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1. Introduction

This paper reviews recent progress on imaging by generalized polarization ten-

sors (GPTs), enhancement of near-cloaking by GPT-vanishing structures, cloaking

by anomalous localized resonance, and analysis of stress concentration. These seem-

ingly unrelated problems are all interface problems, and an integral operator called

the Neumann-Poincaré operator arises naturally from them. We discuss about bound-

edness and invertibility properties, and spectral property of this operator, and then

relate these properties with above mentioned problems.
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2. Neumann-Poincaré operator

We begin our investigation by looking into the classical Neumann boundary value

problem. Let Ω be a bounded domain in Rd (smoothness of the boundary ∂Ω will be

specified later) and consider for a given Neumann data g the boundary value problem

(1)


∆u = 0 in Ω,

∂u

∂ν
= g on ∂Ω.

Here and throughout this paper ν denotes the unit outward normal vector to ∂Ω. We

emphasize that g satisfies
∫
∂Ω
g = 0 for compatibility and the solution u is assumed

to satisfy
∫
∂Ω
u = 0 to guarantee uniqueness of the solution.

A classical way of solving (1) is to use layer potentials. Let Γ(x) be the fundamental

solution to the Laplacian, i.e.,

(2) Γ(x) =


1

2π
ln |x| , d = 2 ,

1

(2− d)ωd
|x|2−d , d ≥ 3 ,

where ωd denotes the area of the unit sphere in Rd. The single layer potential S∂Ω[φ]

of a density function φ ∈ L2(∂Ω) is defined by

(3) S∂Ω[φ](x) :=

∫
∂Ω

Γ(x− y)φ(y) dσ(y) , x ∈ Rd.

If we set u(x) = S∂Ω[φ](x) for some function φ, then u is harmonic in Ω. So in order

for u to be the solution to (1), it suffices to choose φ so that the boundary condition

is fulfilled.

The single layer potential S∂Ω[φ] satisfies the jump relation

(4)
∂

∂ν
S∂Ω[φ]

∣∣
±(x) =

(
±1

2
I +K∗

∂Ω

)
[φ](x), x ∈ ∂Ω ,

where the operator K∂Ω is defined by

(5) K∂Ω[φ](x) =
1

ωd

∫
∂Ω

⟨y − x, νy⟩
|x− y|d

φ(y) dσ(y) , x ∈ ∂Ω,

and K∗
∂Ω is its L2-adjoint, i.e.,

(6) K∗
∂Ω[φ](x) =

1

ωd

∫
∂Ω

⟨x− y, νx⟩
|x− y|d

φ(y) dσ(y) .

Here ± indicates the limits (to ∂Ω) from outside and inside of Ω, respectively. So in

order to fulfill the boundary condition in (1), we need to solve the integral equation

(7)

(
−1

2
I +K∗

∂Ω

)
[φ] = g on Ω.
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The operator K∂Ω (or K∗
∂Ω) is called the Neumann-Poincaré (NP) operator asso-

ciated with the domain Ω. It is well known (see for example [21, 53, 76]) that if ∂Ω

is smooth (C1,α for some α > 0), then

(i) K∗
∂Ω is a compact operator on L2(∂Ω),

(ii) the spectrum of K∗
∂Ω lies in (−1

2 ,
1
2 ],

(iii) 1
2I +K∗

∂Ω is invertible on L2(∂Ω) and − 1
2I +K∗

∂Ω is invertible on L2
0(∂Ω).

Here, L2
0(∂Ω) is the collection of all L2 functions with the mean zero. If g ∈ L2

0(∂Ω)

(to satisfy the compatibility condition), the solution to (7) is given by

φ =

(
−1

2
I +K∗

∂Ω

)−1

[g],

and the solution to (1) by

u(x) = S∂Ω

(
−1

2
I +K∗

∂Ω

)−1

[g](x), x ∈ Ω.

A few remarks on the above-mentioned properties of K∗
∂Ω are in order. If ∂Ω is

C1,α, then because of orthogonality of the normal vector and the tangential vector,

we have

(8)
|⟨x− y, νx⟩|
|x− y|d

≤ C

|x− y|d−1−α
, x, y ∈ ∂Ω,

which makes K∗
∂Ω compact. Property (iii) can be proved using the Fredholm alterna-

tive. We emphasize that property (ii) holds not only for smooth domains but also for

domains with Lipschitz boundaries. Even if we restrict our investigation here mostly

to the domains with smooth boundaries, it is worth while to review two important

results on the properties of the NP operators associated with Lipschitz domains. If ∂Ω

is Lipschitz, then K∗
∂Ω is a singular integral operator, and L2-boundedness of K∗

∂Ω was

proved by Calderón [44] when the Lipschitz constant of ∂Ω is small, and by Coifman,

McIntosh, and Meyer [50] for the general case. In this regards, it is worth mentioning

T [1] Theorem of David and Journé [52] which states that a singular integral operator

T is bounded on L2 if and only if T [1] is a function of bounded mean oscillation.

Invertibility as stated in (iii) for Lipschitz domains was proved by Verchota [109].

To motivate our discussion on the spectrum of the NP operator, we consider another

problem: a transmission problem. Suppose that an inclusion Ω is immersed in the

free space Rd. Suppose that the conductivity (or the dielectric constant) of Ω is ϵc
and that of the background is ϵm (ϵc ̸= ϵm). So, the distribution of the conductivity

is given by

σΩ = ϵcχ(Ω) + ϵmχ(Rd \ Ω),
where χ denotes the indicator function. The problem we consider is

(9)

{
∇ · σΩ∇u = 0 in Rd,

u(x)− h(x) = O(|x|1−d) as |x| → ∞,
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for a given harmonic function h in Rd. Note that without the inclusion Ω the solution

to (9) is nothing but u(x) = h(x). In the presence of the inclusion, the solution takes

the form u = h + something, and this something is generated by the discontinuity

of the conductivity along ∂Ω. It turns out (see for example [21, 74]) that there is a

potential φ on ∂Ω such that the solution is given by

(10) u(x) = h(x) + S∂Ω[φ](x), x ∈ Rd.

Since u satisfies the transmission conditions, u|− = u|+ (continuity of potential) and

ϵc
∂u
∂ν |− = ϵm

∂u
∂ν |+ (continuity of flux), one can see from the jump relation (4) that the

following relation holds:

(11)

(
ϵc + ϵm

2(ϵc − ϵm)
I −K∗

∂Ω

)
[φ] =

∂h

∂ν
on ∂Ω.

We emphasize that the problem (9) is elliptic if (and only if) ϵc and ϵm are posi-

tive, and in this case the number ϵc+ϵm
2(ϵc−ϵm) does not belong to [−1/2, 1/2], where the

spectrum of K∗
∂Ω lies. So, as long as we are interested in elliptic problems, there is no

need to look into the spectrum of K∗
∂Ω. The spectrum of the NP operator is a classical

subject of research since Poincaré. See a recent paper [105] and references therein for

a brief history of this. Recently there has been renewed interest in the spectrum of

the NP operator in relation to the plasmonic structures consisting of inclusions with

negative dielectric constants, i.e., with ϵc < 0 (while ϵm stays positive). In this case,
ϵc+ϵm

2(ϵc−ϵm) may lie in the spectrum of K∗
∂Ω. As we will see in the next section, if ∂Ω is

C1,α (so that K∗
∂Ω is compact), then the spectrum of K∗

∂Ω is discrete and accumulating

to 0. The number ϵc
ϵm

such that ϵc+ϵm
2(ϵc−ϵm) is an eigenvalue of K∗

∂Ω is called a plasmonic

eigenvalue and the single layer potential of the corresponding eigenfunction is called

a localized plasmon [59].

2.1. Spectrum of the NP operator. — We first emphasize that K∗
∂Ω is not self-

adjoint on the usual L2-space. In fact, it is self-adjoint on L2(∂Ω) only if Ω is a disk

or a ball [89]. However, we may realize K∗
∂Ω as a self-adjoint operator by using a

different inner product.

Let ⟨ , ⟩ be the usual inner product on L2(∂Ω). It is easy to see that S∂Ω is self-

adjoint on L2(∂Ω), which is nothing but saying Γ(x− y) = Γ(y− x). Let φ ∈ L2
0(∂Ω)

and define

(12) u(x) = S∂Ω[φ](x), x ∈ Rd.

Then u(x) = O(|x|1−d) as |x| → ∞, and we have∫
Ω

|∇u|2dx =

∫
∂Ω

u
(
− 1

2
φ+K∗

∂Ω[φ]
)
dσ,∫

Rd\Ω
|∇u|2dx = −

∫
∂Ω

u
(1
2
φ+K∗

∂Ω[φ]
)
dσ.
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Summing up these two identities we find

(13)

∫
Rd

|∇u|2dx = −⟨φ,S∂Ω[φ]⟩.

Thus −⟨φ,S∂Ω[φ]⟩ ≥ 0. On the other hand, if ⟨φ,S∂Ω[φ]⟩ = 0, then (13) and the

decay condition of u at infinity imply u ≡ 0, and hence φ = 0. So, −⟨φ,S∂Ω[φ]⟩ is an
inner product on L2

0(∂Ω)
(1). Let H be the Hilbert space L2

0(∂Ω) equipped with this

inner product, and define

(14) ⟨φ,ψ⟩H := −⟨φ,S∂Ω[ψ]⟩, φ, ψ ∈ H.

That K∗
∂Ω is self-adjoint on H follows from the well-known Calderón’s identity (also

known as Plemeljs symmetrization principle):

(15) S∂ΩK∗
∂Ω = K∂ΩS∂Ω.

In fact,

⟨φ,K∗
∂Ω[ψ]⟩H = −⟨φ,S∂ΩK∗

∂Ω[ψ]⟩ = −⟨φ,K∂ΩS∂Ω[ψ]⟩ = ⟨K∗
∂Ω[φ], ψ⟩H.

We refer to [7, Lemma 3.3] for a proof of the Calderón’s identity. We emphasize that

the Calderón’s identity holds, and hence K∗
∂Ω is self-adjoint on H, even if ∂Ω is only

Lipschitz. It is worth mentioning that when ∂Ω is C1,α, self-adjointness of K∗
∂Ω also

follows from the Calderón’s identity and a symmetrizability result in [77].

If ∂Ω is C1,α, then K∗
∂Ω is compact on H. So, K∗

∂Ω has eigenvalues accumulating to

0. Let λ1, λ2, . . . (|λ1| ≥ |λ2| ≥ . . .) be eigenvalues of K∗
∂Ω onH counting multiplicities,

and φ1, φ2, . . . be the corresponding (normalized) eigenfunctions. Then K∗
∂Ω admits

the spectral resolution

(16) K∗
∂Ω =

∞∑
j=1

λjφj ⊗ φj .

More generally, if ∂Ω is merely Lipschitz, then by the spectral resolution theorem [110]

there is a family of projection operators E(t) on H (called a resolution of identity)

such that

(17) K∗
∂Ω =

∫ 1/2

−1/2

t dE(t).

In some special cases, we can find those eigenvalues explicitly:

(i) If Ω is a disk, then 0 is the only eigenvalue of K∗
∂Ω on H [72]. ( 12 is an eigenvalue

of K∗
∂Ω on L2(∂Ω) as we will see later.)

