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Abstract

The aim of this paper is to provide a fast and efficient procedure for (real-time) target
identification in imaging based on matching on a dictionary of precomputed generalized
polarization tensors (GPTs). The approach is based on some important properties of the
GPTs and new invariants. We give and numerically test in the presence of measurement
noise a new shape-representation. We numerically quantify the stability and resolution
of the proposed identification algorithm. We compare the proposed GPT-based shape
representation with a moment-based one.
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1 Introduction

With each domain and material parameter, an infinite number of tensors, called the Gener-
alized Polarization Tensors (GPTs), is associated. The concept of GPTs was introduced in
[8, 6]. The GPTs contain significant information on the shape of the domain [9]. It occurs
in several interesting contexts, in particular, in low-frequency scattering [17, 6], asymptotic
models of dilute composites (see [27] and [13]), in invisibility cloaking in the quasi-static
regime [10] and in potential theory related to certain questions arising in hydrodynamics
[28].

Another important use of this concept is for imaging diametrically small inclusions from
boundary measurements. In fact, the GPTs are the basic building blocks for the asymptotic
expansions of the boundary voltage perturbations due to the presence of small conductivity
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inclusions inside a conductor [19, 16, 8]. Based on this expansion, efficient algorithms to
determine the location and some geometric features of the inclusions were proposed. We
refer to [6, 7] and the references therein for recent developments of this theory.

In [11], a recursive optimal control scheme to recover fine shape details of a given domain
using GPTs is proposed. In [4], it is shown that high-frequency oscillations of the boundary
of a domain are only contained in its high-order GPTs. Moreover, by developing a level set
version of the recursive optimization scheme, it is also shown that the GPTs can capture the
topology of the domain. An efficient algorithm for computing the GPTs has been presented
in [15].

The aim of this paper is to show that the GPTs can be used for target identification from
imaging data. In fact, the GPTs can be accurately obtained from multistatic measurements
by solving a linear system. Based on this, we design a fast algorithm which identifies a
target using a dictionary of precomputed GPTs data. We first provide a stability analysis
for the reconstruction of the GPTs in the presence of measurement noise which quantifies
the ill-posedness of the imaging problem. Then, suppose that we have a dictionary which
is a collection of standard shapes (for example alphabetic letters or flowers). Our aim is to
identify from imaging data a shape which is obtained from one element of the dictionary after
some rotation, scaling and translation. We design a dictionary matching procedure which
operates directly in the GPTs data. Our procedure is based on some important properties
of the GPTs and new invariants. We test the robustness of our procedure with respect to a
measurement noise in the imaging data. Compared to other shape representations such as
moment-based shape representations [20, 21, 26, 31, 33], our approach is more natural since
it gives by inverting a linear system the GPTs. Moreover, there is an infinite number of
invariants associated with the GPTs. Furthermore, for a given dictionary, the GPT-based
representation may lead to better distinguishibility between the dictionary elements. We
give a comparison between GPT-based and moment-based approaches for the dictionary of
letters.

Over the last decades, a considerable amount of work has been devoted to nonlinear
optimization techniques for solving the imaging problem; see, for instance, [22, 29, 32] and
the references therein. More recently, new regularized optimal control formulations for
target imaging have been proposed in [1, 3]. As far as we know, our approach in this paper
provides for the first time an alternative approach to solving the full inverse problem for
target identification and characterization. It opens a way for real-time target identification
and tracking algorithms in wave imaging.

The paper is organized as follows. In section 2, we introduce a particular linear combi-
nation of the GPTs to obtain what we call the contracted GPTs (CGPTs) [10]. In Section
3, we investigate the reconstruction of contracted GPTs, defined in (2.14)–(2.17) below,
from the multistatic response matrix of a conductivity problem. We also consider the effect
of the presence of measurement noise in the MSR on the reconstruction of the CGPTs.
Given a signal-to-noise ratio, we determine the statistical stability in the reconstruction
of the CGPTs, and show that such inverse problem is exponentially unstable. This is the
well-known ill-posedness of the inverse conductivity problem. In section 4 it is shown that
the CGPTs have some nice properties, such as simple rotation and translation formulas,
simple relation with shape symmetry, etc. More importantly, we derive new invariants for
the CGPTs. One of the matching algorithms presented in section 5 is based on those invari-
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ants. Section 6 presents a variety of numerical results for the target identification problem
and shows the viability of the proposed procedure. A comparison between the performance
of CGPT-based and moment-based shape representations is given in the last section.

