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Abstract The Neumann-Poincaré operator is an integral operator
defined on the boundary of a bounded domain. The history of research
on it goes back to the era of the mathematicians whose names appear
on the name of the operator. The spectral theory of the Neumann-
Poincaré operator attracts much attention lately mainly due to its
connection to plasmon resonance and cloaking by anomalous localized
resonance. There are rapidly growing literature of research results on
its spectral geometry and analysis, and the purpose of this paper is to
review some of them. Topics of review in this paper include cloaking
by anomalous localized resonance and analysis of surface localization
of plasmon, negative eigenvalues and spectrum on tori, spectrum on
polygonal domains, spectral structure of thin domains, and analysis
of stress in terms of spectral theory. These topics are chosen not
to overlap those in another review paper on the same subject [22].
We also discuss some related problems to be considered for further
development.

1. Introduction

This paper is a survey on some of recent development on the spectral
theory of the Neumann-Poincaré (abbreviated by NP) operator. The NP
operator is an integral operator defined on the boundary of a bounded do-
mains which appears naturally when solving classical Dirichlet or Neumann
boundary value problems using layer potentials. The history of research
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on the NP operator goes back to the era of C. Neumann and Poincaré as
the name of the operator suggests. It gave birth to the Fredholm theory
of integral equations. If the domain on which the NP operator is defined
has a corner, then it is a singular integral operator the theory of which has
been one of central themes of research of the last century. For example,
its L2-boundedness was proved [29]. Lately, the spectral theory of the NP
operator attracts much attention in connection with plasmon resonance and
cloaking by anomalous localized resonance.

The author has written another survey paper on the spectral theory of
the NP operator with his coauthors [22]. In this paper we omit introductory
remarks and more historical accounts leaving them to that paper. The topics
of review in this paper are chosen so that they don’t overlap those in that
paper. Topics in [22] include

e essential spectrum,

e decay estimates of NP eigenvalues in two dimensions,

e Weyl-type asymptotic formula for eigenvalues in three dimensions,

e the elastic NP operator,

e spectral analysis in a space with two norms.

Topics in this paper are

e NP operator and plasmon resonance,

e cloaking by anomalous localized resonance and analysis of surface
localization of plasmon,

e concavity and negative eigenvalues including NP spectral structure
on tori,

e spectrum on polygonal domains (with emphasis on pure point spec-
trum),

e spectral structure of thin domains,

e analysis of stress in terms of the spectral theory.

These topics are complementary to each other. Be aware that the NP oper-
ator in [22] is 2 times the NP operator of this paper.

The plan of this paper is as follows. Recent rapid growth of interest
in the NP spectrum is mainly due to its connection to plasmon resonance
and cloaking by anomalous localized resonance (abbreviated by CALR). In
section [2| we explain plasmon resonance in quasi-static limit in terms of
a transmission problem. The NP operator is naturally introduced in the
course of explanation. In section [3] we discuss the spectral nature of CALR
in terms of surface localization of plasmon and the decay rate of NP eigen-
values (eigenvalues of the NP operator). We review CALR on ellipses and a
recent proof of non-occurrence of CALR on strictly convex three-dimensional
domains, and peculiar spectral properties on tori in relation with CALR. In
section 4| we review recent results on negative NP eigenvalues and concavity
in three dimensions. We include a discussion on possible advantage of hav-
ing negative eigenvalues. In section [5[ we review results on the NP spectrum
on planar domains with corners and discuss existence of eigenvalues in ad-
dition to continuous spectrum. In section [f] we review the spectral structure
of thin domains in two- and three-dimensions which is related to negative
eigenvalues and polygonal domains. Quantitative analysis of the stress or
field concentration in between two closely located inclusions has been an
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active area research for last thirty years or so. In section [7| we review some
of important results on this subject and discuss a spectral nature of stress
concentration, especially when one inclusion is an insulator and the other is
a perfect conductor. In the course of review, proper references will be given
in each corresponding section and some related open problems are discussed.
This paper ends with a conclusion.

2. NP operator and plasmon resonance

In this section we discuss plasmon resonance, which occurs on meta-
materials of negative dielectric constants, as a motivation to study the NP
operator and its spectrum. In the course of discussion, the single layer
potential and the NP operator appear naturally.

Let Q be a bounded domain in R? (d = 2,3). The boundary 09 is
allowed to have several connected components and its connected component
is assumed to be Lipschitz continuous. Suppose that €) is immersed in the
free space R? and the dielectric constant of Q is €. = k + id and that of the
background is 1 after normalization (k # 1); (k,d are real constants and §
is the lossy parameter tending to 0). The constant k can be negative and
a material whose dielectric constant has the negative real part is called a
meta-material. So, the distribution of the conductivity is given by

(0.1) e = ex(Q) + x(RN\Q),
where y denotes the indicator function of the corresponding set. We consider
the following transmission problem: for a given harmonic function A in R?
V-eVu=0 in R%,
u(z) — h(z) = O(|z|'~%) as |z| — oo.

The solution to the problem, denoted by ug, satisfies the transmission con-
ditions along 0€:

(0.2)

(0.3) us|l— = ugle, €Opus|— = dyus|ly on 0L,

which are continuity of the potential and the flux. Here and afterwards,
subscripts + and — indicate the limits (to 0€2) from outside and inside of
Q, respectively, and 0, the outward normal derivative on 0f).

The solution to can be represented using the single layer potential
which is defined, for ¢ € H=12(0Q) (H~/2(0Q) is the usual Sobolev space
on 09), by

(0.4) Sealie)(x) = L T —)e)doly) . xR,

where I'(x) is the fundamental solution to the Laplacian, i.e.,

1
%1n|1‘|, d=27

Lo
—— d=3.
yd LI 3

It turns out (see, for example, [10, [50]) that the solution us to (0.2]) can be
represented as

(0.6) us(z) = h(x) + Soalps](x), zeRY

(0.5) I(z) =
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for some 5 € H, Y 2(89) (the subscript 0 indicates that its elements are of
zero mean value). The potential function s is determined by the trans-
mission condition (0.3). The first condition (continuity of the potential) is
automatically fulfilled since Spa[ps] is continuous across 0f2. The second
condition (continuity of the flux) takes the following form:

(0.7) ec0uSaalpsll— — dwSaales]l+ = (1 —€.)dh.

For any ¢ € H=Y2(0Q), 0,Ssq[ ] satisfies the following well-known jump
relation (see, for example, [10]):

08 ASalell, @) = (+ 57+ Kia)lelw), weon,

[+ (
where the operator Kjq is defined by

09)  Kealglw) =+ [ LTI o) a0(y), we i,
d Joo |z —yl
and K%, is its L?-adjoint, that is,
. L[ -y

(0.10) Kiolel(e) = - | S doty).
Here, wy = 27 and w3 = 4m. The operator Ksqn (or KZ,) is called the NP
operator on 0f). The operator Ksq is also commonly called the double layer
potential.

In view of , the relation can be written as the integral equation

(0.11) (sl — Kkg) [i05] = dyh  on o,
where
(0.12) . e +1 E+1+1i6

. 5= =

20e.—1)  2(k—1) + 25
We will come back to the integral equation (0.11) after recalling some im-
portant spectral properties of the NP operator.