(1)Since S∂Ω maps H−1/2(∂Ω) into H1/2(∂Ω), ⟨ , ⟩S may be considered as an inner product on

H
−1/2
0 (∂Ω).
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(ii) If Ω is a ball, then the eigenvalues of K∗
∂Ω are

(18)
1

2(2n+ 1)
, n = 1, 2, . . . ,

and the corresponding eigenfunctions are the spherical harmonics of order n [73]

(see also [9]).

(iii) If Ω is an ellipse of the long axis a and short axis b, then they are

(19)
1

2
(
a− b

a+ b
)n, n = 1, 2, . . . ,

and the corresponding eigenfunctions are elliptic harmonics [24].

(iv) If Ω is an ellipsoid, the first few eigenvalues were computed in [24] and the same

method can be applied to compute all the eigenvalues.

We now show that 1
2 is an eigenvalue of K∗

∂Ω on L2(∂Ω) (not on H). If Ω is a disk

or a ball, then

(20) K∗
∂Ω[1] =

1

2
.

There are many ways to see this and one of them is to use the double layer potential.

The double layer potential is defined by

(21) D∂Ω[φ](x) :=

∫
∂Ω

∂

∂νy
Γ(x− y)φ(y) dσ(y) , x ∈ Rd \ ∂Ω.

Then D∂Ω[φ] enjoys the jump relation

(22) D∂Ω[φ]
∣∣
±(x) =

(
∓1

2
I +K∂Ω

)
[φ](x), x ∈ ∂Ω .

Since D∂Ω[1] = 1 which can be proved using Green’s identity, we have

(23) K∂Ω[1] =
1

2

for any domain Ω. Since K∂Ω is self-adjoint if Ω is a disk or a ball, we have (20)(2).

Suppose that K∗
∂Ω[1] ̸= 1

2 . Since∫
∂Ω

(
1

2
I −K∗

∂Ω)[1] dσ =

∫
∂Ω

(
1

2
−K∂Ω[1]) dσ = 0

by (23), and 1
2I − K∗

∂Ω is invertible on L2
0(∂Ω), there is a unique ψ ∈ L2

0(∂Ω) such

that

(
1

2
I −K∗

∂Ω)[ψ] = (
1

2
I −K∗

∂Ω)[1]

Let φ0 := ψ − 1. Then φ0 ̸= 0 (because
∫
∂Ω
φ0 = −|∂Ω|) and

(24) K∗
∂Ω[φ0] =

1

2
φ0.

(2)Greuber conjectured that a disk or a ball is the only domain such that K∗
∂Ω[1] =

1
2
. This conjecture

has been proved to be true for bounded Lipschitz domains in R2 and for bounded Lipschitz convex

domains in R3 by Mendez and Reichel [94].
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So, 1/2 is an eigenvalue of K∗
∂Ω on L2(∂Ω).

It is worth mentioning that the eigenfunction φ0 in three dimensions is the equilib-

rium distribution of charge which minimizes the energy of the electrical field, namely,

E(φ) =

∫
R3

|∇S∂Ω[φ](x)|2dx

subject to
∫
∂Ω
φdσ = constant and φ ≥ 0. See [94] in this connection. We also

mention that the function u defined by u(x) = S∂Ω[φ0](x) satisfies ∂u
∂ν |− = (− 1

2I +

K∗
∂Ω)[φ0] = 0 and so u is constant in Ω. So u is harmonic in Rd \ Ω and u = const.

on ∂Ω such that u(x) = O(ln |x|) in two dimensions and u(x) = O(|x|−1) in three

dimensions as |x| → ∞.

Further discussion. — As discussed in the text, if ∂Ω is C1,α, then K∗
∂Ω is compact

onH and K∗
∂Ω has discrete eigenvalues. An interesting question is what if ∂Ω is merely

Lipschitz, or what the spectrum of the NP operator looks like in this case. I am not

aware of any example of domains with Lipschitz boundary whose NP operator has

spectrum other than eigenvalues. The spectrum of the NP operator on simple domains

with corners like the square in two dimensions may already have a quite interesting

structure. (See also Further discussion at the end of Section 3.) In this respect,

we refer to [105] and references therein. There the upper bounds of the essential

spectrum of the NP operator are obtained when the boundary has corners. However,

it is not clear if the essential spectrum does exists when the domain is not a two

dimensional disc.

As we will see in Section 5 the slower convergence (to 0) of the eigenvalues of the NP

operator on the ball is responsible for non-occurrence of the cloaking by anomalous

localized resonance. In relation to this, we conjecture that eigenvalues of the NP

operator on the ball has the fastest convergence rate in some sense among simply

connected bounded domain in three dimensions. Regarding the convergence rate of

eigenvalues, it would be interesting to relate the convergence rate with analyticity of

the boundary in two dimensions.

3. Generalized polarization tensors and applications to imaging

Let u be the solution to (9). Then it admits the representation (10) and (11).

Suppose that 0 ∈ Ω. Since the harmonic function h admits the expansion

h(x) =

∞∑
|α|=0

1

α!
(∂αh)(0)xα,

if we define φα ∈ L2
0(∂Ω) by

(25) φα(x) := (λI −K∗
∂Ω)

−1[ν · ∇yα](x), x ∈ ∂Ω ,
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then by linearity φ, the solution to (11), is given by

φ =
∞∑

n=1

∑
|α|=n

1

α!
(∂αh)(0)φα.

Here we use the multi-index notation α = (α1, . . . , αd), |α| = α1 + . . . + αd, and

xα = xα1
1 · · ·xαd

d . And the solution u is given by

u(x) = h(x) +
∞∑

n=1

∑
|α|=n

1

α!
(∂αh)(0)S∂Ω[φα](x), |x| → ∞.

Recall that

S∂Ω[φα](x) =

∫
∂Ω

Γ(x− y)φα(y) dσ(y).

Since Γ(x− y) admits the expansion

Γ(x− y) =

∞∑
m=0

∑
|β|=m

(−1)|β|

β!
∂βΓ(x)yβ

for |x| large and y in a bounded set and φα ∈ L2
0(∂Ω), we have

(26) u(x) = h(x) +

∞∑
n,m=1

∑
|α|=n

∑
|β|=m

(−1)|β|

α!β!
∂αh(0)mαβ∂

βΓ(x), |x| → ∞,

where

(27) mαβ =

∫
∂Ω

yβφα(y) dσ(y).

We emphasize that the expansion (26) uses polynomials as a basis. We will rewrite

this expansion in a different form using the spherical harmonics as a basis (see (47)).

The quantities mαβ is called the generalized polarization tensors (GPT). Note that

mαβ depends on the domain Ω and the constant λ = ϵc+ϵm
2(ϵc−ϵm) . So we denote mαβ as

mαβ(λ,Ω) to indicate its dependence on the arguments, or mαβ(Ω) when λ is fixed,

or mαβ(λ) when Ω is fixed. We emphasize that mαβ(λ) is a holomorphic function of

λ in C \ [− 1
2 ,

1
2 ]. The asymptotic expansion (26) shows that the GPTs are building

blocks of the ‘far field’ expansion of u in the presence of the inclusion Ω. As we will see

later, GPTs carry rich information on the shape of the inclusion, so they can be used

for imaging and shape description. For example, the full set of GPTs determines the

domain uniquely [18]. Conversely, if we design a structure so that first a few terms

of its GPTs vanish, then the structure is vaguely seen by the far field measurements.

In this way, the notion of GPTs has an important connection with the invisibility

cloaking. It is worth mentioning here that asymptotic expansion (26) is valid in some

cases when Ω is not homogeneous, namely, its dielectric property ϵc is not constant

(see [11]). It holds for example when the Ω has multi-layered radial structure which

we will deal with later in the note.
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When |α| = |β| = 1, we may write mαβ as mij , i, j = 1, . . . , d, so mij is defined by

(28) mij =

∫
∂Ω

yj(λI −K∗
∂Ω)

−1[νi](y) dσ(y).

The d× d matrix M = (mij) is called the polarization (or polarizability) tensor and

appeared in many context such as low frequency asymptotic of wave [51], the study

of potential flow [106], and theory of composites (see [95] and references therein).

The leading order term in (26) may be written as

(29) u(x) = h(x)−M∇h(0) · ∇Γ(x) +O(|x|−d), |x| → ∞.

3.1. Properties of GPTs. — We now collect some important properties of GPTs.

Symmetry. If {aα} and {bβ} are such that
∑
aαx

α and
∑
bβx

β are harmonic

polynomials (such coefficients are called harmonic coefficients), then∑
aαbβmαβ =

∑
aαbβmβα.

In particular, the PT M is a symmetric matrix.

Bounds and positivity. If f(x) =
∑

α∈I aαx
α is a harmonic polynomial and |λ| ≥ 1

2

(and real), then

(30)
2

2λ+ 1

∫
Ω

|∇f |2 dx ≤
∑

α,β∈I

aαaβmαβ(λ,Ω) ≤
2

2λ− 1

∫
Ω

|∇f |2 dx .

These bounds imply that if λ is real and λ ≥ 1
2 , then

∑
aαaβmαβ(λ,Ω) > 0. In par-

ticular, the M is positive-definite. If λ ≤ − 1
2 , then it is negative-definite. Moreover,

if κ is an eigenvalue of M , then

(31)
2

2λ+ 1
|Ω| ≤ κ ≤ 2

2λ− 1
|Ω|.

Here, |Ω| denote the volume of Ω.

Optimal bounds for PT(3). The bounds (31) can be improved to

(32)
1

k − 1
Tr(M) ≤ |Ω|(d− 1 +

1

k
),

and

(33) (k − 1)Tr(M−1) ≤ d− 1 + k

|Ω|
,

where Tr denotes the trace and k = 2λ+1
2λ−1 . These bounds have been obtained by Lipton

[93], and later by Capdeboscq-Vogelius [48] based on the variational argument in [79].

The bounds are optimal in the sense that every matrix satisfying bounds is realized as

the PT of an inclusion [5, 47]. It is worth mentioning that these bounds are geometry

independent and can be improved for domains with some thickness [46]. It is proved

(3)The bounds are called the Hashin-Shtrikman bounds after names of the scientists who first found

the optimal bounds on the effective conductivity of isotropic two-phase composites [61]
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in [71] that if the lower bound (33) is attained, then Ω is an ellipse or an ellipsoid,

and as a consequence the Pólya-Szegö conjecture(4) is proved.

Unique determination of the domain by GPT. If bounded Lipschitz domains

Ω1 and Ω2 satisfy ∑
aαbβmαβ(λ1,Ω1) =

∑
aαbβmαβ(λ2,Ω2)

for all harmonic coefficients aα and bβ , then

λ1 = λ2 and Ω1 = Ω2.

Transformation formula for PT. The following relations under scaling, shifting,

and rotation hold:

(i) Scaling:

(34) M(λ, sΩ) = sdM(λ,Ω).

(ii) Shifting. PT is invariant under translation, i.e.,

(35) M(λ,Ω+ z) =M(λ,Ω).

(iii) Rotation. Let R be an orthogonal transformation. Then the following relation

holds:

(36) M(λ,RΩ) = RM(λ,Ω)RT .

The proofs of all above mentioned properties can be found in [21].

Transformation formula for (higher order) GPTs are also important. To derive

those formula, it is more convenient to use complex harmonic combinations of GPTs.

