) ≤

√
2M,

since ∥ sin
(

nπ
|a0|r

)
∥L2([a0,0]) =

(
1
2 |a0|

)1/2
. So it follows from the Cauchy-Schwarz inequality

that

∣∣ψe
+(r, θ)

∣∣ ≤ 2
√
2M

( ∞∑
n=1

exp

(
−2nπ

|a0|
(2π − θ0 − θ)

))1/2

,

and hence ∣∣ψe
+(r, θ)

∣∣ ≤ C exp

(
− π

|a0|
(2π − θ0 − θ)

)
(3.32)

for some constant C. Since ψe
+(r, θ) = ψe

+(r, 2π − θ),

∣∣ψe
+(r, θ)

∣∣ ≤ C exp

(
− π

|a0|
(θ − θ0)

)
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when θ < π as well.
Since sinhB ≤ sinhAeB−A if 0 < B < A, we obtain, for θ ≥ π,

∣∣ψo
+(r, θ)

∣∣ ≤ ∞∑
n=1

|βn| sinh
(
nπ

|a0|
(θ − π)

)

≤
∞∑
n=1

|βn| sinh
(
nπ

|a0|
(π − θ0)

)
exp

(
− nπ

|a0|
(2π − θ0 − θ)

)
,

and hence ∣∣ψo
+(r, θ)

∣∣ ≤ C exp

(
− π

|a0|
(2π − θ0 − θ)

)
. (3.33)

Because of symmetry of ψo
+, we have

∣∣ψo
+(r, θ)

∣∣ ≤ C exp

(
− π

|a0|
(θ − θ0)

)
,

when θ < π as well. So we have (3.31) and the proof is complete. □

4 Proofs of Theorem 1.1

In this section we prove Theorem 1.1 and (1.23).
Proof of Theorem 1.1. One can see from (1.6), (1.7) and (1.11) that

αϵ =

∫
∂D0

1

∂νrϵ ds. (4.1)

So, it is enough to prove ∣∣∣∣∣
∫
∂D0

1

∂ν(rϵ − u0)ds

∣∣∣∣∣ ≤ Cϵ| log ϵ|2m−1 (4.2)

for some constant C independent of ϵ.
Let V := R2 \ (D0

1 ∪D0
2 ∪Dϵ

2), and let Γ1 := ∂D0
2 \ Dϵ

2 and Γ2 := ∂Dϵ
2 \ D0

2. Then,
∂D1, Γ1, and Γ2 constitute the boundary of V . Let

φϵ(x) := rϵ(x)− u0(x)− (rϵ(0, 0)− u0(0, 0)). (4.3)

Then, φϵ is a bounded harmonic function in V and φϵ ≡ 0 on ∂D1. We claim that

|φϵ(x)| ≤ Cϵ, x ∈ V. (4.4)

In fact, if x ∈ Γ1, then u0(x)− u0(0, 0) = 0 and rϵ(x+ ϵ)− rϵ(0, 0) = 0. Therefore, since
∇rϵ is bounded on any bounded subset of R2 \D1 ∪D2 (refer to [1]), we have

|φϵ(x)| = |rϵ(x)− rϵ(0, 0)| = |rϵ(x)− rϵ(x+ ϵ)| ≤ Cϵ. (4.5)

Likewise we have for x ∈ Γ2

|φϵ(x)| ≤ Cϵ. (4.6)
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Since φϵ ≡ 0 on ∂D1 and φϵ(x) is bounded, we obtain (4.4) by the maximum principle.
Choose M so large that

D0
1 ⊂

(
−M

2
, 0

)
×
(
−M

2
,
M

2

)
,

and let ω = (−M, 0)× (−M,M). Since φϵ is harmonic in V , we have∫
∂D0

1

∂ν(rϵ − u0)ds =

∫
∂D0

1

∂νφϵds =

∫
∂ω
∂νφϵds.

Divide ∂ω into three pieces: ∂ω = γ1 ∪ γ2 ∪ γ3 where

γ1 :=

{
(0, y) | |y| ≤ A0

| log ϵ|

}
, γ2 :=

{
(0, y) | A0

| log ϵ|
< |y| ≤M

}
, γ3 := ∂ω \(γ1∪γ2),

and write ∫
∂ω
∂νφϵds =

∫
γ1

+

∫
γ2

+

∫
γ3

∂νφϵds := I + II + III.

Here, the constant A0 is given by Theorems 2.1 and 3.1 so that

|∇u0(x, y)|+ |∇r0(x, y)| ≤ C exp

(
− A0

|y|+
√
ϵ

)
(4.7)

for |y| < δ and x ∈ (x1(y), x2(y)).
If − A0

| log ϵ| ≤ y ≤ A0
| log ϵ| , then (4.7) implies that

|∇φϵ(0, y)| ≤ C exp

(
− A0

|y|+
√
ϵ

)
.