The most important spectral property of the operator K3, is that it can
be realized as a self-adjoint operator on the space H~'/2(0Q) by introducing

a new inner product on it. Let {, ) be the usual H /2~ H'/? duality pairing.
We define (g, )4 for ¢, € H-1/2(0Q) by

(0.13) (o, s 1= —(p, Saa[v]).

Note that —Spq is a non-negative operator. Since Sp maps H_l/z(&’Q) into
HY2(69), {p,Ssq[tb]) is well-defined. The bilinear form ( , )4 is actually an
inner product on Ho_l/2(59) in two dimensions, and on H~'/2(9Q) in three
dimensions. The NP operator K%, is self-adjoint on H -1/ 2(09) with respect
to this inner product. In fact, thanks to the relation

Soa%q = KonSaq,

which is known as the Plemelj’s symmetrization principle (also known as
Calderén’s identity), we have

(. Kol Ds = =, SoaKalv]) = —(p, KoaSaalt]) = (K3ale#], ¥«

For proofs of properties of the NP operator reviewed so far we refer to the
survey paper [22] and references therein.
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Spectrum of K%, on H~/2(dQ), which is denoted by o(K%,), lies in
the interval (—%, 3]. Since K%, is self-adjoint, o(Kj,) consists of essen-
tial spectrum and pure point spectrum, and essential spectrum consists of
absolutely continuous spectrum, singularly continuous spectrum, and limit

points of eigenvalues (some of them can be void), namely,
(0.14) 0(K3q) = Ocss U Opp = Tac U Osc U Tpp-

(see [66]). If 02 is C1* for some a > 0, then Kj, is a compact operator on
H~12(6Q). In fact, because of orthogonality of the normal vector and the
surface or the curve where the operator is defined, we have

e—yw)| _  C
PR e

(0.15) x,y € O

So the singularity of the integral kernel of K} is weaker than the critical
singularity whose order is the same as the dimension of 02 where the integral
is defined. Because of this, K}, becomes a compact operator and o(K3)
consists of eigenvalues of finite multiplicities (except 0 which can have an
infinite multiplicity if it is an eigenvalue) accumulating to 0.

Since K}, is self-adjoint, the spectral resolution theorem holds [70],
namely, there is a family of projection operators £(t) on H~'/2(09Q), called
the resolution of identity, such that

1/2
(0.16) K, = f LAE (D).
—1/2
This formula implies, in particular,
1/2 1
(0.17) (M = K3)~) — f e,
If 0Q is C%®, (0.16)) takes the form
0
(0.18) Ko = D, Nty @y,
j=1
where Ai, Ao, ... (JA1] = |[A2| = ...) are eigenvalues of K}, counting multi-
plicities, and 11,12, ... are the corresponding (normalized) eigenfunctions.

The following addition formula is proved in [16]: if 0 is C1%, then for
reQand z e R\Q

0
(0.19) D(a —z) = = ) Saal¥j](2)Sealti](z) + Saalwol ().

j=1
If © is a ball, then Spn[v;] is a spherical harmonics. Therefore is
the expansion of I'(x — z) in terms of the spherical harmonics, which is
well-known (see, for example, [51]). If © is an ellipsoid, then Spn[v;] is
an ellipsoidal harmonic (see [30], section 7.2]) and the formula is
due to Heine [35] (it is called the Heine expansion formula in [30]). It is
interesting to generalize, if possible, the addition formula to domains
with corners. For that may be useful.

We now move back to and look into the integral equation . Note

that ps converges to pg = 2(kk+_11) as 0 — 0. If k is positive, then ug does not
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belong to [—1/2,1/2], the interval where o(KC%g) is contained, and hence the
problem is uniquely solvable. Note that the problem is elliptic
if k£ is positive. However, if € is a meta-material with the negative k, then
po € (—1/2,1/2), so it is possible (depending on k) for yg to belong to o (KC3,)
and for the solution ¢ to (0.11)) to blow up as § — 0. In fact, according to
, the solution ¢g to (assuming that 0 is C1) is given by

(0.20) 05 =), Ot iy

o M~ Aj

If po = A; for some i and (9, h, ;). # 0, namely 0, h has the eigen-mode of
1, then s blow up as § — 0, and so does the solution to . This is the
plasmon resonance in the quasi-static limit which is one of major reasons
for renewed interest in the spectral properties of the NP operator in recent
years.

We refer to [13, [14] for the connection of NP spectrum with the sub-
wavelength imaging. There asymptotic formulas of resonance frequencies
near NP eigenvalues for the Helmholtz equation and the Maxwell system
are derived. Convergence of a resonance frequency to a NP eigenvalue for
the Helmholtz equation is also proved in [I8]. If yp is an eigenvalue of
K3q, then the corresponding k is called a plasmonic eigenvalue and the
single layer potential of the corresponding eigenfunction is called a surface
localized plasmon [33]. The formula (0.19)) shows that San[1;](2) — 0 as
j — oo for all z ¢ 09 (see also sectio So, if j is large, then San[);]
is localized near 0f). It explains why Ssa[v;] is called a surface localized
plasmon.

3. Analysis of cloaking by anomalous localized resonance

Suppose that dQ is C1* for some a > 0 so that o(Kj,) consists of
eigenvalues accumulating to 0. Consider the operator-valued function A —
(M — K3,)~!. It is a meromorphic function in A except at A = 0. Each
NP eigenvalue (other than 0 if 0 is an eigenvalue) is a pole of the function,
and 0 is an essential singularity as the limit point of pole. If the dielectric
constant k of Q is —1, then ugs in tends to 0, namely, the essential
singularity. Near an essential singularity of a meromorphic function, many
strange phenomena may occur. It is no exception here. If kK = —1, then
CALR (cloaking by anomalous localized resonance) occurs. We review some
recent results on CALR in this section.

Let € be the coefficient given by . We consider the following inho-
mogeneous problem: for a given function f compactly supported in RN\Q

V- eVu=f inR%
(0.21) { u(z) -0 as |z| — .
The source function f satisfies the condition

fdx =0,
Rd

which is the compatibility condition for existence of the solution to ((0.21)).
Typically, a dipole is chosen a source function, that is, f(z) = a - Vi, (z),
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where a is a constant vector, J, is the Dirac delta function at z which lies
outside 2.
Let us be the solution to this problem and let

(0.22) Es := %J e5|Vugs|? do = f §|Vus|? da
R4 O\D

(S for the imaginary part). The problem of CALR is formulated as that of
identifying the sources f such that

(0.23) Es > o asd—0,

and ug is bounded outside some radius a.

The quantity Ejs approximately represents the time averaged electro-
magnetic power produced by the source dissipated into heat. So, (0.23)
implies an infinite amount of energy dissipated per unit time in the limit
§ — 0 which is unphysical. If we scale the source f by a factor of 1/4/Es,
then us/+/Fs approaches zero outside the radius a. Hence, CALR occurs:
the normalized source is essentially invisible from the outside.

The phenomena of anomalous resonance was first discovered in [62] and
is related to invisibility cloaking in [59] where Q is an annulus and f =
a-Vo,. We refer to the recent survey paper [58] for physics related to CALR
including superlensing and for a comprehensive list of relevant references.
In this paper we discuss the NP spectral nature of CALR.