In two dimensions, let amα and bmβ be coefficients such that

(37)
∑

|α|=m

amα x
α = rm cosmθ, and

∑
|α|=m

bmα x
β = rm sinmθ.

We then define contracted GPTs (CGPT) as follows:

M cc
mn =

∑
|α|=m

∑
|β|=n

amα a
n
βmαβ , M cs

mn =
∑

|α|=m

∑
|β|=n

amα b
n
βmαβ ,

Msc
mn =

∑
|α|=m

∑
|β|=n

bmα a
n
βmαβ , Mss

mn =
∑

|α|=m

∑
|β|=n

bmα b
n
βmαβ .

It is worth mentioning that M cc
mn is defined by

(38) M cc
mn =

∫
∂Ω

(rn cosnθ)(λI −K∗
Ω)

−1[ν · ∇(rm cosmθ)] dσ,

(4)The Pólya-Szegö conjecture asserts that the inclusion whose electrical polarization tensor has the

minimal trace takes the shape of a disk or a ball [106].
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and M cs
mn is defined by switching the first cosnθ by sinnθ, and the others are defined

similarly. We also define complex CGPTs as

(39)

N(1)
mn(λ,Ω) =

∫
∂Ω

Pn(y)(λI −K∗
Ω)

−1[ν · ∇Pm](y) dσ(y),

N(2)
mn(λ,Ω) =

∫
∂Ω

Pn(y)(λI −K∗
Ω)

−1[ν · ∇Pm](y) dσ(y),

where Pn(x) = (x1 + ix2)
n. Then one can see immediately that

N(1)
mn(λ,Ω) = (M cc

mn −Mss
mn) + i(M cs

mn +Msc
mn),

N(2)
mn(λ,Ω) = (M cc

mn +Mss
mn) + i(M cs

mn −Msc
mn).

Then the following transformation formula hold [3]: Let RθΩ, sΩ, and TzΩ be rotation

by θ, scaling, and shifting by z of Ω, respectively. For all integers m,n, we have

N(1)
mn(RθΩ) = ei(m+n)θN(1)

mn(Ω), N(2)
mn(RθΩ) = ei(n−m)θN(2)

mn(Ω),(40)

N(1)
mn(sΩ) = sm+nN(1)

mn(Ω), N(2)
mn(sΩ) = sm+nN(2)

mn(Ω),(41)

N(1)
mn(TzΩ) =

m∑
l=1

n∑
k=1

Cz
mlN

(1)
lk (Ω)Cz

nk, N(2)
mn(TzΩ) =

m∑
l=1

n∑
k=1

Cz
mlN

(2)
lk (Ω)Cz

nk,

(42)

where Cz is the lower triangle matrix with the m,n-th entry given by

(43) Cz
mn =

(
m

n

)
zm−n,

and Cz denotes its conjugate. Here, we identify z = (z1, z2) with z = z1 + iz2.

In three dimensions, the complex CGPTs are defined as follows: let Y m
n , −n ≤

m ≤ n, be the (complex) spherical harmonic of homogeneous degree n and order m,

i.e.,

Y m
n (θ, φ) = (−1)m

[
2n+ 1

4π

(n−m)!

(n+m)!

]1/2
eimφPm

n (cos θ) , −n ≤ m ≤ n ,

where Pm
n are the associated Legendre polynomials of degree n and order m. If

rnY m
n (θ, φ) =

∑
|α|=n

amn
α xα,

then CGPT Mmnkl is defined by

(44) Mnmlk =
∑

|α|=n,|β|=l

amn
α aklβ Mαβ , m, n, k, l = 1, 2, · · · .

In other words, we have

(45) Mnmlk =

∫
∂D

rlyY
k
l (θy, φy)(λI −K∗

D)−1

[
∂

∂ν
rnyY

m
n (θy, φy)

∣∣∣∣
∂D

]
(y)dσ(y),
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where y = ry(cosφy sin θy, sinφy sin θy, cos θy). Then similar transformation formula

for Mnmlk can be obtained. See [6] for details.

Explicit formula for PT and GPTs can be found for shapes like disks, balls, ellipses,

and ellipsoids. For example, if Ω is an ellipse x2

a2 + y2

b2 ≤ 1, then

(46) M(λ,Ω) = 2|Ω|


a+ b

(2λ− 1)a+ (2λ+ 1)b
0

0
a+ b

(2λ− 1)b+ (2λ+ 1)a

 .
We may derive an asymptotic expansion of the solution to (9) which is different

from (26) using the contracted GPTs. If h admits the Fourier expansion

h(x) = a0 +

∞∑
n=1

rn(acn cosnθ + asn sinnθ),

then, as |x| → ∞, we have

(47)

u(x) = h(x)−
∞∑

m,n=1

[
cosmθ

2πmrm
(M cc

mna
c
n +M cs

mna
s
n) +

sinmθ

2πmrm
(Msc

mna
c
n +Mss

mna
s
n)

]
.

3.2. Shape description and imaging by GPTs. — There are many geometric

quantities intrinsically associated with domains (or shapes) such as eigenvalues, mo-

ments, and capacities. The sequence of GPTs is one of them. In fact, GPTs contain

richer information than eigenvalues since the full sequence of GPTs determines the

domain uniquely as we discussed before while the full sequence of eigenvalues does not

[56]. We now show that first few terms of GPTs, not the full sequence, can recover a

good approximation of the shape.

Note that there is one-to-one correspondence between the class of PTs and that of

ellipses. In fact, supposeM =M(Ω) is the PT of the domain Ω. SinceM is a positive

(or negative) definite symmetric matrix,M can be diagonalized asM = RΛRT where

Λ is a diagonal matrix whose entries have the same sign andR is an orthogonal matrix.

Then using (46) one can determine the ellipse E such that M(λ,E) = Λ. By (36),

M(λ,RE) = M (this argument works for the equivalent ellipsoid as well(5)). The

ellipse RE is called the equivalent ellipse of Ω. In other words, given a domain Ω, the

ellipse (or ellipsoid) whose PT is the same as that of Ω is called the equivalent ellipse

or ellipsoid of Ω. The equivalent ellipse reveals an overall property of the shape.

Figure 1 shows the equivalent ellipse of a kite-shaped domain. It is worthwhile to

mention that since an ellipse which is not a disk has an orientation (the direction

of the long axis), we may define the direction of the given domain by that of the

equivalent ellipse.

(5)One can find the formula for the PT of ellipsoids in [95]



LAYER POTENTIAL APPROACHES TO INTERFACE PROBLEMS 13
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1

Figure 1. Equivalent Ellipse. A figure from [31]

Since the full set of GPTs determines the shape completely and the PT represents

the overall property, one may guess that the higher order GPTs carry information on

finer details of the shape. However, it is not clear how to represent geometric figures

contained in higher order GPTs, like equivalent ellipses in PTs. So, in [31] an optimal

control method is used to recover geometric features from first few terms of GPTs.

The aim is to make use of
∑

|α|+|β|≤K

aαbβmαβ for a fixed K ≥ 2, where aα and bβ

are harmonic coefficients, to image finer details of the shape of the inclusion. The

optimization problem to recover the shape of the given target domain Ω is to minimize

over domains D

J [D] :=
1

2

∑
|α|+|β|≤K

w|α|+|β|

∣∣∣∣∣∣
∑
α,β

aαbβmαβ(k,D)−
∑
α,β

aαbβmαβ(k,Ω)

∣∣∣∣∣∣
2

.

Here w|α|+|β| is a binary weight: 0 for ‘off’ and 1 for ‘on’. For example w2 = 1 and

others are zero means that only the PT is used.

To minimize J [D] we use a iterative scheme: we modify the initial shape Dn to

obtain Dn+1 by applying the gradient descent method:

∂Dn+1 = ∂Dn −

 J [Dn]∑
j (⟨dSJ [Dn], ψj⟩)2

∑
j

⟨dSJ [Dn], ψj⟩ψj

 ν,

where ν is the outward unit normal to Dn, {ψj} is a basis of L2(∂Dn), and dSJ [D
n]

is the shape derivative. We have a good initial guess for the iteration: the equivalent

ellipse! Given the PT of the inclusion Ω, we can find an ellipse with the same PT but

not its location since the PT is invariant under translation. We can locate the inclusion

provided that its GPTs with |α|+ |β| = 3 are known. Suppose that B = Br(x
∗) is a

ball in Rd, d = 2, 3. Let αl := el and βl := 2el, j = 1, . . . , d, where el is the standard

basis of Rd. Then it is known, see [20], that

(mα1β1
, . . . ,mαdβd

) =
2d(k − 1)

k + d− 1
|B|x∗.
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(Here and throughout this section we assume that ϵm = 1 and ϵc = k so that λ =
k+1

2(k−1) .) Temporarily assuming that B is a ball, we get the center for the initial guess

from mαlβl
, l = 1, . . . , d. We emphasize that in each step of iteration we may use a

different binary weights wk.

The shape derivative dSJ [D
n] can be computed as follows: Let Dϵ be an ϵ-

perturbation of D, i.e.,

∂Dϵ := {x̃ = x+ ϵh(x)ν(x) | x ∈ ∂D}.

Let H =
∑

α aαx
α and F =

∑
β bβx

β be harmonic polynomials. Then∑
α,β

aαbβmαβ(k,Dϵ)−
∑
α,β

aαbβmαβ(k,D)

= ϵ(k − 1)

∫
∂D

h(x)

[
∂v

∂ν

∣∣∣
−

∂u

∂ν

∣∣∣
−
+

1

k

∂u

∂T

∣∣∣
−

∂v

∂T

∣∣∣
−

]
(x) dσ(x) +O(ϵ2),

where 

∆u = 0 in D ∪ (R2\D),

u|+ − u|− = 0 on ∂D,

∂u

∂ν

∣∣∣
+
− k

∂u

∂ν

∣∣∣
−
= 0 on ∂D,

(u−H)(x) = O(|x|−1) as |x| → ∞,

and 

∆v = 0 in D ∪ (R2\D),

kv|+ − v|− = 0 on ∂D,

∂v

∂ν

∣∣∣
+
− ∂v

∂ν

∣∣∣
−
= 0 on ∂D,

(v − F )(x) = O(|x|−1) as |x| → ∞.

Then the shape derivative of J [D] in the direction of h is given by

⟨dSJ [D], h⟩L2(∂D) =
∑

|α|+|β|≤K

w|α|+|β|δ
HF
D ⟨ϕHF

D , h⟩L2(∂D),

where

ϕHF
D (x) = (k − 1)

[
∂v

∂ν

∣∣∣
−

∂u

∂ν

∣∣∣
−
+

1

k

∂u

∂T

∣∣∣
−

∂v

∂T

∣∣∣
−

]
,

and

δHF
D =

∑
α,β

aαbβmαβ(k,Dϵ)−
∑
α,β

aαbβmαβ(k,D).

Figure 2 shows the result of shape reconstruction using mαβ , |α|+ |β| ≤ 6, after 6

iterations. The kite shape is recovered well. However, the optimization algorithm used

here has a limitation. As Figure 3 shows, the iteration can not change the topology.

In [16] this limitation has been overcome using the level set method. Figure 4 shows

the result of reconstruction by the level-set method using mαβ , |α|+ |β| ≤ 6, after 100
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iterations. It is remarkable that first few GPTs carry information on the topology.