2 Structure of the Multistatic Response Matrix

The first part of this paper is to reconstruct CGPTs from the multistatic response (MSR)
matrix, which measures the change in potential field due to a conductivity inclusion. In this
section, we present the mathematical model for MSR and write it in terms of the CGPTs
associated to the conductivity inclusion.

We consider a two dimensional conductivity medium with uniform coefficient one, except
in an inclusion where the conductivity is κ > 1; we denote by λ the contrast of this inclusion,
that is, λ = (κ+1)/2(κ−1). Let D = z+δB = {x = z+δy | y ∈ B} model the conductivity
inclusion. Here, B is some C2 and bounded domain in R2 whose typical length scale is of
order one; z is a point in R2 and is taken here to be an estimation of the location of the
inclusion; δ is the typical length scale of the inclusion. We refer to [14, 6] for efficient
location search algorithms and to [2] for correcting the effect of measurement noise on the
localization procedure.

The MSR matrix is constructed as follows. Let {xr}
Nr

r=1 and {xs}
Ns

s=1 model a set of
electric potential detectors and electric sources. Without loss of generality, we assume the
two sets of locations coincide and Nr = Ns = N . The MSR matrix V is an N -by-N matrix
whose rs-element is the difference of electric potentials with and without the conductivity
inclusions:

Vrs = us(xr)− Γs(xr), r, s = 1, . . . , N. (2.1)

Here, Γs(x) = Γ(x − xs) and Γ(x) = 1
2π log |x| is the fundamental solution of the Laplace

equation in R2, and us(x) is the solution to the transmission problem





∇ · (1 + (κ− 1)χD)∇us(x) = δxs(x), x ∈ R2\∂D,

us(x)
∣∣
+

= us(x)
∣∣
−
, x ∈ ∂D,

νx · (∇us)
∣∣
+

= κνx · (∇us)
∣∣
−
, x ∈ ∂D,

us(x)− Γs(x) = O(|x|−1), |x− xs| → ∞.

(2.2)

In the second and third equations above, the notation φ
∣∣
±
(x) denotes the limit limt↓0 φ(x±

tνx), where x ∈ ∂D and νx is the outward unit normal of ∂D at x.

2.1 The asymptotic expansion of the perturbed potential field

As modeled above, the MSR matrix characterizes the perturbed potential field us(xr) −
Γs(xr). In this section we recall, from [6], the asymptotic expansion of this perturbation
and some key notions along the way.

Let SD be the single layer potential associated with D, that is,

SD[φ](x) :=

∫

∂D
Γ(x− y)φ(y)ds(y), x ∈ R2, (2.3)

3



and let KD : L2(∂D)→ L2(∂D) denote the Poincaré-Neumann operator

KD[φ](x) :=
1

2π

∫

∂D

〈y − x, νy〉

|x− y|2
φ(y)ds(y), x ∈ ∂D. (2.4)

Here, 〈, 〉 denotes the scalar product in R2 and νy is the unit normal vector along the
boundary at y. It is well known that the single layer potential SD[φ] is a harmonic function
satisfying SD[φ]

∣∣
−

= SD[φ]
∣∣
+

and the jump condition

∂

∂ν
SD[φ]

∣∣∣
±

=

(
±

1

2
I +K∗

D

)
[φ], (2.5)

where K∗
D is the adjoint operator of KD and it has a similar expression as (2.4) with the

numerator of the integrand replaced by 〈x−y, νx〉. Using (2.5), we verify that Γs(x)+SD[φs]
with φs ∈ L2(∂D) solving

(λI −K∗
D) [φs] =

∂Γs

∂ν

∣∣∣
∂D

, (2.6)

is a solution to the transmission problem (2.2). In fact, this solution is unique and we
conclude that

us(x)− Γs(x) = SD[φs] =

∫

∂D
Γ(x− y)(λI −K∗

D)−1

[
∂Γs

∂ν

∣∣∣
∂D

]
(y)ds(y). (2.7)