Let F be the Newtonian potential of f, i.e.,

F(x) = fRd D(z—y)f(y)dy, =eR™

Then, the solution us to (0.21)) takes the form with h replaced with F.

There, the potential ¢s is the solution to the integral equation (0.11]) with
0y h replaced with 0, F, and hence it is given analogously to (0.20) by

BN
Z< V;)

o oA v

One can see that ps ~ 0 since k = —1. Here and throughout this paper,
we write A < B to imply that there is a constant C independent of the
parameter (in this case it is ). The meaning of A 2 B is analogous, and
A ~ B means both A < B and A = B hold. Suppose that 0 is not an NP
eigenvalue on 2. The CALR condition is equivalent to

Oy Fy b )2

(0.24) =5 Z <52 f;; — o asd— 0.

In this way, CALR is related to the spectral theory of the NP operator and
the result of [59] on CALR with the dipole source on an annulus is extended
to more general source f [5] using the spectral approach. Note that the circle
has 0 as its NP eigenvalue. By adding another circle the NP eigenvalues are
perturbed and 0 is not an NP eigenvalue but the limit point of eigenvalues on
an annulus. Furthermore, NP eigenvalues and corresponding eigenfunctions
on annuli are explicitly known so that Eg can be computed. This is an
advantage of working with annuli. Actually 0 is the only NP eigenvalue,
other than 1/2 which is of multiplicity 1, on a circle. There is no known
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example of a planar domain other than disks where 0 is an NP eigenvalue
(of finite or infinite multiplicity). It is known that if the NP operator on
a planar domain is of finite rank so that the eigenvalue 0 has the finite
co-multiplicity, then the domain must be a disk [68].

When f = a- V6, for some z € R\Q and  is an annulus, it is proved
in [59] (see also [5]) that there is a virtual radius r, such that if |z| < 7,
then holds and CALR takes place; if |z| > r,, then Es is bounded
regardless of §. This result has been extended to confocal ellipses in [28].
Since CALR is a phenomenon occurring at the limit point of NP eigenvalues,
the structure does not have to be doubly connected. In fact, it is proved in
[16] that if  is an ellipse, then there is an ellipse (2, confocal to §2 such that
if z € Q,\Q, then CALR takes place, and it does not if z ¢ ), (see subsection
. On three dimensional ball or concentric balls CALR does not occur
[7, 16]; on concentric balls with folded geometry CALR may occur [6].

Let us look closely the quantity Es in . It is proved in [16] that if
f=a-VJ,, then

KO E, Y )«| ~ la - VSaalthn](2)].

As a consequence, we have

~ L e - VS N 2
(0.25) Es~6) la V(Sji[fz](”z” .

n=1

Therefore, to investigate the property E’g — o0, we need to look into the
following two questions:

(i) how fast A, tends to 0,

(ii) how fast VSaq[1n](2) tends to 0,
as n — 00. The question (i) is about the convergence rate of NP eigenvalues,
and the question (ii) is regarding the surface localization of the plasmon
Soaltn]. Results on the convergence rate of NP eigenvalues are reviewed
in [22]. We recall some of them in the following subsection for smooth
discussion.

3.1. CALR in two dimensions. Let © be an ellipse in R?. The
elliptic coordinates = = (z1,22) = (z1(p,w), z2(p,w)), p > 0 and 0 < w <
27, is given by

z1(p,w) = Rcoswcoshp, x2(p,w) = Rsinwsinh p.

We denote the elliptic coordinates of x by p = p, and w = w,. Then 09 is
represented by

(0.26) N ={xeR? : p, =po}

for some pg > 0. The number pg is called the elliptic radius of 2.
The NP eigenvalues on 02 are

1
A\, = i7262np0, n=12.--,
and eigenfunctions corresponding + A, and —\,, are respectively given by

06 (w) = Z(po,w) M cosmw, ¢ (w) 1= Zpo,w) sinnw,



3. ANALYSIS OF CLOAKING BY ANOMALOUS LOCALIZED RESONANCE 9

where

= Z(pg,w) 1= R\/ sinh? py + sin®w
(see, for example, [28]). Using these facts, it is proved in [16] that

6=2tp=lrollog §|  if py < p. < 3po,
Es5 ~ < 6| log §|? if p, = 3po,
J if Pz > 3po,

as & — 0, where z is the position of the source. As a consequence, the
following theorem is obtained.

THEOREM 3.1. Let 052 be the ellipse given by . CALR takes place
if po < p, < 2po and does not take place if p, > 2pg, namely, the critical
(elliptic) radius for CALR is 2pq.

If © is a planar domain with the real analytic boundary, then it is not
known yet if CALR takes place. One may attempt to prove the following
problem:

Problem 1. Is it true that if the location z of the source is close enough
to 012, then CALR takes place, and if z is sufficiently away from 052, it does
not take place?

In relation to this, the question (i) above has been answered in [19]
(see also [22] and references therein for related work): A\, converges to
0 exponentially fast. In fact, if \; is the positive NP eigenvalues on 0f2
enumerated as in descending order, then for any ¢ < €pn there exists a
constant C' such that

A < Ce™ "

for all n, where €pq is the modified maximal Grauert radius of €2 which is
basically the radius up to which the real analytic defining function of oS is
extended as a complex analytic function (see [19] for a precise definition).
Therefore, we obtain from (|0.25]

|a - VSaal1n](2)[?
E > o Z 52 + 672677,

for any € < €3n. However, it is not known whether CALR occurs because
of lack of knowledge on the localization of plasmon in the question (ii). In
fact, to the best of author’s knowledge, there is no result on (ii) in two
dimensions except on disks, annuli, and ellipses where NP eigenvalues and
eigenfunctions are known explicitly. This brings the following problem

Problem 2. How fast does Spa[1n](2) tend to 0 as n — oo when 0f is
real analytic and of general shape?

3.2. CALR in three dimensions. Let 2 be a bounded domain in R?
with the smooth boundary. It is proved in [60] (see also [22]) that {\,}nen
asymptotically behaves like

(0.27) M~ Cogn™! asn— oo,
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in the sense that A2n — Csq as n — 0. The constant Cpq is given by
3W(092) — 2mx(092)

1287 ’
where W (0€2) and x(09), respectively, are the Willmore energy and the

Euler characteristic of the boundary surface 0§2. The Willmore energy is
defined by

Con =

W(@eQ) = | H(x)%dS,
o0
where H(z) is the mean curvature and it is known that W (02) > 47 [56]

(see also [22]). Thus we have Cyq > 0, and hence

la - VSaa[vn](2)]?
02 4+n-1 '

(0.28) Es~6 2

The following theorem is proved in [21].

THEOREM 3.2. Let {2 be a strictly convex bounded domain in R3 with the
C®-smooth boundary. For any compact set K in R3\Q and for each integers
k and s there is a constant Cy, s such that

—S

ISealenlllor (k) < Cr,sn
for all sufficiently large n.