GPTs can be used to recover inhomogeneous conductivity as Figure 5 shows.
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Figure 2. Shape reconstruction usingmαβ , |α|+|β| ≤ 6, after 6 iterations.

Figures from [31].
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Figure 3. Reconstruction of clusters of inclusions usingmαβ , |α|+|β| ≤ 6.

The upper images: the equivalent ellipses, and the lower ones: results after

6 iterations. Figures from [31]

GPTs as shape descriptors. So far we have seen that GPTs carry rich informa-

tion of the shape of the inclusion. In previous subsection we showed that GPTs (or
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Figure 4. Reconstruction of clusters of inclusions by the level-set method

using mαβ , |α|+ |β| ≤ 6, after 100 iterations. Figures from [16].
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Figure 5. Recovery of radial conductivities using GPTs. r = 0 is the

center of the circle and r = 1 is the boundary. A figure from [11].

CGPTs) obey certain transformation laws under scaling, rotation, and shifting. This

property makes GPTs suitable for the dictionary matching problem (or pattern recog-

nition). The problem is to identify the object in the dictionary when the target object

is identical to one of the objects in the dictionary up to shifting, rotation, and scaling.

The standard method of dictionary matching is to construct invariants, called shape

descriptors, under rigid motions and scaling, and to compare those invariants, and a
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common way to construct such invariants uses the moments [63, 113]. In the recent

paper [3, 6] new invariants are constructed using GPTs in two and three dimensions

using translation formula and viability of the method is demonstrated by numerical

experiments. We also mention a recent work of Ammari et al [4] where GPT based

invariants are used for shape recognition and classification in electro-sensing.

3.3. Expansion method of imaging. — Let σ be the conductivity profile of the

domain Ω. For a given g ∈ L2
0(∂Ω) we consider the Neumann boundary value problem

(48)



∇ · (σ(x)∇u) = 0 in Ω,

σ
∂u

∂ν

∣∣∣
∂Ω

= g,∫
∂Ω

u dσ = 0.

If u is the solution to this problem, the map Λ defined by

Λ : g 7→ u|∂Ω

is called the Neumann-to-Dirichlet (NtD) map. One of main problems in inverse

problems is to determine the conductivity σ from the NtD map. This problem is called

the Calderón problem (or Electrical Impedance Tomography), and since the work of

Calderón [45], Kohn-Vogelius [83] and Sylvester-Uhlmann [107] huge literature has

been devoted to this problem. We refer interested readers to [32, 65, 108].

Suppose that the conductivity distribution is given by

σ = χ(Ω \D) + kχ(D),

meaning that the inclusion D of conductivity k ̸= 1 is buried in Ω of conductivity

1. The problem here is to reconstruct the inclusion D from the NtD map Λ. Even

though uniqueness of the reconstruction of the inclusion via the NtD map holds as

was proved by Isakov [64], this reconstruction problem is ill-posed and it is hard to

have stable reconstruction. For example, if the boundary of the inclusion has high

oscillation, the reconstruction becomes unstable (see [17]). It is even more so if we

consider a finite measurements problem. Reconstruction of D by the NtD map is an

infinite measurements problem, namely, the data set is {Λ[g] : g ∈ L2
0(∂Ω) }. One

may consider finite measurements problems to reconstruct D from finite set of data

Λ[gj ], j = 1, . . . , N , for some N .

To overcome ill-posedness and instability of the reconstruction many regulariza-

tion methods were invented. One way of regularization is to either restrict the class

of domains or to restrict the geometric features of the inclusion to be reconstructed

(e.g. giving up detecting high oscillation). It is worth mentioning that uniqueness of

reconstruction within the class of polygons, disks, and balls by one or two measure-

ments was proved (see [65] and references therein). We also mention that uniqueness
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within the class of ellipses (using only a finite number of measurements) is still an

open problem.

Suppose now that the inclusion to be reconstructed is diametrically small. In this

case the leading order terms of the asymptotic expansion of the solution to (48) as

the diameter tends to 0 provides a good approximation of the Dirichlet data, and

reconstruction (of the location and some geometric information) becomes stable. To

be more precise, suppose that the inclusion D is represented as

D = δB + z

where B is a reference domain containing 0, δ is a small parameter of diameter, and

z indicates the location of the inclusion. If B has several components, then D is a

cluster of small inclusions. We further assume that D is at some distance from the

boundary ∂Ω of Ω, i.e.,

(49) dist(D, ∂Ω) ≥ C0

for some C0. Let uδ be the solution to (48). The condition (49) means that the

boundary value uδ|∂Ω is a kind of ‘far-field’ pattern. So, in view of (29), one may

guess that

uδ(x) ≈ u0(x)−M(λ,D)∇u0(z) · ∇Γ(x− z),

where u0 is the solution in absence of D, i.e.,

∆u0 = 0 in Ω,

∂u0
∂ν

∣∣∣
∂Ω

= g,∫
∂Ω

u0 dσ = 0,

and M(λ,D) is the PT of D with λ = k+1
2(k−1) . The guess is almost right except that

since we are dealing with the Neumann boundary value problem, Γ, which is the

Green function in the free space, should be replaced by the Neumann function. The

Neuman function on Ω is defined by
−∆xN(x, z) = δz(x) in Ω ,

∂N

∂νx

∣∣∣
∂Ω

= − 1

|∂Ω|
,

∫
∂Ω

N(x, z) dσ(x) = 0 for z ∈ Ω .

Since M(D) = δdM(B) by (34), the correct asymptotic formula is

(50) uδ(x) = u0(x)− δdM(B)∇u0(z) · ∇zN(x, z) +O(δd+1).

This formula was first derived in [54]. The formula (50) reveals that one can recover

the location z and the PT M(D) of D, and hence the equivalent ellipse of D. This

idea appeared and was implemented in [42]. The same expansion and reconstruction

work for a cluster of inclusions [23]. Figure 6 is from the same paper. In the figure,

resolved imaging would be reconstructing three inclusions separately. Instead we
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reconstruct the location and an overall (averaged) feature of the inclusions, and the

reconstruction is stable! As we saw in previous subsections, we may recover a resolved

image by using higher order GPTs, but the reconstruction becomes unstable.

−10 −5 0 5 10
−10

−5

0

5

10

→

3.6667 6.6667
3.4

6.4

Figure 6. Reconstruction of a cluster of inclusions by the equivalent el-

lipse. A figure from [23]

We emphasize here that the expansion formula may not be directly used for re-

construction of the location and the PT since the Neumann function depends on Ω.

This difficulty can be removed by using the formula

(51)

(
−1

2
I +KΩ

)
[N(·, z)](x) = Γ(x− z) modulo constant, x ∈ ∂Ω, z ∈ Ω,

and the new expansion

(52)

(
−1

2
I +KΩ

)
[uδ](x) = u0(x)− δdM(B)∇u0(z) · ∇zΓ(x− z) +O(δd+1).

This is a kind of pre-conditioning. See [21, Lemma 2.28] for a proof of (51).

The expansion (50) is extended to include higher order terms [19]:

(53) uδ(x) = u0(x) +
2d−1∑
n=2

(−1)|β|

α!β!

∑
|α|+|β|=n

∂αu0(z)mαβ∂
β
zN(x, z) +O(δ2d).

It is possible to derive terms even higher than δ2d. But those terms involve not

only GPTs (which are intrinsic quantities associated only with the inclusion) but also

interaction between D and ∂Ω. The expansion (53) shows that it is possible to recover

mαβ , |α|+ |β| ≤ 2d− 1, from the boundary measurements.

The expansion method for reconstruction of small inclusions has been applied in

various contexts such as wave imaging, elasticity imaging, etc. We refer readers to [22]

and references therein for development in this direction. We also mention modeling

of the weakly electric fish by Ammari, Boulier, and Garnier [2].

Yet there is another important way of imaging: in terms of multi-static measure-

ments. There is an array of transducers and receivers. They emit waves and receive
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responses, and from this data one can construct the multi-static response matrix.

Since the multi-static response matrix admits an asymptotic expansion with respect

to the diameter of the inclusion, one can recover GPTs of higher orders. Then one

can recover fine details of the shape of the inclusion. Here we emphasize that if we

use higher order GPTs, then we recover resolved image. On the other hand, recovery

of higher order GPTs is unstable while the lower order ones can be recovered in a

stable way. So there is a trade-off between resolution and stability. We refer to the

book [14] and references therein for recent development on multi-static imaging and

statistical analysis of resolution and stability.

Further discussion. — Suppose that ∂Ω is Lipschitz and that K∗
∂Ω admits the

spectral resolution (17). Then, we have

(λI −K∗
∂Ω)

−1[νi] =

∫ 1/2

−1/2

1

λ− t
dE(t)[νi],

and hence

mij = ⟨yj , (λI −K∗
∂Ω)

−1[νi]⟩ =
∫ 1/2

−1/2

1

λ− t
d⟨E(t)[νi], yj⟩.

We emphasize that ⟨E(t)[νi], yj⟩ is the usual inner product. Let

dµΩ
ij := d⟨E(t)[νi], yj⟩.

Then, we have

(54) mij(λ,Ω) =

∫ 1/2

−1/2

dµΩ
ij(t)

λ− t
, λ ∈ C \ [−1

2
,
1

2
].

If ∂Ω is C1,α and hence K∗
∂Ω admits the spectral resolution (16), then

dµΩ
ij =

∞∑
k=1

⟨φk, νi⟩H⟨φk, yj⟩δ(t− λk)dt.

Since ⟨φk, νi⟩H = −⟨φk,S∂Ω[νi]⟩, we have

(55) mij(λ,Ω) = −
∞∑
k=1

⟨φk,S∂Ω[νi]⟩⟨φk, yj⟩
λ− λk

.

In particular, mij(λ,Ω) is a meromorphic function on C except 0 where it has an

essential singularity.

One interesting question here is whether mij(λ,Ω) determines Ω uniquely (up to

shifting). It is reminiscent of the inverse spectral problem to determine the domain

Ω from its eigenvalues. Here we have extra data, namely,

⟨φk,S∂Ω[νi]⟩⟨φk, yj⟩, k = 1, 2, . . . ,

in addition to eigenvalues of the NP operator.
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It is also quite interesting to reconstruct finer details of the shape using M(λ,Ω)

for finite number of λ’s. This is different from imaging using higher order GPTs. It

is worth mentioning that M(λ,Ω) for several λ can be actually obtained by multi-

frequency measurements. For this we refer to recent work of Ammari et al [4]

As we discussed in Section 2, it is interesting to investigate the property of the

measure dµΩ
ij when ∂Ω has corners. If ∂Ω is C1,α, then this measure is singular. It

would be interesting to see if it has an absolutely continuous part (or an essential sin-

gularity) if ∂Ω has corners. In this regard, we mention the paper [62] where mij(λ,Ω)

is numerically computed when Ω is a cube. If Ω is a cube, then (mij(λ,Ω))
3
i,j=1 is

isotropic, i.e., (mij(λ,Ω)) = m(λ,Ω)I for some scalar function m.

4. Enhancement of cloaking using GPT-vanishing structure

So far we discussed how one can use GPTs to see (imaging). In this section we

discuss how one can use the notion of GPTs to hide (invisibility cloaking). We discuss

results of [26] in the quasi-static (zero frequency) case. The results have been extended

to the Helmholtz equation [15, 27] and the full Maxwell equation [29].