Thus we have
|I| ≤ Cϵ. (4.8)

If A0
| log ϵ| < |y| ≤ M , there is r > Cy2m for some C such that Br(0, y) ⊂ V . It then

follows from a gradient estimate for harmonic functions and (4.4) that

|∇φϵ(0, y)| ≤ C
ϵ

y2m
,

and

|II| ≤ Cϵ

∫
A0

| log ϵ|<|y|≤M

1

y2m
dy ≤ Cϵ| log ϵ|2m−1. (4.9)

There is a constant r > 0 such that Br(x) ⊂ V for all x ∈ γ3. So, we have from (4.4)
that for any x ∈ γ3,

|∇φϵ(x)| ≤ C
ϵ

r
≤ Cϵ,

and
|III| ≤ Cϵ. (4.10)

Now, (4.2) follows from (4.8), (4.9), and (4.10), and the proof is complete. □
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The formula (1.23) is an immediate consequence of (1.22). In fact, if r1 and r2 are radii
of circles osculating to ∂D1 and ∂D2 at (0, 0) and (ϵ, 0), respectively, then it is proved in
[21] that p1 and p2 which are fixed points of mixed reflections are given by

pi =

(
(−1)i

√
2

√
r1r2
r1 + r2

√
ϵ+O(ϵ), 0

)
as ϵ→ 0. (4.11)

So we obtain (1.23) from (1.22).

5 Approximations of α0

The region outside D0
1 ∪D0

2 has cusps at (0, 0), and it may cause some problem in com-
puting α0. To avoid this trouble, we show that by replacing the cusp with a neck a good
approximation of α0 can be obtained.

For ρ > 0 let
D(ρ) =

(
D0

1 ∪D0
2

)
∪ ([−ρ, ρ]× [−ρ, ρ]) (5.1)

which is of dumbbell shape, and let u(ρ) be the solution to
∆u(ρ) = 0 in R2 \D(ρ),

u(ρ) = λ(ρ) (constant) on ∂D(ρ),

u(ρ)(x)− h(x) = O(|x|−1) as |x| → ∞,

(5.2)

where the constant λ(ρ) is determined by the additional condition∫
∂D(ρ)

∂u(ρ)

∂ν

∣∣∣
+
ds = 0. (5.3)

We have the following theorem.

Theorem 5.1 Let δ be the number appearing in Theorem 2.1. For ρ ∈ (0, δ/2), let

α(ρ) =

∫
∂D0

1\[−2ρ,2ρ]×[−2ρ,2ρ]
∂νu(ρ) ds. (5.4)

Then, there are constants C and A such that∣∣α0 − α(ρ)

∣∣ ≤ C exp

(
−A
ρ

)
. (5.5)

Proof. Choose a point z0 on the common boundary of D(ρ) and D
0
1 ∪D0

2 and let

φ(z) := u(ρ)(z)− u0(z)− (u(ρ)(z0)− u0(z0)).

Since u(ρ)(z) − u(ρ)(z0) = 0 for all z ∈ ∂D(ρ) and u0(z) − u0(z0) = 0 on ∂D0
1 ∪ ∂D0

2, we
have

φ(z) = 0, z ∈ ∂D(ρ) \ ([−ρ, ρ]× [−ρ, ρ]) . (5.6)

On the other hand, if x1(ρ) ≤ x ≤ x2(ρ), then we have from (2.2)

|u0(x+ iρ)− u0(z0)| ≤ Ce
−A

ρ ,
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and hence
|φ(x+ iρ)| = |u0(x, ρ)− u0(z0)| ≤ Ce

−A
ρ . (5.7)

Similarly one can see that if x1(−ρ) ≤ x ≤ x2(−ρ), then

|φ(x− iρ)| ≤ Ce
−A

ρ . (5.8)

It follows from (5.6), (5.7), and (5.8) that

|φ(z)| ≤ Ce
−A

ρ (5.9)

for all z ∈ ∂D(ρ), and hence for all z ∈ R2 \D(ρ) by the maximum principle. Note that we
may apply the maximum principle since u(ρ)(z)− u0(z) → 0 as |z| → ∞.

We now estimate ∇(u(ρ)(z)− u0(z)) = ∇φ(z) on ∂D0
1 \ [−2ρ, 2ρ]× [−2ρ, 2ρ]. Because

of (5.6), one can apply the argument used right after of Theorem 2.1 to see that φ(z) can
be extended across ∂D0

1 \ [−2ρ, 2ρ]× [−2ρ, 2ρ] so that the extended function is harmonic in
Br(z) for all z ∈ ∂D0

1 \ [−2ρ, 2ρ]× [−2ρ, 2ρ] where r = sρ2m for some s > 0 (independent
of ρ). Then by the gradient estimate for harmonic functions we have

|∇(u(ρ) − u0)(z)| ≤ C2e
−A2

ρ , z ∈ ∂D0
1 \ [−2ρ, 2ρ]× [−2ρ, 2ρ]. (5.10)

It then follows from (2.1) and (5.10) that

|α0 − α(ρ)| ≤
∫
(∂D0

1)\[−2ρ,2ρ]×[−2ρ,2ρ]

∣∣∂ν(u(ρ) − u0)
∣∣ ds+ ∫

(∂D0
1)∩([−2ρ,2ρ]×[−2ρ,2ρ])

|∂νu0| ds

≤ Ce
−A3

ρ .

This completes the proof. □
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