The main ingredient in proving this theorem is the fact that since 0S2
is C*-smooth, the NP operator K}, is known to be a strictly homogeneous
pseudo-differential operator of order —1 [32], and its principal symbol is
positive definite if Q is strictly convex as proved in [60}, 61]. Thus all
eigenvalues of Kj,, except possibly finitely many, are positive [61]. By
altering K3 on a finite dimensional subspace if necessary, we can realize
K3 as a positive definite pseudo-differential operator of order —1. This
fact together with leads us to Theorem

We infer from Theorem and that E5 < +00, and hence CALR
does not take place on three-dimensional strictly convex bounded domains.

In order to see what happens if 0€2 is not convex, the first 450 plasmons,
namely, Spa[en] (1 < n < 450), corresponding to largest eigenvalues in
descending order, are computed numerically on a cross section close to 0f2
when Q is the Clifford torus in [21I]. To our surprise, there are four out of 450
plasmons which do not decay fast enough (see Fig. It is utterly interesting
to investigate it rigorously and explore the possible connection to CALR.
We include in this paper the figures from [21] to compare Spa[p,] of fast
decay and slow decay (see Fig. . We also include figures of two exceptional
eigenfunctions together with one non-exceptional one for comparison. The
exceptional eigenfunctions have a very interesting feature which we discuss
in the next section (see Fig. (3.

For general domains the following theorem is proved using the addition
formula (we only state a special case of the theorem obtained in [21]).

THEOREM 3.3. Suppose that Q is a bounded domain in R3 with the che
smooth boundary for some a > 0. For any compact set K in R3\Q,

|Sac [‘Pn]HCl(K) = o(n71/2) almost surely as n — 0.
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Logarithmic graph (Clifford Torus)
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FIGURE 1. The graph of [Saq[pn]lz2(x) (1 < n < 450) af-
ter some normalization on the Clifford torus. The horizontal
axis represents positive eigenvalues of the NP operator enu-
merated in decreasing order up to 450. The red dots indicate
values drastically larger than neighboring points. They occur
at 53rd, 100th, 305th and 402nd eigenvalues. (The figure is
from [21]. The region X where Spa[pn] is computed is the
rectangle-shaped cross section shown in Fig. |2l and Spa[en]
is normalized.)

FIGURE 2. Spaen] of fast decay (left) and of slow decay
(right). The rectangular cross section represents the region
where Spa[¢n] is evaluated, and the color on it represents its
value. (Figures are from [21].)

For a sequence {a,} of numbers and a non-negative number s, we say
an = o(n™*) almost surely as n — oo if

o fH{in< N : |ap| > dn~%}
lim1
510 Nos N

=0.

It is equivalent to existence of a subsequence {ny} such that a,, = o(n,*)
as k — o0 and limy_,o ng/k = 1.

4. Concavity and negative eigenvalues

In two dimensions the NP spectrum always appears in pairs, namely,
if X e 0(Kj3g), then =\ € o(Kj3,). This can be proved using existence
of harmonic conjugates. However, there are domains in three dimensions
where the NP operators have only positive eigenvalues: the NP eigenvalues
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FiGureE 3. Top: exceptional eigenfunctions whose single
layer potentials do not decay fast. They do not oscillate
in the toroidal direction. Bottom: a non-exceptional eigen-
function whose single layer potential decays fast. It oscillates
in the toroidal direction. (Figures are from [21].)

on a sphere are 1/(4n + 2) for n = 0,1,2 ..., and they are all positive on
prolate spheroids [3]. The first example of three-dimensional domains with
a negative NP eigenvalue was found in [2]: it is an oblate spheroid. We now
know that concavity allows negative NP eigenvalues which we review in this
section.

Let us first recall the discussion in [17] on possible advantage of having
negative eigenvalues. Suppose that €. = k + id is the dielectric constant of
Q) as before and assume § = 0 so that €. = k. Then plasmon resonance in
the quasi-static limit occurs if

k+1
2(k—1)
where A is an eigenvalue of the NP operator on 0f) as mentioned at the end

of section The relation (0.29) can be achieved by a larger k (a smaller
|k|) if A is negative (see Fig. [4)). This may yield an advantage in practice.

(0.29) =\

4.1. A concavity condition for negative eigenvalues. Results of
this subsection are from [38]. For a fixed 7 > 0 and p € R3, let T}, : R3\{p} —
R3\{p} be the inversion in a sphere, namely,

2

r
. Tyr = ———(x — .
(0 30) pT |$—p|2 (x p) +p

For a given bounded domain € in R3, let 0, be the inversion of €, i.e.,
Q= T,(092).
The following theorem is obtained in [38§].

THEOREM 4.1. Let Q be a bounded domain in R® whose boundary is
Lipschitz continuous. If there are p € Q and x € 0§2 such that

(0.31) (x—p) vy <0
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FIGURE 4. The curve is the graph of % and Ay, A_
are positive and negative NP eigenvalues, respectively. A_ is
attained by k whose absolute value is smaller. (The figure is

from [17]).

and 02 is C' near x, then either o(Kj,) or o(K has a negative value.

cax)
The condition ((0.31)) indicates that 02 is concave with respect to p € Q.

For example, this condition is fulfilled if there is a point on 0€2 where the

Gaussian curvature is negative. Thus the following corollary is obtained.

COROLLARY 4.2. Suppose 0§ is C? smooth. If there is a point on 09
where the Gaussian curvature is negative, then either K3, or IC;Q* for some
P

p € Q) has a negative eigenvalue.

Let us briefly see how Theorem [4.1] is proved. Just for simplicity we
assume p = 0 and denote J€; by 0Q2*. For a function ¢ defined on oS,
define * on 0Q2* by

k) L M *
¥ (l‘ )'_ 90($) T'd ) T = 1Lp.

The following identity holds for all ¢:

(0.32)  (Chax[e*], ¢*Dans + (Kialel. pdon = L ) %\sm [e](y)[? dS.

Here, { , Yoa+ and ( , ¢)sq denote the inner product on 00* and
09}, respectively. If holds, namely, x - v, < 0 for some x € 052, then,
since 0Q is O near = and Sy : H=Y2(0Q) — HY?(0Q) is invertible, we can
choose ¢ € H1/2(09) so that Spa[¢] is supported in a small neighborhood
of x and

i
f L Salelw) ds <.
ooyl

Thus we have

Kaau[@™], 0™ Yoax + (Kialwl, ©roa < 0.
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Thus, the numerical range of either K%, or K3, has a negative element.
The numerical range of the operator T is defined to be

W(T) := {(Ta,z) ; |z = 1}.

Theoremthen follows from Hausdorff-Toeplitz theorem (see, for example,
134]).

The identity (0.32)) is derived using the following three transformation
formulas,

7,4

~aft

dsS(z*) dS(zx)

for the surface measure dS,

Ty
r —y) = e y)
for the fundamental solution, and

t
Vs = (—1)m(1 p e )yx

] ||

for the normal vectors.

4.2. NP spectrum on tori. We now review the results in [15] on NP
spectrum on tori. We do so in some detail having in mind the possible
connection to CALR as mentioned in the previous section.