4.1. Invisibility by far-field measurements. — We first emphasize that the

expansion (47) holds even if the conductivity (or dielectric constant) is not constant.

For clarity suppose that the background function h(x) is x = r cos θ. We then obtain

from (47) that

u(x) = h(x)−
∞∑

m=1

[
cosmθ

2πmrm
M cc

m1 +
sinmθ

2πmrm
Msc

m1

]
as |x| → ∞. Suppose that the inclusion Ω has the property that Mm1 = 0 for all

m, then u(x) = h(x), as if there is no inclusion. In other words, we can not see the

inclusion from the far-field measurement of u. Suppose that Ω has the property that

Mm1 = 0 for all m ≤ N , then u(x) − h(x) = O(|x|−N−1). So as N becomes larger,

Ω is seen vaguely. In summary, we can make the inclusion vaguely visible from the

far-field measurements by making a first few terms of its GPTs vanish.

To construct a structure whose a first few GPTs vanish, let 1 = rN+1 < rN <

. . . < r1 = 2 and define

Aj := {rj+1 < r ≤ rj}, j = 1, 2, . . . , N,

and A0 = {r1 < r}, AN+1 = {r ≤ rN+1}. We choose σj to be the conductivity of Aj

for j = 1, 2, . . . , N + 1, and σ0 = 1. Let

(56) σ = χ(A0) +
N∑
j=1

σjχ(Aj) + σN+1χ(AN+1).
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We emphasize that σN+1 may or may not be fixed. If σN+1 is fixed to be 0, it means

that the core is insulated. Because of the symmetry of the structure, we have

M cs
mn =Msc

mn = 0 for all m,n,

M cc
mn =Mss

mn = 0 if m ̸= n,

and

M cc
nn =Mss

nn for all n.

Let Mn =M cc
nn, n = 1, 2, . . ., then the expansion (47) becomes

(57) (u− h)(x) = −
∞∑

n=1

[
Mn

2πnrn
(acn cosnθ + asn sinnθ)

]
.

If Mn = 0 for all n ≤ N , then u(x) − h(x) = O(|x|−N−1). In fact, more than this is

true: u(x) = h(x) outside the inclusion if h(x) = rn cosnθ or rn sinnθ. We call such

structure Ω (and γ) a GPT-vanishing structure of order N . If N = 1, we call it a

PT-vanishing structure.

In order for σ to be a GPT-vanishing structure of order N , for given h(x) =

rk cos kθ, k = 1, . . . , N , the solution u to (9) should satisfy u(x) = h(x) in the matrix.

If h(x) = rk cos kθ, then the solution u takes the form

u(x) = ajr
k cos kθ +

bj
rk

cos kθ in Aj , j = 0, 1, . . . , N + 1,

with a0 = 1 and bN+1 = 0. Since u satisfies

(u− h)(x) =
b0
rk

cos kθ as |x| → ∞,

we have

(58) Mk = −2πkb0.

The transmission conditions (continuity of the potential and the flux) on the in-

terface {r = rj} yield[
aj
bj

]
=

1

2σj

[
σj + σj−1 (σj − σj−1)r

−2k
j

(σj − σj−1)r
2k
j σj + σj−1

] [
aj−1

bj−1

]
,

and hence [
aN+1

0

]
=

N+1∏
j=1

1

2σj

[
σj + σj−1 (σj − σj−1)r

−2k
j

(σj − σj−1)r
2k
j σj + σj−1

] [
1

b0

]
.

Let

P (k) =

[
p
(k)
11 p

(k)
12

p
(k)
21 p

(k)
22

]
:=

N+1∏
j=1

1

2σj

[
σj + σj−1 (σj − σj−1)r

−2k
j

(σj − σj−1)r
2k
j σj + σj−1

]
.

Then,

b
(k)
0 = −p

(k)
21

p
(k)
22

.
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Figure 7. A neutral inclusion (=PT-vanishing structure). The uniform

field is not perturbed in the presence of the structure. A figure prepared

by E. Kim. (It looks like the outside field is perturbed. But it is a

numerical error.)

So, we achieve Mk = 0 for k = 1, . . . , N by choosing σj , j = 1, . . . , N (or N + 1) so

that

(59) p
(k)
21 = 0, k = 1, . . . , N,

in other words,

N+1∏
j=1

1

2σj

[
σj + σj−1 (σj − σj−1)r

−2k
j

(σj − σj−1)r
2k
j σj + σj−1

]
is a upper triangular matrix.

For arbitrary N , the equation is a non-linear algebraic equation of σ1, . . . , σN and

existence of solutions is not proved. Of course, for small N , it can be solved easily.

In fact, for the circular multi-layered structure as we constructed, a GPT-vanishing

structure (or a PT-vanishing structure) is known as a neutral inclusion. A neutral

inclusion is an inclusion such that even if we insert it into the homogeneous space, the

uniform field is not perturbed. Figure 7 shows a neutral inclusion. We refer to [95]

for neutral inclusions and their connection to the theory of composites. The neutral

inclusion here consists of the core of radius r2 and conductivity σ2, the shell of radius

r1 and conductivity σ1, and the matrix of conductivity 1 which satisfy

(60) (σ2 − σ1)(σ1 + 1)r22 + (σ2 + σ1)(σ1 − 1)r21 = 0.

Instead, the equation (59) is solved numerically in [26]. Figure 8 shows the con-

ductivity profile of a GPT-vanishing structure of order 6 when the conductivity of

the core is 0. It is interesting to observe that the conductivity in the figure fluctuates

below and above the conductivity of the matrix.
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Figure 8. Conductivity profile of a GPT-vanishing structure of order 6

with the conductivity of core 0. The right-hand side is the values of GPTs.

A figure from [26].

4.2. Invisibility by DtN map. — Let σ be the conductivity distribution of Ω.

The the Drichlet-to-Neumann (DtN) map Λ[σ] corresponding to σ is defined by

Λ[σ](ϕ) = σ
∂u

∂ν

∣∣∣
∂Ω
,

where u is the solution to {
∇ · σ∇u = 0, in Ω,

u = ϕ, on ∂Ω.

As mentioned in the previous subsection, the Calderón problem(6) is to reconstruct σ

in terms of Λ[σ]. In this sense the DtN map is the tool we look inside Ω.

There is an obstacle in reconstructing σ from Λ[σ]. If F is a diffeomorphism of Ω

which is the identity on ∂Ω, then

Λ[σ] = Λ[F∗σ]

where F∗σ is the push-forward of σ by F :

F∗σ(y) =
DF (x)σ(x)DF (x)T

det(DF (x))
, x = F−1(y).

See [82]. In [58] Greenleaf et al use this idea to show non-uniqueness of the Calderón

problem. Let

(61) F (x) :=

(
1 +

|x|
2

)
x

|x|
which is a diffeomorphism from the punctured disk {x : 0 < |x| < 2} onto the annulus

{x : 1 < |x| < 2} and is the identity on |x| = 2. Thus Λ[1] = Λ[F∗1].

Pendry et al [104] used the exactly same transformation to show that the structure

after the transformation can bend the electro-magnetic waves so that things inside

(6)We used NtD map before. But the DtN map is more convenient when comparing with other work.
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|x| < 1 are cloaked (see also [85]). Since then huge literature has been devoted to

the study of cloaking by transformation optics. It is not possible to include relevant

references here. Instead we refer to an excellent survey [57] and references therein.

We mention that cloaking by transformation optics is a very active area of research

and related literature is ever growing.

The structure of the transformation optics proposed in [58] has demerits. For

example, F∗1 is singular on the inner boundary |x| = 1 (0 in the normal direction,

∞ in tangential direction in two dimensions). In order to avoid the singularity of the

conductivity, Kohn et al [81] (see also [80]) came up with the idea of blowing up a

small disk instead of a single point. For a small number δ, let

σδ =

{
γ if |x| < δ,

1 if δ ≤ |x| ≤ 2.

Here, the conductivity γ of the core is constant, and it can be 0 (the core is insulated)

or ∞ (perfect conductor). Let

F (x) =


(
2− 2δ

2− δ
+

1

2− δ
|x|

)
x

|x|
if δ ≤ |x| ≤ 2,

x

δ
if |x| ≤ δ.

Then F maps B2 (the disk of radius 2) onto B2 and blows up Bδ onto B1. Then it is

shown that

(62) ∥Λ[F∗σ]− Λ[1]∥ ≤ Cδ2

for some constant C independent of δ and γ. Here the norm is the operator norm

of the DtN map as a map from H1/2(∂B2) into H
−1/2(∂B2). If the core is insulated

(γ = 0), then B1 after the transformation is also insulated. So, (62) shows that things

in B1 is almost cloaked (up to the order of δ2).

Let us discuss briefly why (62) holds. Let uδ be the solution to{
∇ · σδ∇uδ = 0 in B2,

uδ = ϕ on ∂B2,

and u0 be the solution to {
∆u0 = 0 in B2,

u0 = ϕ on ∂B2.

Like (50) one can show that

∂uδ
∂ν

(x) =
∂u0
∂ν

(x) +∇u0(0) ·M
∂

∂νx
∇yG(x, 0) +O(δ3), x ∈ ∂B2,

where M is the polarization tensor of Bδ and G(x, y) is the Green function for ∆ on

B2 (see [21] for a proof). We emphasize that the expansion holds uniformly for γ (see
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[101]). This expansion can be rewritten as

Λ[σ](ϕ)(x) = Λ[1](ϕ)(x) +∇u0(0) ·M
∂

∂νx
∇yG(x, 0) +O(δ3).

Since the PT for Bδ (with conductivity γ) is M = 2(γ−1)
γ+1 |Bδ|I (see (46)), we have

∥Λ[σ]− Λ[1]∥ ≤ Cδ2.

Since Λ[F∗σ] = Λ[σ], (62) follows.

The main result of [26] is that if we coat the small disk of radius δ with the

GPT-vanishing structure of order N , then the cloaking effect is enhanced to the

order (2ρ)2N+2. To show this, let σ be the GPT-vanishing structure of order N as

constructed in the previous section with r1 = 2, rN+1 = 1, and the conductivity of

the core σN+1 = γ. Let Mn[σ] be the CGPTs associated with the structure σ. Then,

Mn = 0 for n = 1, . . . , N . Moreover, it is proved that

(63) |Mn[σ]| ≤ 2πn22n, n = 1, 2, . . . .

Let

(64) σN
δ (x) = σ(

1

δ
x).

Then, σN
δ has conductivity γ inside the radius δ, multi-layered structure in between

the radius δ and 2δ with fluctuating conductivities, and conductivity 1 outside 2δ.

We also have

(65) Mn[σ
N
δ ] = 0 for n = 1, . . . , N,

and from the scaling property (41) of CGPTs and (63) that

(66) |Mn[σ
N
δ ]| = δ2n|Mn[σ]| ≤ 2πn(2δ)2n, n = 1, 2, . . . .

Using (57) with h(x) = rkeikθ, it is proved that(
Λ[σN

δ ]− Λ[1]
)
(f) =

∞∑
k=−∞

2|k|M|k|[σ
N
δ ]

2π|k| −M|k|[σ
N
δ ]
fke

ikθ,

where fk is the Fourier coefficients of f on ∂B2. It then follows from (65) and (66)

that

∥Λ[σN
δ ]− Λ[1] ∥ ≤ C(2δ)2N+2.