To verify the formal derivation above, we refer the reader to Section 2.4 of [6].
We assume that the inclusion D and the point z is away from the sources. As a result,

the functions Γ(xr − y) and Γs(y) are smooth for y ∈ D, and the perturbed field (2.7) is
well defined. For y ∈ ∂D and z away from x, the K-th order Taylor expansion formula with
remainder eK states:

Γ(x− y) = Γ(x− z − (y − z)) =
K∑

|α|=0

(−1)|α|

α!
∂αΓ(x− z)(y − z)α + eK . (2.8)

Throughout this section, we use Greek letters to denote double indices: α = (α1, α2) ∈ N2,
α! = α1!α2! and |α| = α1 +α2. Substitution of this expansion into (2.7) yields the following
expansion of Vrs plus an error term denoted by Ers:

K∑

|α|,|β|=1

(−1)|α|

α!β!
∂αΓ(xr − z)

{∫

∂D
(y − z)α(λI −K∗

D)−1

[
∂

∂ν
(· − z)β

]
(y)ds(y)

}
∂βΓ(z − xs).

The zeroth order term with β = 0 vanishes because the differentiation ∂/∂ν; the zeroth
order term corresponding to α = 0 vanishes because (λI −K∗

D)−1 maps a zero mean value
function on ∂D to another zero mean value function.

For a generic conductivity inclusion D with the contrast factor λ, the GPT of order αβ
associated with the inclusion is defined by

Mαβ(λ, D) :=

∫

∂D
yβ(λI −K∗

D)−1[
∂

∂ν
yα] ds(y). (2.9)
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Using the change of variable y − z 7→ ỹ, the integral term inside the expansion of Vrs

above can be written as
∫

∂(δB)
ỹα(λI −K∗

δB)−1[
∂

∂ν
ỹβ ] ds(ỹ). (2.10)

By the definition of GPT, this term is Mβα(λ, δB). As a result, we have

Vrs =

K∑

|α|,|β|=1

1

α!β!
∂αΓ(z − xs)Mαβ(λ, δB)∂βΓ(z − xr) + Ers. (2.11)

where Ers is the truncation error resulted from the finite expansion. Note also that we have
switched the indices α and β.

The MSR matrix V consisting of us(xr)− Γs(xr) depends only on the inclusion (λ, D).
However, the GPTs involved in the representation (2.11) depend on the (non-unique) char-
acterization (z, δB) of D. We note that the remainder eK and the truncation error Ers can
be evaluated; see Appendix A.1. Moreover, since the sensors and the receivers coincide, the
MSR matrix is symmetric; see (A.2).

2.2 Expansion for MSR using contracted GPT

In this section, we further simplify the expression of MSR using the notion of contracted
GPT (CGPT), which has been introduced in [10]. Using CGPT, we can write the MSR ma-
trix V as a product of a CGPT matrix with coefficient matrices, which is a very convenient
form for inversion.

Let Pm(x) be the complex valued polynomial

Pm(x) = (x1 + ix2)
m =

∑

|α|=m

am
α xα + i

∑

|β|=m

bm
β xβ. (2.12)

Using polar coordinate x = reiθ, the above coefficients am
α and bm

β can also be characterized
by ∑

|α|=m

am
α xα = rm cos mθ, and

∑

|α|=m

bm
α xβ = rm sin mθ. (2.13)

For a generic conductivity inclusion D with contrast λ, the associated GPT Mαβ(λ, D) is
defined as in (2.9). The associated CGPT is the following combination of GPTs using the
coefficients in (2.12):

M cc
mn =

∑

|α|=m

∑

|β|=n

am
α an

βMαβ , (2.14)

M cs
mn =

∑

|α|=m

∑

|β|=n

am
α bn

βMαβ , (2.15)

M sc
mn =

∑

|α|=m

∑

|β|=n

bm
α an

βMαβ , (2.16)

M ss
mn =

∑

|α|=m

∑

|β|=n

bm
α bn

βMαβ . (2.17)
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Using the complex coordinate x = rxeiθx , we have (see Appendix A.2) that

(−1)|α|

α!
∂αΓ(x) =

−1

2π|α|

[
a|α|α

cos |α|θx

r
|α|
x

+ b|α|α

sin |α|θx

r
|α|
x

]
. (2.18)

Recall that {xr}
N
r=1 and {xs}

N
s=1 denote the locations of the receivers and electric sources.