The toroidal coordinate system (&,6,n) for the Cartesian coordinates
(z1,x2,x3) is given by

Roy/1 — &2 cosn _ Rpy/1—E&2siny _ Ro&sing

= 1—¢&cosh 2= 1—¢&cosf 3= 1—¢&cosf’
Here, Ry = «/7‘% — a2 where ry and a are the major and minor radii, respec-
tively, of a toroidal system. The variable £ (0 < £ < 1) is similar to the
minor radius, 6 (0 < 6 < 27) is the poloidal angle, and n (0 < 7 < 27) is
the toroidal angle (see [25] for the toroidal coordinate system).

The surface £ = constant is a torus, on which (0,7) is the coordinate
system. Let, with the fixed &,

/ 1 1 /
u(n—n):—§2+<1—§2>008(77—77)

and
x(0) :=1—¢cosb.

Then, K3 [¢] for a function ¢ on the torus can be written as

2w 2T
Krale](6, ) = fo L B(0,05 1 — 1) p(0' o) do

where
1—&% x(0)Y? 1
k(0,0 — 1) =
0050 =) = T (@) Gl — o) — cos(®— )17
1-& x(6)*? 1 — cos(n —1/')

 8my2E8 X (0)32 (uln — ') — cos(6 — 0'))32
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Since 0 < £ < 1, x is a positive smooth function. Thus any function ¢
in H'/2 on the torus admits the Fourier series expansion

(0.33) 0(0,m) = x(0)*2 > Gr(0)e™.
k=—o0
We thus have
_ g2 0 )
O3)  Kialell0m) = L@ 3 K0

where the operator Ky is defined by

LA = [ ax(6.0)50) do

0
with
27 —zk'q

w00 =20 |

1 21 (1 cosn ) ikn'
B 52f0 (u(1) — cos(6 — 6"))3/2 '

The single layer potential also admits the decomposition

035)  SalelOa) = S0 Y sdade)e

k=—0o0

where

27
Slf1(60) = f se(6— 0)1(8) o'

0
with

27 —zk:’r]
w0 |, G e

Let H~'Y2(T) be the Sobolev space of order —1/2 on the unit circle 7.
If we define (, )i by

27
(0.36) Fogn = | F(O)Sklgl(0)do, f,ge HV*(T),

0

then it is an inner product on H~2(T) for each k and the following relation
holds:

(0.37) (o by = T2~

4 \f
where ¢ = ¢r(0) is the Fourier coefficient as defined in (0.33]). Moreover,
), is compact and self-adjoint on H /2 (T'), that is,

Krlgrl, 920k = {91, Ki[g2]D-

We infer from the relation (0.34)) that if A is an eigenvalue of Ky and g
is the corresponding eigenfunction, then (1 —&2))\/(8v/27€) is an eigenvalue
of K3, and the corresponding eigenfunction is given by

(0.38) ©(0,m) = x(0)*2g(0)e™.

Z (Prr 1Yk,

k=—00
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Note that the function ¢ oscillates in toroidal direction if £ # 0. As we saw in
Fig. |3 the exceptional eigenfunctions, whose single layer potentials (namely,
plasmon) do not decay fast, do not oscillate in the toroidal direction. On
the other hand, the non-exceptional eigenfunctions oscillate in the toroidal
direction.

It is proved using the stationary phase method that for any 0 < £ < 1
there exists a positive integer kg such that the numerical range of [y, has both
positive and negative values and hence K has both positive and negative
eigenvalues for all k € Z with |k| > kg. Thus we have the following theorem
from Hausdorff-Toeplitz theorem again:

THEOREM 4.3. The NP operator on tori has infinitely many negative
etgenvalues.

Any bounded domain with C'® boundary has infinitely many positive
NP eigenvalues.

Two questions arise naturally:

Problem 3. If ¢ is given by (0.38)), the does the decay of Spa[¢] depend
on k and all the exceptional eigenvalues (the single layer potential of the
corresponding eigenfunctions as discussed in section |3) are from k = 07

Problem 4. Is it true that all eigenfunctions of K%, are of the form
(0.38), in particular, any eigenvalue of K}, is an eigenvalue of K, for some
k?

4.3. Further results. We mention general results in [61]. For more
precise statements of the results and discussions on them, we refer to [22].

THEOREM 4.4. Let Q < R3 be a bounded domain with C® boundary.

(i) If one of the principal curvatures at x € 0S is positive, then there
are infinitely many negative NP eigenvalues.

(ii) If the principal curvatures are negative at every x € 0S), then there
are at most finitely many negative NP eigenvalues.

In a recent paper [37] the NP spectrum on surfaces of revolution of
planar curves with a corner is considered and the continuous spectrum can
be both positive or negative depending on the angle of the corner. This paper
is the first attempt to investigate continuous spectrum on three-dimensional
domain with corners.

5. NP spectrum on polygonal domains

In order to introduce an outstanding problem on essential spectrum, we
begin the discussion in this section by briefly reviewing results on essential
spectrum. For more extensive review and interesting historical account, we
refer to [22].

Let £(t) be the resolution of identity given in (0.16). For each ¢ €
H~12(0Q), the measure p, := (£(t)¢, ¢« is called the spectral measure as-
sociated with ¢. According to Lebesgue decomposition theorem, H Y/ 2(09)
can be decomposed as

H™Y2(6Q) = Hypy ® Hoe @ Hye,
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where Hy. is the collection of all ¢ such that u,, is singularly continuous, and
Hy, and H, are defined likewise. The singularly continuous o, = 0.(K3g)
is the spectrum of K%, when restricted Hy., and o4, and oy, are defined
likewise. See [66].

Let 2 be a bounded Lipschitz domain in R? with finite number of corners

whose inner angles are ay,...,ay. Let
1 Oéj
= b (-2)

It is proved in [64] that bess is a bound of 0e4s(K}). In [47], a lens domain
(an intersection of two disks) is considered and a complete spectral resolution
of Kjq is derived. It enables us to infer that

U(Kgﬂ) = UESS(IC;Q) = UaC(ICEQ) = [_bess’bBSS]'

In particular, it implies that o,,(K3%;) and o4.(K3,) are void on a lens
domain. If Q be a bounded Lipschitz domain in R? with finite number of
corners, it is proved in [65] that oess(IC3g) = [—bess; bess], and in [63] that
05c(Kjq) is void.

An interesting problem arises:

Problem 5. Find geometric conditions on 0§2 which guarantee o4.(K3;,) #

. (Since no example of domains with nonempty singularly continuous spec-
trum is known, even a single example of such a domain would be interesting. )

We now review the results of [36] where the question whether oy, (K3,)
is void or not. The crux of the matter is to use resonance to distinguish oy,
and o4.. This idea also appears in [16}, [36].

Let f € Ho_l/z(afl). Forte (—1/2,1/2) and 6 > 0, let ¢, 5 be the solution
of the integral equation

((t+i0)I — K3q)[ees] = f on 0.
By the spectral resolution ((0.17)), the solution is given by

Gus = f L e

(KX,) t+1i0 —s

and hence

loesl2 = (Pusr prsds = j L WEG) e

ok, (8 —1)? + 0

If t ¢ 0(K%g), one can immediately see from that [ s
some C regardless of 4.