Since Λ[F∗σ
N
δ ] = Λ[σN

δ ], we finally have an estimate for enhancement of the near-

cloaking:

(67) ∥Λ[F∗σ
N
δ ]− Λ[1] ∥ ≤ C(2δ)2N+2.
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Further discussion. — The GPT-vanishing structure about which we discussed in

this section is circular. It is a challenging problem (with possibility of various applica-

tions) to construct GPT-vanishing structure of order 1 (or higher order) of arbitrary

shape. The problem is that for the given core D of any shape and conductivity σc
find Ω containing D and the conductivity σs of the shell Ω \ D so that the PT of

the structure is 0. Recently Jarczyk and Mityushev [66] constructed a coating on the

core so that the structure is neutral to a given field. We also mention a paper [99] of

Milton and Serkov where the neutral coating is constructed when σc = 0 or ∞. There

they proved that it is only confocal ellipses (with σc = 0 or ∞) which is neutral to

multiple fields. We emphasize that a PT-vanishing structure is the same as a neutral

inclusion if the structure is radial as we explained, but nor for general shapes. If a

structure is neutral to two fields in two dimensions, then it is PT-vanishing, but, not

vice versa. If the structure is neutral to the uniform field in the direction a, then

the solution u satisfies u(x) = a · x outside the structure. But for the PT-vanishing

structure only satisfies u(x) − a · x = O(|x|−d) as |x| → ∞. So the PT-vanishing

structure may be regarded as a weakly neutral structure.

The method for enhancement of approximate cloaking discussed in this section uses

multi-coated structures with vanishing GPTs. Recently a different method using a

transformation (a change of variables) is proposed in [60].

5. Analysis of cloaking by anomalous localized resonance

We now discuss another kind of invisibility cloaking: cloaking due to anomalous

localized resonance (CALR). If a body of dielectric material (core) is coated by a

plasmonic structure of negative dielectric constant with nonzero loss parameter (shell),

then anomalous localized resonance may occur and the source outside the structure

may be cloaked as the loss parameter tends to zero. We note that unlike the cloaking

by transformation optics, the cloaking due to anomalous localized resonance is an

exterior cloaking.

Let Ω be a bounded domain in Rd, d = 2, 3, and D be a domain whose closure is

contained in Ω. In other words, D is the core and Ω \D is the shell. For a given loss

parameter δ > 0, the permittivity distribution in Rd is given by

(68) ϵδ =


1 in Rd \ Ω,
−1 + iδ in Ω \D,
1 in D.

Here −1 + iδ represents the negative dielectric constant of the shell with the lossy

parameter δ (plasmonic structure). See Figure 9. For a given function f compactly

supported in Rd \ Ω satisfying

(69)

∫
Rd

f dx = 0
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(which is required by conservation of charge), we consider the following dielectric

problem:

(70) ∇ · ϵδ∇uδ = f in Rd,

with the decay condition uδ(x) → 0 as |x| → ∞. Let

(71) Eδ := ℑ
∫
Rd

ϵδ|∇uδ|2 dx =

∫
Ω\D

δ|∇uδ|2 dx

(ℑ for the imaginary part). The problem of cloaking by anomalous localized resonance

(CALR) can be formulated as the problem of identifying the sources f such that first

(72) Eδ → ∞ as δ → 0,

and secondly, uδ/
√
Eδ goes to zero outside some radius a, as δ → 0:

(73) |uδ(x)/
√
Eδ| → 0 as δ → 0 when |x| > a.

1

1

−1+iδ

source

cloaking
region

plasmonic
structure

Figure 9. Configuration for cloaking due to anomalous localized resonance

The equation (70) is known as the quasistatic equation and the real part of

−∇uδ(x)e−iωt, where ω is the frequency and t is the time, represents an approx-

imation for the electric field in the vicinity of Ω, when the wavelength of the

electromagnetic radiation is large compared to the size of Ω. The quantity Eδ

approximately represents the time averaged electromagnetic power produced by the

source dissipated into heat. So, (72) implies an infinite amount of energy dissipated

per unit time in the limit δ → 0 which is unphysical. If we rescale the source f by

a factor of 1/
√
Eδ then the source will produce the same power independently of δ

and the new associated potential uδ/
√
Eδ will, by (73), approach zero outside the

radius a. Hence, cloaking due to anomalous localized resonance (CALR) occurs. The

normalized source is essentially invisible from the outside, yet the fields inside are

very large.

This phenomena of anomalous resonance was first discovered by Nicorovici, McPhe-

dran and Milton [100] and is related to invisibility cloaking [96]. It is also related to

superlenses [102, 103] since, as shown in [100], the anomalous resonance can create
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apparent point sources. For these connections and further developments tied to this

form of invisibility cloaking, we refer to [7, 9, 8, 40, 41, 98] and references therein.

In this section we review results of first three papers which rely on spectral theory of

corresponding NP operator. The results of [7] for circular structure was extended in

[78] by a different method-variational approach for sources supported on a circle.

5.1. Neumann-Poincaré type operator. — Let uδ be the solution to (70). The

transmission conditions along the interfaces ∂D and ∂Ω are given by

(74)
(−1 + iδ)

∂uδ
∂ν

∣∣∣
+

=
∂uδ
∂ν

∣∣∣
−

on ∂D

∂uδ
∂ν

∣∣∣
+

= (−1 + iδ)
∂uδ
∂ν

∣∣∣
−

on ∂Ω.

So it is natural to represent the solution in terms of single layer potentials. Let F be

the Newtonian potential of f , i.e.,

(75) F (x) =

∫
R2

Γ(x− y)f(y)dy, x ∈ Rd.

Then F satisfies ∆F = f in Rd, and the solution uδ may be represented as

(76) uδ(x) = F (x) + S∂D[φi](x) + S∂Ω[φe](x), x ∈ Rd

for some functions φi ∈ L2
0(∂D) and φe ∈ L2

0(∂Ω). By (74), the pair of potentials

(φi, φe) is the solution to

(77)

zδI −K∗
∂D − ∂

∂νi
S∂Ω

∂

∂νe
S∂D zδI +K∗

∂Ω

[
φi

φe

]
=


∂F

∂νi

− ∂F

∂νe


on L2

0(∂D) × L2
0(∂Ω), where νi and νe denote the (outward) normal vectors to ∂D

and ∂Ω, respectively, and

(78) zδ =
iδ

2(2− iδ)
.

It is worth mentioning about the off-diagonal entries of the above matrix. For example,
∂

∂νi
S∂Ω is an operator from L2(∂Ω) into L2(∂D) defined by

∂

∂νi
S∂Ω[φ](x) =

∂

∂νi

∫
∂Ω

Γ(x− y)φ(y)dσ(y), x ∈ ∂D.

Let

(79) K∗ :=

 −K∗
∂D − ∂

∂νi
S∂Ω

∂

∂νe
S∂D K∗

∂Ω

 .
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This is the Neumann-Poincaré operator for the problem under consideration defined

on L2(∂D)× L2(∂Ω). Then the integral equation (77) can be written as

(80) (zδI+K∗)[Φ] = g

where

I :=

[
I 0

0 I

]
, Φ :=

[
φi

φe

]
, g :=


∂F

∂νi

− ∂F

∂νe

 .
Note that as δ → 0, zδ → 0. Since eigenvalues of K∗ accumulate at 0 and hence 0

is an essential singularity of the operator-valued meromorphic function

λ ∈ C 7→ (λI+K∗)−1.

This causes a serious difficulty in solving (80). We overcome this difficulty using the

spectrum of K∗.

The following properties of K∗ have been proved in [7]:

(i) The spectrum of K∗ lies in the interval (−1/2, 1/2].

(ii) The L2-adjoint of K∗, K, is given by

(81) K =

[
−K∂D D∂Ω

−D∂D K∂Ω

]
where D is the double layer potential defined in (21).

(iii) The operator S defined by

S =

[
S∂D S∂Ω

S∂D S∂Ω

]
is self-adjoint, and −S > 0 on L2

0(∂D)× L2
0(∂Ω).

(iv) The Calderón’s identity holds

SK∗ = KS,

i.e., SK∗ is self-adjoint.

To see the second assertion in (iii), let Φ = (φi, φe)
T ∈ L2

0(∂D)× L2
0(∂Ω) and define

u(x) = S∂D[φi](x) + S∂Ω[φe](x).

Then we have ∫
Rd

|∇u|2dx = −
∫
∂D

ūφidσ −
∫
∂Ω

ūφedσ = −⟨Φ, S[Φ]⟩

where the inner product is the standard one on L2(∂D)× L2(∂Ω).

These properties make the map

(Φ,Ψ) 7→ −⟨Φ,S[Ψ]⟩ = −⟨φi,S∂D[ψi]⟩ − ⟨φe,S∂Ω[ψe]⟩
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an inner product on L2
0(∂D) × L2

0(∂Ω). As in section 2, we let H2 be the Hilbert

space L2
0(∂D)× L2

0(∂Ω) with this inner product and let

(82) ⟨Φ,Ψ⟩H2 := −⟨Φ, S[Ψ]⟩.

If we denote H defined in section 2 byH(∂Ω), then H2 is nothing but H(∂D)×H(∂Ω).

The Calderón identity implies that K∗ is self-adjoint on H2.

Let λ1, λ2, . . . with |λ1| ≥ |λ2| ≥ . . . be the nonzero eigenvalues (counting multipl-

cities) of K∗ and Ψn be the corresponding eigenfunctions normalized by ∥Ψn∥H2 = 1.

Then we have

(83) ⟨Ψi,Ψj⟩H2 = δij

where δij is the Kronecker’s delta, and K∗ admits the spectral decomposition

(84) K∗[Φ] =
∞∑

n=1

λn⟨Φ,Ψn⟩H2Ψn, Φ ∈ H2.

We mention that since K∗ is a Hilbert-Schmidt operator (see [53]), we have

(85)
∞∑

n=1

λ2n <∞.

Since F is harmonic in Ω, one can see from the divergence theorem that g ∈ H2. So,

the solution Φδ = (φδ
i , φ

δ
e)

T to (80) is given by

(86) Φδ =
∞∑

n=1

⟨g,Ψn⟩H2

λn + zδ
Ψn.

Note that CALR occurs, i.e., Eδ → ∞ if and only if

(87) δ

∫
Ω\D

∣∣∇(S∂D[φδ
i ] + S∂Ω[φ

δ
e])

∣∣2 dx→ ∞ as δ → ∞.

On the other hand, one can see that∫
Ω\D

∣∣∇(S∂D[φδ
i ] + S∂Ω[φ

δ
e])

∣∣2 dx = −1

2
⟨Φδ, SΦδ⟩+ ⟨K∗Φδ, SΦδ⟩

=
1

2
⟨Φδ,Φδ⟩H2 − ⟨K∗Φδ,Φδ⟩H2

=

∞∑
n=1

( 12 − λn)⟨g,Ψn⟩2H2

|λn + zδ|2
.

Since λn → 0 as n→ ∞, we conclude that CALR takes place if and only if

(88) δ

∞∑
n=1

⟨g,Ψn⟩2H2

λ2n + δ2
→ ∞ as δ → ∞.