Define Rr and θr so that the complex representation of xr − z is Rre
iθr with z being the

location of the target. Similarly define Rs and θs. Substituting formula (2.18) into the
expression (2.11) of the MSR, we get

Vrs =
K∑

|α|=1,|β|=1

a
|α|
α cos |α|θs + b

|α|
α sin |α|θs

2π|α|R
|α|
s

Mαβ(λ, δB)
a
|β|
β cos |β|θr + b

|β|
β sin |β|θr

2π|β|R
|β|
r

+ Ers

=
K∑

m,n=1

(
cos mθs

2πmRm
s

sin mθs

2πmRm
s

)

︸ ︷︷ ︸
Asm

(
M cc

mn M cs
mn

M sc
mn M ss

mn

)

︸ ︷︷ ︸
Mmn

(
cos nθr

sinnθr

)
1

2πnRn
r︸ ︷︷ ︸

(Arn)t

+Ers.

(2.19)
Here, the short-hand notations Mmn and Asm represent the two-by-two and one-by-two
matrices respectively, and (Arn)t is the transpose. As m, n run from one to K, which is the
truncation order of CGPT, and r, s run from one to N , which is the number of receivers
(sources), these matrices build up the 2K × 2K CGPT block matrix M and the N × 2K
coefficient matrix A as follows:

M =




M11 M12 · · · M1K

M21 M22 · · · M2K

· · · · · ·
. . . · · ·

MK1 MK2 · · · MKK


 ;A =




A11 A12 · · · A1K

A21 A22 · · · A2K

· · · · · ·
. . . · · ·

AN1 AN2 · · · ANK


 . (2.20)

Using these notations, the MSR matrix V can be written as

V = AMAt + E, (2.21)

where At denotes the transpose of A and the matrix E = (Ers) represents the truncation
error. We precise again that the CGPT above is for the “translated” inclusion δB. We
note also that the dimension of V depends on the number of sources/receivers but does not
depend on the expanding order K in (2.11).

Due to the symmetry of harmonic combination of GPTs [7], the matrix M is symmetric.
Since V is symmetric as shown in (A.2), the truncation error E is also symmetric.

3 Reconstruction of CGPTs and Stability Analysis

The first step in the target identification procedure is to reconstruct CGPTs from the MSR
matrix V , which has expression (2.21). Define the linear operator L : R2K×2K → RN×N by

L(M) := AMAt. (3.1)
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We reconstruct CGPTs as the least squares solution of the above linear system, i.e.,

Mest = min
Mtest⊥ker(L)

‖V − L(Mtest)‖F , (3.2)

where ker(L) denotes the kernel of L and ‖ · ‖F denotes the Frobenius norm of matrices
[24]. In general we take N large enough so that 2K < N . When A has full rank 2K, L is
rank preserving and ker(L) is trivial; in that case, the admissible set above can be replaced
by R2K×2K .

From the structure of the matrix A and the expression of the MSR matrix in (2.20),
we observe that the contribution of a CGPT decays as its order grows. Consequently, one
does not expect the inverse procedure to be stable for higher order CGPTs. The remainder
of this section is devoted to such stability analysis.

3.1 Analytical formula in the concentric setting

To simplify the analysis, we assume that the receivers (sources) are evenly distributed along
a circle of radius R centered at z. That is, θr = 2πr/N , r = 1, 2, . . . , N , and Rr = R. In
this setting, we have A = CD, where C is an N × 2K matrix constructed from the block
Crm = (cos mθr sinmθr) and D is 2K × 2K diagonal matrix:

C =




C11 C12 · · · C1K

C21 C22 · · · C2K

· · · · · ·
. . . · · ·

CN1 CN2 · · · CNK


 ;D =

1

2π




I2/R
I2/(2R2)

. . .

I2/(KRK)


 .