If t € 0(Kj3q), then [pgs]+« may blow up as 6 — 0. The key idea is
that the blow-up rate at the eigenvalue ¢ is different from that at continuous
spectrum. To see this, we recall that an eigenvalue ¢ of K%, is characterized
by discontinuity £(t+) — £(t) # 0 (and ¢ is isolated) (see [70]). So, if f
satisfies

(0.40) CERHL e = CEQS], [« >0,
then

|« < C for

CEH)S], [« =<EDLS], f>*7

lusl > =
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and hence
H‘Pt,é”gk ~ 6%
If t € 040(K},), then there is f such that the spectral measure (&s[ f], f)«
is absolutely continuous near t, namely, there is € > 0 and a function s (s)
which is integrable on [t — €,t + €] such that

(0.41) dlE(S)[f], [« = np(s)ds, se[t—et+e]
Then it is proved that

2

2 _
L=

lim 3lipr, o (g (t+) + pr(t=)) > 0,

and
2 =0.

lim §2
lim lt,s

Define an indicator function a(t) by

(0.42)  ay(t) = sup{ o ‘ liI(?S(lS(;lp(saHgOt,gH* =0 }, te(—1/2,1/2).

We see that 0 < af(t) < 1 for all t. The following theorem for classification
of NP spectra of is obtained in [36].

THEOREM 5.1. Let f e Ho_l/2((%2).
(i) If af(t) > 0, then t € o(KChq,).
(i) If af(t) = 1 and t is isolated, then t € opy(K}g)-
(ili) If 1/2 < af(t) <1, then t € 0ess(Klq).
The indicator function ayf(¢) can be computed numerically using the
following identity:

*

. log |ors
as(t) = _}1—{% log &
if the limit exists.

The source function f should satisfy and with pr(t+) +
ps(t—=) > 0. In [36], f.(x) = v(z)- - V(a- V,I'(z — 2)) (a is a constant
vector and z lies outside €2) is chosen as a source function because for any
p e Hy Y 2(8(2), {fzy )« # 0 for almost all z among several advantages.
Then the indicator function is modified as

og(t) := max {ay. (1)}

for some z1,...,2N.

This method of characterizing NP spectra has been tested for various
polygonal domains, ellipses perturbed by a corner, and so on. The com-
putational results clearly show effectiveness of the method in distinguishing
eigenvalues from continuous spectrum. Some results show that eigenvalues
can be embedded inside the continuous spectrum (see Fig. . Lately, it
is rigorously proved that it is possible that infinitely many eigenvalues are
embedded in the continuous spectrum [52] [53].

The computational results on rectangles are particularly interesting. We
know by that if Q is rectangle, then 0.4 (K3%,) = [—1/4,1/4]. How-
ever, as the aspect ratio of the rectangle gets larger, more and more eigen-
values show up (see Fig.@. We can formulate an interesting problem out of
these numerical experiments.
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Perturbed ellipse; R = 2.4 Perturbed ellipse; R = 2.4

——5=10"10
s * RS QR
ot i 1 ; 5-0 extrap.}’

=1

. . . A i i i -0.5 -0.25 0
-3 -2 -1 0 1 2 3 t

FIGURE 5. An ellipse perturbed by a corner. Two eigenval-
ues are embedded in the continuous spectrum. (Figures from
[36]).

Problem 6. Is it true that there is a sequence of numbers 1 = ryp < r; <
ro < --- such that if the aspect ratio lies in (rg_1,7%), then the number of
positive NP eigenvalues is k7 The first number r; seems around 2.201592
(see the second figure in Fig.[6).

Unit square; R = 0.8 Rectangle; unit area; aspect ratio 2.201592; R = 0.9

10710
06

— =107
T —— 50 extrap.

a(t,8)

-05 -0.25 0 0.25 05 -05 -0.25 0 0.25 05
t t

Rectangle; unit area; aspect ratio 3; R = 0.98 Rectangle; unit area; aspect ratio 30; R = 2.78

1t . . 4 e e

0.75F

051

ay(t,6)
ay(t,6)

0.25F

—a=107" ——5=10""°
o —— 50 extrap. —— 80 extrap) i ———]
-05 025 [} 025 05 -05 025 [} 025 05
t t

FIGURE 6. Graphs of the indicator function oy on rectangles
of aspect ratios, 7 = 1, 2.201592, 3, 30. When r = 2.201592,
eigenvalues just about to emerge, and more and more eigen-

values emerge as the aspect ratio increase. (Figures from
[36]).

Fig.[7]show the NP spectrum of an isosceles triangle. The interval of con-
tinuous spectrum is determined by the smallest interior angle as explained
earlier. It shows no eigenvalue. It is not clear whether triangles have no NP
eigenvalues or not and it would be interesting to clarify this.
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Problem 7. Is it true that there is no NP eigenvalues on triangles?

Tsosceles triangle; sides (1,2,2); R=1.18 Isosceles triangle; sides (1,2,2); R =1.18
T T T T T T T T T —
1k 1 1 —— =0 extrap,

05- ] 0.75)

(t,0)
e

=S 4 ol

L L L L L L -0.4196 -0.2902 0 0.2902  0.4196
-1 -05 0 05 1 1.5 t

FIGURE 7. NP spectrum of the isosceles triangle with sides
1, 2 and 2. There is no eigenvalue. (Figures from [36]).

6. Spectral structure of thin domains

Motivated by the numerical study on the NP spectral structure on rect-
angles as explained in the previous section, the spectral structure of the NP
operators on thin domains has been investigated in two dimensions [20] and
in three dimensions [17]. We review those results in this section.

There is another motivation behind these work. They are motivated
by observations that as the boundary 0€) of the domain becomes singular in
some sense, the corresponding NP spectrum seems to approach to the bound
+1/2. For example, as we saw at the beginning of the previous section, if a
planar domain has corners and if a corner gets sharper and the domain be-
comes needle-like around the corner, then the essential spectrum approaches
[—1/2,1/2]. If Q consists of two strictly convex planar domains and bound-
aries get closer, then more and more eigenvalues of the corresponding NP
operator approach +1/2 [26), [27]. This causes stress concentration in the
narrow region between two inclusions (see section .

Results to be reviewed in this section show that as the domain gets
thinner, NP spectrum approaches [—1/2,1/2] in two dimensions. In three
dimensions, it approaches either [—1/2,1/2] or [0, 1/2] depending upon the
kind of thinness (thin and long, or thin and flat). So, in some case there is
no negative eigenvalue.

In this section we work with Ksq, not K3, since it is more convenient.
The spectrum of Kaq on HY2(0Q) is the same as the spectrum of K3 on
H=2(69).

The two-dimensional thin domains considered in [20] is given as follows:
For R > 1, let Qg be a rectangle-shaped domain whose boundary consists
of three parts, say

0Qpr = F]'; ul, ul},
where the top and bottom are
Th=[-R R x {1}, Tp=[-R R]x{-1},

and the side I'}; consists of the left and right sides, namely, I'}, = I‘ZR u Iy,
where I lR and I', are translates of curves I and I'" connecting points (0, 1)
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and (0, —1), namely, I'y, = T — (R,0) and I'}, = I + (R,0). If both I'* and
I'" are line segments, 2y is a rectangle. The boundary 02y is assumed to be
Lipschitz continuous. We say that the domain Qg is thin because the scaled
domain R™Q)p is thin (like a needle) and its NP spectrum is the same as
that of Qr (NP spectrum is dilation invariant).