This characterization gives a necessary and sufficient condition on the source term f

for the blow up of the electromagnetic energy in Ω \ D. This condition is given in

terms of the Newton potential of f .
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CALR in an annulus in two dimensions. — If Ω = Be = {|x| < re} and

D = Bi = {|x| < ri} in Rd, d = 2, 3, where re > ri, so that the shell is an annulus,

then we can compute the eigenvalues and eigenfunctions of K∗ and the CALR can be

studied using (88). In this subsection we review results in two dimensions of [7].

If B = {|x| < r0} in R2, then we have for each integer n

(89) S∂B [e
inθ](x) =


− r0
2|n|

(
r

r0

)|n|

einθ if |x| = r < r0,

− r0
2|n|

(r0
r

)|n|
einθ if |x| = r > r0.

Using this formula, one can show that the eigenvalues of K∗ on H2 are

(90) −1

2
ρn,

1

2
ρn, n = 1, 2, . . . ,

and corresponding eigenfunctions are

(91)

[
e±inθ

ρe±inθ

]
,

[
e±inθ

−ρe±inθ

]
, n = 1, 2, . . . ,

where ρ = ri/re. Then using (88) we obtain the following results: let

(92) r∗ =

√
r3e
ri
.

Non-occurrence of CALR. If the source function f is supported in |x| > r∗,

then CALR does not occur, i.e.,

(93) Eδ < C

for some C independent of δ. Moreover, we have

(94) sup
|x|≥r∗

|uδ(x)− F (x)| → 0 as δ → 0,

where F be the Newtonian potential of f .

This result shows that if the source function f is supported outside the critical

radius r∗, then by observing uδ in |x| ≥ r∗ one can recover F and hence the source f

approximately.

Occurrence of CALR. Let f be a source function supported in re < |x| < r∗
and F be the Newtonian potential of f . Let gne be the Fourier coefficient of − ∂F

∂νe
on

∂Ω, i.e.,

− ∂F

∂νe
=

∞∑
n=−∞

gne e
inθ.

(i) If F is not identically zero, then weak CALR occurs, i.e.,

(95) lim sup
δ→0

Eδ = ∞.

(ii) If the Fourier coefficients of F satisfy the gap condition
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[GP ]: there exists a sequence {nk} with |n1| < |n2| < · · · such that

lim
k→∞

ρ|nk+1|−|nk| |gnk
e |2

|nk|ρ|nk|
= ∞,

then CALR occurs, i.e.,

(96) lim
δ→0

Eδ = ∞.

The gap condition [GP] is mild and the Newtonian potentials of many source

functions satisfy it. For examples, dipole and quadrapole sources satisfy [GP]. A

dipole source in Br∗ \Be is f(x) = a · ∇δy(x) for a vector a and y ∈ Br∗ \Be where

δy is the Dirac delta function at y, and a quadrapole source is

f(x) = A : ∇∇δy(x) =
2∑

i,j=1

aij
∂2

∂xi∂xj
δy(x)

for a 2× 2 matrix A = (aij) and y ∈ Br∗ \Be.

These results were extended in [9] to the case when

(97) ϵδ =


1 in R2 \ Ω,
ϵs + iδ in Ω \D,
ϵc in D.

Here ϵc is a positive constant, but ϵs is a negative constant representing the negative

dielectric constant of the shell. In this case, it is proved that if ϵs = −1 and ϵc ̸=
1, then CALR occurs and the critical radius is r∗ = r2e/ri

(7) (see [9] for precise

statements). If ϵs ̸= −1, then CALR does not occur for any source.

CALR in an annulus in three dimensions. — Let Ω = {|x| < re} and D =

{|x| < ri} in R3. If B = {|x| < r0} in R3, then we have for each integer n

(98) S∂B [Y
m
n ](x) =


− 1

2n+ 1

rn

rn−1
0

Y m
n (x̂) if |x| = r ≤ r0,

− 1

2n+ 1

rn+2
0

rn+1
Y m
n (x̂) if |x| = r ≥ r0,

where Y m
n is the spherical harmonic. So, one can show that the eigenvalues of K∗ on

H2 are

(99) ± 1

2(2n+ 1)

√
1 + 4n(n+ 1)ρ2n+1, n = 1, 2, . . . ,

and corresponding eigenfunctions are

(100)

[
(
√
1 + 4n(n+ 1)ρ2n+1 − 1)Y m

n

2(n+ 1)ρn+2Y m
n

]
,

[
(−

√
1 + 4n(n+ 1)ρ2n+1 − 1)Y m

n

2(n+ 1)ρn+2Y m
n

]
(7)This result was obtained in [96] when the source is a dipole.
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for m = −n, . . . , n, respectively, where ρ = ri/re. Using this formula, it is proved in

[9] that ACLR does not occur in three dimensions if the dielectric constant ϵs is −1

(or any other constant).

We emphasize that in this case the eigenvalues behave asymptotically as ± 1
2(2n+1)

as n → ∞. This slow convergence is responsible for the non-occurrence of CALR in

three dimensional annulus.

However, we are able to make CALR occur in three dimensions by using a shell

with a specially designed anisotropic dielectric constant. In fact, let D and Ω be

concentric balls in R3 of radii ri and re, and choose r0 so that r0 > re. For a given

loss parameter δ > 0, define the dielectric constant ϵδ by

(101) ϵδ(x) =


I, |x| > re,

(ϵs + iδ)a−1

(
I +

b(b− 2|x|)
|x|2

x̂⊗ x̂

)
, ri < |x| < re,

ϵc

√
r0
ri
I, |x| < ri,

where I is the 3× 3 identity matrix, ϵs and ϵc constants, x̂ = x
|x| , and

(102) a :=
re − ri
r0 − re

> 0, b := (1 + a)re.

It is proved that if ϵs = −1, then CALR occurs, and the critical radius is
√
rer0 if

ϵc = 1 and r0 if ϵc ̸= 1 (see [8] for precise statements). If ϵs ̸= −1, then CALR does

not occur.

Note that ϵδ is anisotropic and variable in the shell. This dielectric constant is

obtained by push-forwarding (unfolding) that of a folded geometry as in Figure 10.

The source to make CALR occur is located in between r1 and re, so it behaves as if it

is located inside the outer boundary before unfolding. The idea of a folded geometry

were first introduced in [86] to explain the properties of superlenses, and has been

used in [97] to prove CALR in the analogous two-dimensional cylinder structure for

a finite set of dipolar sources.

Figure 10. Unfolding map. A figure from [8]
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Further discussion. — It would be interesting to see if the condition [GP] for

CALR can be removed or not, or in particular to find a source supported inside the

critical radius for which only the weak CALR occurs. An interesting example should

be such that the support does not enclose the structure.

Rigorous analysis for CALR for non-circular (or spherical) structures seems quite

hard since we need to find eigenvalues and eigenfunctions of the NP-operator. How-

ever, when Ω is a scaling of D, then K∗
∂Ω and K∗

∂D have the same spectrums since

the NP-operator is invariant under scaling. In this case, it may be possible to study

CALR using the spectrum of K∗
∂D. When D is an ellipse, the work is in progress [49].

6. Analysis of stress concentration

In composites which consists of inclusions and the matrix (the background

medium), some inclusions are located very close or even touching to each other. If

the conductivity of inclusions stays away from 0 and ∞ (bounded below and above

by some constants), then the stress is bounded regardless of the distance between

inclusions as proved in [39, 88] (see also a recent paper [1] for a different proof using

layer potentials). More precisely, it is proved that the C1,α norm of the solution u is

bounded when boundaries of the inclusions are C2,α smooth.

However, if the conductivity of inclusions degenerates to either ∞ or 0, the elliptic-

ity holds only outside the inclusions and completely different phenomena occur: ∇u
may blow up as the distance tends to zero [43, 75].

Since the stress concentration occurs in between two close inclusions, we consider

the case when there are two inclusions. Let D1 and D2 be bounded simply connected

domains in Rd, d = 2, 3. Suppose that they are conductors, whose conductivity is k,

0 < k ̸= 1 < ∞, embedded in the background with conductivity 1. Let σ denote the

conductivity distribution, i.e.,

(103) σ = kχ(D1 ∪D2) + χ(Rd \ (D1 ∪D2)).

We consider the elliptic problem (9) when the inclusions are arbitrarily close to each

other. The problem may be considered as a conductivity problem or anti-plane elas-

ticity in two dimensions.

Let

(104) δ := dist(D1, D2),

and assume that δ is small. We emphasize that the shapes of D1 and D2 do not

depend on δ. More precisely, there are fixed domains D̃1 and D̃2 such that Dj is a

translate of D̃j , namely, there are vectors a1 and a2 such that

(105) Dj = D̃j + aj , j = 1, 2.

The problem is to estimate |∇u| (u is the solution) in terms of δ when δ tends to 0,

or to characterize the asymptotic singular behavior of ∇u as δ → 0.
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When k = ∞, the problem becomes

(106)


∆u = 0 in Rd \ (D1 ∪D2),

u = λi (constant) on ∂Di, i = 1, 2,

u(x)− h(x) = O(|x|1−d) as |x| → ∞,

where the constants λi are determined by the conditions

(107)

∫
∂D1

∂u

∂ν(1)

∣∣∣
+
=

∫
∂D2

∂u

∂ν(2)

∣∣∣
+
= 0,

with ν(j) being the outward unit normal to ∂Dj , j = 1, 2. If k = 0, the problem is

(108)


∆u = 0 in Rd \ (D1 ∪D2),
∂u

∂ν(i)

∣∣∣
+
= 0 on ∂Di, i = 1, 2,

u(x)− h(x) = O(|x|1−d) as |x| → ∞.

Inclusions with k = ∞ are hard inclusions in anti-plane elasticity or perfectly con-

ducting ones in electrostatics, and those with k = 0 are holes or insulating inclusions.

In these cases, ∇u may blow up as δ tends to 0.

As shown in [25, 30, 35, 111, 112], in two dimensions the generic rate of gradient

blow-up is δ−1/2, while it is |δ log δ|−1 in three dimensions [35, 36, 84, 92]. The blow-

up of the gradient may or may not occur depending on the background potential (the

harmonic function h in (9)) and those background potentials which actually make

the gradient blow up are characterized in [28] when D1 and D2 are disks. In two

dimensions, the hole case or the perfectly insulating case, where k = 0, can be dealt

with using the conjugate relation (see [30, 75]) and in this case the blow-up rate is

also δ−1/2.

In recent papers [10, 69] the singular behavior of ∇u is completely characterized,

namely, the solution u is decomposed as

(109) u = cq + b

where c is a constant, q is a singular function representing the singular behavior of

∇u, and b is a good function such that ∇b is bounded regardless of δ. In this section

we review these results.

Analysis of stress concentration can be applied for solving two longstanding prob-

lems. The first one is the study of material failure. In fact, the problem of estimation

of the gradient blow-up was raised by Babus̆ka in relation to the study of material

failure of composites [33]. In composites which consist of inclusions and the matrix,

some inclusions may be closely located and stress occurs in between them. The prob-

lems (9), (106) and (108) are anti-plane elasticity equations, and ∇u represents the

shear stress tensor. So results like (109) provide clear quantitative understanding of

the stress concentration, which would be a fundamental ingredient in the study of

material failure.
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The second application is computation of the electrical field in the presence of

closely located inclusions with extreme conductivities (0 or ∞) which is known to be

a hard problem. Because |∇u|, the intensity of the electric field, becomes arbitrarily

large, we need fine meshes to compute ∇u numerically. Since (109) for example

provides complete characterization of the singular behavior of ∇u, the complexity of

computation can be greatly reduced by removing the singular term there. In fact,

effectiveness of this scheme is already demonstrated in [69] when inclusions are disks.

Eigenfunctions of the NP-operator. — Suppose that D1 and D2 are strictly

convex and consider the problem (106) when k = ∞. As before we represent the

solution u to (106) as

(110) u(x) = h(x) + S∂D1 [φ
(1)](x) + S∂D2 [φ

(2)](x), x ∈ Rd \ (D1 ∪D2)

for a pair of functions (φ(1), φ(2)) ∈ L2
0(∂D1)× L2

0(∂D2). Since u is constant on ∂D1

and ∂D2, we have

∂

∂ν(j)
(
S∂D1 [φ

(1)] + S∂D2 [φ
(2)]

)∣∣∣
−
= − ∂h

∂ν(j)
on ∂Dj , j = 1, 2,

which can be written as(
1

2
I −K∗

∂D1

)
[φ(1)]− ∂

∂ν(1)
S∂D2 [φ

(2)] =
∂h

∂ν(1)
on ∂D1,

− ∂

∂ν(2)
S∂D2 [φ

(1)] +

(
1

2
I −K∗

∂D2

)
[φ(2)] =

∂h

∂ν(2)
on ∂D2.

So, the Neumann-Poincaré operator here is

(111) K∗ :=

 K∗
∂D1

∂

∂ν(1)
S∂D2

∂

∂ν(2)
S∂D1 K∗

∂D2

 .
The system of integral equations can be written in a condensed form as

(112)
(1
2
I−K∗)[Φ] = ∂h,

where

Φ :=

[
φ(1)

φ(2)

]
, ∂h :=

[
∂h

∂ν(1)

∂h
∂ν(2)

]
.

The difficulty in solving (112) lies in the distribution of the eigenvalues of K∗. In

fact, Bonnetier and Triki [37, 38] showed that K∗ in two dimensions has eigenvalues

λn of the form λn ∼ 1
2 − cn

√
δ, where cn is a constant, for n = 1, 2, . . .. So, the

operator 1
2 I−K∗ has many small eigenvalues and its condition number is pretty bad.

On the other hand, it is proved in [10] that the multiplicity of the eigenvalue 1/2
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of K∗ is 2(8). Since 1
2 I − K∗ is invertible L2

0(∂D1) × L2
0(∂D2), we may choose two

eigenfunctions corresponding to 1/2, Φj = (φ
(1)
j , φ

(2)
j )T , j = 1, 2, in such a way that∫

∂D1

φ
(1)
1 dσ ̸= 0,

∫
∂D2

φ
(2)
1 dσ = 0

and ∫
∂D1

φ
(1)
2 dσ = 0,

∫
∂D2

φ
(2)
2 dσ ̸= 0.

Let Φ = (φ(1), φ(2))T be an eigenfunction corresponding to 1/2, and let

u(x) = S∂D1 [φ
(1)](x) + S∂D2 [φ

(2)](x), x ∈ Rd \ (D1 ∪D2).

One can see using (4) that u is constant on ∂D1 and ∂D2 (the constants may be

different), and∫
∂D1

∂u

∂ν(1)

∣∣∣
+
dσ =

∫
∂D1

φ(1)dσ,

∫
∂D2

∂u

∂ν(2)

∣∣∣
+
dσ =

∫
∂D2

φ(2)dσ.

We now choose an eigenfunction g = (g1, g2)
T as a linear combination of Φ1 and

Φ2 so that

(113)

∫
∂D1

g1dσ = 1,

∫
∂D2

g2dσ = −1.

Let

(114) q(x) = S∂D1 [g1](x) + S∂D2 [g2](x), x ∈ Rd \ (D1 ∪D2).

Then q is the solution to

(115)



∆q = 0 in Rd \D1 ∪D2,

q(x) = O(|x|1−d) as |x| → ∞,

q = constant on ∂Dj , j = 1, 2,∫
∂D1

∂q

∂ν
dσ = 1,

∫
∂D1

∂q

∂ν
dσ = −1.

This is the function which determines the singular behavior of ∇u as we will see in

the next subsection.

In some special cases, the singular function q can be found explicitly. Suppose that

D1 and D2 are disks, and let Rj be the reflection with respect to ∂Dj , j = 1, 2. Then

repeated reflections R1R2 and R2R1 have unique fixed points, which we denote by

p1 ∈ D1 p2 ∈ D2. Then the singular function q is given by

(116) q(x) :=
1

2π
(ln |x− p1| − ln |x− p2|) .

This function is constant on ∂D1 and ∂D2 since these circles are Apollonius circles of

p1 and p2. See Figure 11. This function was found by Yun [111].

(8)If there are N simply connected inclusions, then the multiplicity is N .
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Figure 11. Apollonius circles of p1 and p2

If D1 and D2 have general shape, there is no such a nice formula for q like (116).

Recently, it is proved in [70] that if D1 and D2 are spheres of the same radii, say 1,

then q is approximately given the integral

(117) q(x) :=

∫ 1

p

(
1

|x− (c, 0, 0)|
− 1

|x+ (c, 0, 0)|

)
1√

c2 − p2
dc,

where p is a specially chosen number less than 1.

Characterization of the gradient blow-up. — Let u be the solution to (106)

and q be the singular function defined by (115). Define

r(x) := u(x)− cδq(x), x ∈ Rd \ (D1 ∪D2),

where the constant cδ is given by

cδ :=
u|∂D1 − u|∂D2

q|∂D1 − q|∂D2

.

Then, r is constant on ∂D1 and ∂D2, and one can easily see that r|∂D1
= r|∂D2

. Since

the gradient blow-up is caused by the potential difference on ∂D1 and ∂D2 and there

is no potential difference for r, one can prove that

∥∇r∥L∞(Ω) ≤ C

for some bounded set Ω containing D1 and D2. Let z1 ∈ ∂D1 and z2 ∈ ∂D2 be two

closest points, n be the unit vector in the direction of z2 − z1, and p be the middle

point of z1 and z2. Then we have

cδ ≈ 4πr1r2
r1 + r2

(n · ∇h)(p).

Here rj is the radius of Dj . So, we have the following characterization of the stress

concentration [69]:

(118) u(x) =
a

2π
(ln |x− p1| − ln |x− p2|) + b(x)

where the stress concentration factor a is given by

(119) a =
4πr1r2
r1 + r2

(n · ∇h)(p)
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and ∇b is bounded in a bounded set.

The singular behavior of the solution to the insulating case in two dimensions can

be characterized using conjugation. Let arg : R2 \{(0, 0)} → [−π, π) be the argument

function with a branch cut along the negative real axis. The a harmonic conjugate

q⊥ of q is given by

(120) q⊥(x) =
1

2π

(
arg(x− p1)− arg(x− p2)− arg(x− c1) + arg(x− c2)

)
,

where cj is the center of Dj , j = 1, 2. Note that q⊥ is well-defined outside D1 and

D2. The following characterization is obtained in the same paper: the solution u to

(108) can be expressed as follows:

(121) u(x) = a⊥q⊥(x) + b⊥(x), x outside D1 ∪D2

where

(122) a⊥ =
4πr1r2
r1 + r2

(t · ∇h)(p)

where t is the vector perpendicular to n, and

∥∇b⊥∥L∞(Ω\(D1∪D2)) ≤ C

for a constant C independent of δ.

As mentioned before, it is necessary to use fine meshes to solve (112) numerically.

However, if we use (118) or (121), then one can solve it using regular meshes by

removing the singular term which is explicit. This was done in [69] and Figures 12

and 13 show the results of computation.

−2 0 2

−2

0

2

−2 0 2

−2

0

2

Figure 12. Level curve of the solution in insulating case computed using

regular mesh. A figure from [69].

If D1 and D2 take general shapes other than disks, it is unlikely to find the corre-

sponding singular function q. However, we were able to show that q can be approxi-

mated by the singular function, denoted by qB , corresponding to the osculating disks.

To be precise, let z1 and z2 be the closest points on strictly convex domains D1 and
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Figure 13. Profiles of the solution. Computation by M. Lim.

D2. Let Bj be the osculating disk to Dj at zj , j = 1, 2. Let p1 and p2 be the fixed

points of the repeated reflections with respect to ∂B1 and ∂B2, and let

qB(x) =
1

2π
(ln |x− p1| − ln |x− p2|) .

It is proved in [10] that u can be expressed as

(123) u(x) = aδqB(x) + b(x)

where ∇b is bounded regardless of δ in a bounded set containing D1 and D2, and the

stress concentration factor aδ is bounded regardless of δ (not explicit) and satisfies

aδ ≈ −
√
2π⟨h,g⟩√
ϵ(κ1 + κ2)

.

Here g is the eigenfunction of K∗ satisfying (113), h = (h|∂D1 , h|∂D2)
T , and κj is the

curvature of ∂Dj at zj . We emphasize that similar characterizations are obtained for

the insulating case and boundary value problems.

Unlike the disk case, aδ is not explicit since it involves the eigenfunction g. How-

ever, (123) can be used to to solve (112) numerically without using fine meshes by

treating aδ as one of unknowns. This numerical computation is in progress.

Further discussion. — There are many problems regarding the gradient blow-up.

It is a challenging open problem to clarify whether |∇u| may blow up or not in the

insulating case in three dimensions and to find the blow-up rate if the blow-up occurs.

It is also quite interesting to clarify the dependence of |∇u| on k as k → ∞ or k → 0.

In this relation we mention that a precise dependence on k when D1 and D2 are disks

was shown in [25, 30].

In these papers and in [92] dependence of the ∇u when inclusions are disks or

balls is explicit. The estimates show that if the magnitude of inclusions is in the same

order as the distance, then the blow-up does not occur. It is interesting to prove this

when inclusions are not disks or balls. This result will be useful in studying nano

composites.
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I am not aware of any result on the stress estimation for the isotropic elasticity

system when the shear modulus is ∞ (hard inclusions) or the shear and compressional

moduli are 0 (holes). For the hard inclusions we need to assume that the compressional

modulus is bounded since otherwise the elasticity equation converges to a modified

Stokes’ system as proved in [12, 13]. We expect the same blow-up rate is valid as in

the conductivity case, as shown numerically [67]. In this regard, we mention that if

the shear and bulk moduli are bounded, then the blow-up of the gradient does not

occur as proved by Li and Nirenberg [87].

The problems for the heat equation and the acoustic equation are important in

analysis of heat and noise concentration. We expect that these problems are quite

challenging. It is worth mentioning that a similar blow-up phenomenon for the p-

Laplacian equation was investigated by Gorb and Novikov [55].

After submission of this paper much progress has been made on the problems

mentioned above. Refined asymptotic formula describing the high concentration in

between two dimensional convex domains and three dimensional spheres have been

obtained in [68] and [91], respectively; precise dependence on the conductivity k has

been characterized when domains are discs [90]. There also has been a progress on

the problem of two dimensional linear elasticity: an upper bound on the gradient has

been obtained when inclusions are strictly convex [34].
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