The following theorem is the main result of [19].

THEOREM 6.1. If {R;} be an increasing sequence such that R; — oo as
j — oo, then

(0.43) v 0(Kaay,) = [-1/2,1/2].

If Qg is a rectangle, then ocss(Kon,) = [—1/4,1/4] as we discussed in
section [5| Theorem says that as R increase to o0, more and more eigen-
values appear outside [—1/4,1/4] and their totality densely fills up intervals
[—1/2,—1/4] v [1/4,1/2]. This is in accordance with the computational re-
sult in [36]. What is surprising is that holds regardless of the choice
of the sequence R;.

Theorem [6.1]is proved as follows. The NP operator on dQ2p behaves like
1/2 times the one-dimensional Poisson integral. Since the Fourier transform
of the Poisson kernel is e 2™l the Poisson integral has [0, 1] as its essential
spectrum. Using this fact, one can construct a function pp € H~Y2(0Qg)
such that

(0.44) lim H()‘I — Kﬁﬂ}%)[@R]H*
R—w H‘PRH*

for each A € (0,1/2]. It implies that [0,1/2] < UZ la(lCaQR ). In fact, if

Aé¢ U?O:IO'(ICQQRj), there is § > 0 such that [A—d, )\+(5]muj:10(lCaQRj) =.
Thus,

-0

AL = Kaap )2l = o«

for all ¢, contradicting . Since NP spectrum on planar domain is
symmetric with respect to 0, we have ((0.43)).

The property seems a generic property of thin planar domains.
For example, thin ellipses enjoy it. In fact, if E;, j = 1,2,..., is the ellipse
defined by x%/a? + av%/bj2 < 1 and Ky, is the corresponding NP operator,
where a; and b; are positive numbers such that b; < a; for all j and b;/a; — 0
as j — oo, then

(0.45) v 0(Kog,) = [-1/2,1/2].

Since eigenvalues of Kop; are exphcltly glven by +1/2(a; — b;)"/(aj + b;)"™,
n=12... (see [1]), the proof of (0.45)) is not difficult, and a short proof
can be found in [19].

Let us now move to the three-dimensional thin domains. There are two
different kinds of thinness in three dimensions: thin and long (like prolate
spheroids), thin and flat (like oblate ellipsoids). Their NP spectral structures
are different as we see below.

Let IIg be the prolate spheroid defined by, for R > 1,

IIg := {(:cl,:cg,:cg) xl +x2 + —2 < 1}
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Let a; (j = 1,2) be positive numbers. For a positive number R, let Qp be
the oblate ellipsoid defined by
2 2

X e
Qg = {(5131,.732,1'3) : (a1]1%)2 + (a2;)2 +-’L'§ < 1}-

If a1 = as, then Qg is an oblate spheroid.
The following theorems are obtained in [17].

THEOREM 6.2. If R; is a sequence of numbers such that R; > 1 for all
Jj and R; — o0 as j — o0, then

(0.46) U?Ole(ICar[Rj) =10,1/2].

THEOREM 6.3. If R; is a sequence of positive numbers such that R; — o0
as j — o0, then

(0.47) 070 (Kang ) = [-1/2,1/2],

Theorem [6.2] shows that totality of eigenvalues of lCanRj is dense in

[0,1/2] regardless of choice of the sequence R; as long as 1 < Rj — 0. As
mentioned before, it is proved in [3] that there is no negative eigenvalues
on prolate spheroids. Theorem shows that totality of eigenvalues of
Koo R, 18 dense in [—1/2,1/2]. This is rather surprising since, as mentioned
in Theorem Kaq Iy admits at most finitely many negative eigenvalues

(since Qg is strictly convex). However, says that negative eigenvalues
in u?O:IU(ICaQRj) are dense in [—1/2,0].

There are many significant works on the NP spectrum on ellipsoids,
[2], 3, 4, 57, 67] to name a few. However, it is unlikely that Theorems
and can be proved using those results.

Like two-dimensional case, Theorems and are proved by investi-
gating the limiting behaviour of the NP operators as R — co. It is proved
that the NP operator on IIz converges (on some test functions) to the one-
dimensional convolution operator L = f as R — oo, where

1 (™ 1—cosf
L(t) ;= — do.
®) QWL [(2 —2cosf) + t2]3/2

It is then proved that the Fourier transform of L has values in (0,1/2] and
hence the convolution operator has continuous spectrum [0,1/2]. Using
this fact, a sequence of functions satisfying ((0.44]) is constructed. Then the
inclusion

(0.48) [0,1/2] U?O:10—<K:6HR].)

follows. The opposite inclusion is proved in [3].

The NP operator on oblate ellipsoids has two pieces defined on the upper
and lower parts of ellipsoids. It is proved that each piece converges to 1/2
times the two-dimensional Poisson integral. The Poisson integral operator
has continuous spectrum [0,1]. By choosing proper signs on the upper
and lower parts, a sequence of functions satisfying is constructed for
A e [-1/2,1/2] (A # 0) which yields Theorem

A natural question arises: whether Theorem holds for cylinder-like
convex domains or even prolate ellipsoids. One can show that holds
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for such domains. But we do not know if the reverse inclusion is true. We
do not know negative NP eigenvalues, if any, on prolate spheroids, disappear
eventually if they become thinner.

The property seems to be a generic property of thin, flat domains.
To demonstrate it, a typical thin, flat domain is considered. To define such
a domain, let U be a bounded planar domain with the Lipschitz continuous
boundary dU. Let ® be the domain in R? whose boundary consists of three
pieces, namely,

0P =xtux uXx®

where the top and bottom are given by X+ = U x {+1} and ¥? is a surface
connecting oU x {+1} and oU x {—1}. We assume that 0® is Lipschitz
continuous. For R > 0 let

(0.49) (I)R = {(Rxl,RI‘Q,JSg) : ($1,$2,x3) S ‘I)}.
The following theorem is proved in [17].

THEOREM 6.4. If R; is a sequence of positive numbers such that R; — o0
as j — oo, then

U 0(Koay, ) = [-1/2,1/2].

7. Analysis of field concentration

In a composite which consists of inclusions of different material proper-
ties and matrix, some inclusions are located close to each other, and a strong
stress may occur in the region between closely located inclusions. During
last three decades or so, there has been significant progress in quantitative
analysis of stress or field concentration about which an extensive survey has
been made and several open problems are discussed in [42]. In this section,
we briefly review some of them.

Let us mention what the problem is with a brief review of results and
how it is related to the spectral theory of the NP operator. Let the domain
Q consist of two closely located but disjoint domains D7 and Ds, namely,
1 = D1 U Ds. Let € be the distance between D1 and Dj. Let k; be the
conductivity of D; for j = 1,2, while that of RA (D U Ds) is assumed to
be 1. So the conductivity distribution for this section is given by

€ = kixp, + k2XDs + Xra\(D,LDy)-

The conductivities k1 and ko are different from 1 and allowed to be 0 or co.
The conductivity being o0 means that the inclusion is perfectly conducting,
and 0 means insulating.

We consider the problem (0.2). The problem is to derive estimates for
Vu (and higher order derivatives) in terms of € (and ki, ko, if possible)
as € tends to 0. Another problem is to characterize asymptotically the
singularity of Vu. The asymptotic characterization, as € tends to 0, means
a decomposition of the form

(0.50) u=s+r,

where s is the singular part, namely, Vs carries the full information of the
singularity of Vu, while r is a regular part, namely, Vr is bounded.
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When D; and D are disks, an optimal estimate for the gradient has
been derived in [11), 2]. It is extended to higher order derivatives in [31]
(see also [39]):

(0.51) |ulno < (4Mido — 14+ /€)™

provided that (k; — 1)(k2 —1) > 0. Here U be a bounded set containing
D1 U Dy, |ull,,r denotes the piecewise C™ norm on U, namely,

[l = Tl gn gy + Il on oz + lullon@nay,
and
ki +1
52 Aji=——, j=12
(O 5 ) J 2(:145] _ 1)7 J ’
If k1 = ko = 0 (or k1 = ko = 0), then the estimate (0.51) yields
(0.53) |Vu(z)| < e V2.

This estimate has been extended to strictly convex inclusions in two dimen-
sions (more precisely, strictly convex near the unique points on 0D and 0Ds
of the shortest distance) [71]. In three dimensions, the optimal estimate for
Vu has been obtained in [23]: If k; = ko = o0 and inclusions are strictly
convex inclusions, then

1
Vu(:)| S gy
However, despite important progress made in [24, (55} 169} [72], the insulating
case (k1 = k2 = 0) in three dimensions remains unsolved.

The asymptotic characterization of the form for planar strictly
convex domains has been obtained in [8), 48|, 43]. Moreover, it is proved
in [43] that the regular part r converges to the touching case solution as
€ — 0 and the singular part disappear as soon as the inclusions are touching,
namely, € = 0. The asymptotic characterization for three-dimensional balls
has been derived in [49), 54].

If (k1—1)(k2—1) < 0 and D1, D3 are disks, then the following unexpected
estimate is obtained in [39]:

(0.54) [ulng < (4Mde] — 1+ /€)™

If £y = 0 and ko = o0 (or the other way around), namely, D; is an insulator
and Dy is a perfect conductor, then

(0.55) A==, A=
Thus (0.54) yields that

—n+1
Jung < € 2

In particular, it implies that Vu is bounded and
IV2u] ooy < e 12,

This estimate is optimal in the sense that there are harmonic functions A
such that the opposite inequality holds.

It is an intriguing problem is to extend the results for circular inclusions
to inclusions of general shape (or to prove they do not hold on inclusions of
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general shape). If D; is an insulator and Ds is a perfect conductor, then
the corresponding conductivity problem can be expressed as follows:

Au=0 in R\Q,
o,u=0 on 0Dy,
u=c on 0Ds,

o(@) = h(z) = Ola| 1) as [a] — o0,

where c is a constant to be determined by the additional condition

J 61,7,6’4_ = 0.
0Dy

The results in [39] are obtained using the spectral theory of NP operator
on two circles. It was possible since NP eigenvalues and eigenfunctions on
two circles can be computed explicitly. But it may not be possible to apply
the NP spectral theory to inclusions of general shape. However, NP spectral
theory may provide some insight to the problem.

The representation of the solution takes the following form if there
are two inclusions, namely, = Dy U Das:

u(@) = h(@) + Sop, [p1] () + Sop, [p2](x), e R™.
The continuity of the flux along 0D; takes the following form:

k;0u(Sopy [e1] + Saps[w2])|- — 0u(Sap, [¢1] + Sap,[w2]) |+ = (1 — kj)duh,

which can be written in short as

auh’(?D
0.56 A — K3 = !
(0.56) (= Kz [l = | 2pe .
where
C[al0
v ]

(Aj is defined by (0.52)). Here, I is the identity operator. The NP operator
Kiq on 082 = 0Dy U 0Ds is given by

cx {901} :[ Kip, [e1] 5:/56D2[<P2]|6D1]
o ¥2 aVSaD1 [‘101]|0D2 K;DQ [302]

for ¢ = (p1,2) € H-V2(0Q) = H~Y/2(0Dy) x H-Y2(0Dy).
If k‘l =0 and I{ZQ = 00, then

11-1 0
A=3 { 0 1]

by . The question is if the integral equation and spectral properties of
K3 can provide some insight why Vu is bounded and the second derivative
(and higher order derivatives) blows up.

We may be able to grasp the question better by comparing the insulator-
conductor case with the conductor-conductor case (k1 = k2 = o) where the
conductivity of both inclusions is co. In that case, A in is given by

111 0
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Since more and more eigenvalues of Kj, approach 1/2 as € (the distance
between inclusions) tends to 0 as proved in [26], [27], the solution ¢ to (0.56))
blows up and so does Vu as € tends to 0.

A special spectral feature of circular inclusions which enables us to solve
the integral equation is that ¢ = (¢1,p2) and ¢ = (11,19) are or-
thogonal to each other if and only of ¢; and v; are orthogonal to each other
for j =1,2.

8. Conclusion

We review recent development in spectral geometry and analysis of the
NP operator in various topics including plasmon resonance and the NP spec-
tral theory, CALR and analysis of surface localization of plasmon, negative
eigenvalues and spectrum on tori, spectrum on polygonal domains, spectral
structure of thin domains, and analysis of stress in terms of the NP spectral
theory. These topics are complementary to those in another survey paper
[22].

During the course of review we discuss some problems to be solved.
Among them are

e estimates for the surface localization of the plasmon on planar do-
mains with real analytic boundaries and applications to CALR,

e NP spectrum on tori and possible connection to CALR,

e geometric conditions which guarantee existence of singularly con-
tinuous spectrum, (An example with non-empty singularly contin-
uous spectrum would already be interesting.)

e the question on the appearance of more and more eigenvalues on
rectangles as their aspect ratios tend to oo,

e non-existence (or existence) of an NP eigenvalue on triangles,

e an optimal gradient estimate for the insulating problem,

e derivative estimates for the insulator-conductor problem: general
shape.

These problems are all quite interesting and may be quite challenging as
well.

The NP operator is also used effectively for solving inverse problems,
especially in detection of small inclusions, via the notion of generalized po-
larization tensors. For example, one can see from and that the
solution to the problem admits the dipole expansion

u(z) = h(z) — MVh(0) - V() + O(|z|~%), |z| — oo,

where M is a d x d matrix called the polarization matrix. It is a signature
of the inclusion 2 and can be used to reconstruct some information of €.
We refer to [9, 10, [41] for that application and some other applications of
the NP operator.

If the polarization tensor of an inclusion is zero, then u(z) = h(x) +
O(|z|=%) as |z| — o0, which means that the inclusion is invisible or vaguely
visible, and hence hard to be detected. A inclusion whose polarization tensor
is made to vanish is called a weakly neutral inclusion (or a polarization tensor
vanishing structure). A homogeneous simply connected domain cannot be
weakly neutral. But, weakly neutral inclusions may be attained by coating
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simply connected domains (see [44], [45], 46]). We refer to another survey
paper [40] for the study on weakly neutral inclusions (as well as neutral
inclusions) and related over-determined problem for confocal ellipsoids which
is a quite challenging mathematical problem.
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