Here I2 is the 2 × 2 identity matrix. We note that C and D account for the angular
and radial coefficients in the expansion of MSR, respectively. The matrix C satisfies the
following important property; see Appendix A.3.

Proposition 3.1. Suppose that 2K < N holds. Then

CtC =
N

2
I2K . (3.3)

Henceforth, we assume that the number of receivers is so large that 2K < N . In this
setting, the least squares problem (3.2) admits an analytical expression as follows.

Lemma 3.2. In the above concentric setting with sufficiently many receivers, i.e., 2K < N ,
the least squares estimation (3.2) is given by

Mest =
22

N2
D−1CtVCD−1. (3.4)

Proof. Firstly, (3.3) implies that A has full rank, so ker(L) = {0}. Let Lt : RN×N →
R2K×2K given by Lt(V) = AtVA be the adjoint operator of L. Then the space of N ×N
matrices admits the following decomposition:

RN×N = ran(L)⊕ ker(Lt). (3.5)
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Let V = V(1) +V(2) be the orthogonal decomposition of V. For a test matrix, the distance
‖V − L(Mtest)‖F can be written as ‖V(2)‖F + ‖V(1) − L(Mtest)‖F . Let us show that
L(Mest) = V(1), which implies that Mest is indeed the unique solution to the least squares
problem (3.2). Calculation shows

L(Mest) =
22

N2
CDD−1Ct(V(1) + V(2))CD−1DCt =

22

N2
CCtV(1)CCt.

Here, we used the fact that D commutes with D−1 and DCtV(2)CD = Lt(V(2)) = 0.

By the orthogonality relation (3.3), the columns of
√

2/NC form an orthonormal basis
for some subspace U ⊂ RN , and 2

N CCt is the orthogonal projection onto U . Since V(1) is
in the range of L, its columns are in U as seen from (3.1). Consequently, (2/N)CCtV(1) =
V(1). Similarly, columns of Vt

(1) are also in U , and (2/N)CCtVt
(1) = Vt

(1). Consequently,
we have

L(Mest) =
2

N

(
2

N
CCtV(1)

)
CCt =

(
2

N
CCtVt

(1)

)t

=
(
Vt

(1)

)t
= V(1).

This completes the proof of the lemma. �

3.2 Measurement noise and stability analysis

We develop in the rest of this section a stability analysis for the least squares reconstruction
of CGPT from the MSR matrix, in the setting of concentric receivers (sources).

Counting some additive measurement noise, we modify the expression of MSR to

V = CDMDCt + E + σnoiseW. (3.6)

Here, E is the truncation error due to the finite order K in expansion (2.11), W is an
N ×N real valued random matrix with independent and identically Gaussian entries with
mean zero and unit variance, and σnoise is a small positive number modeling the standard
deviation of the noise.

Recall that the unknown M consists of CGPTs of order up to K of the relative domain
δB = D − z, where δ denote the typical length scale of the domain D. The receivers and
sources are located along a circle of radius R centered at z. Let ε = δ/R be the ratio
between the two scales, and it is assumed to be smaller than one. Due to the scaling
property of CGPT (see (4.3)), the entries of the CGPT block Mmn(δB) is δm+nMmn(B).
Consequently, the size of V itself is of order ε2, which is the order of the first term in the
expansion (2.19). The truncation error E is of order εK+2; see Appendix A.1.

According to the above analysis, we assume that the size of the noise satisfies

NεK+2 � σnoise � ε2. (3.7)

This is the regime where the measurement noise is much smaller than the signal but much
larger than the truncation error. The presence of N in (3.7) will be clear later; see remark
3.4. We define the signal-to-noise ratio (SNR) to be

SNR =
ε2

σnoise
.
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We will investigate the error made by the least squares estimation of the CGPT matrix, in
particular the manner of its growth with respect to the order of the CGPTs. Given a SNR
and a tolerance number τ0, we can define the resolving order m0 to be

m0 = min

{
1 ≤ m ≤ K :

√
E‖Mest

mm −Mmm‖F
‖Mmm‖F

≤ τ0

}
. (3.8)

We are interested in the growth of m0 with respect to SNR.
We have used the notation Mmn, m, n = 1, . . . , K, to denote the building block of

the CGPT matrix M in (2.20). In the following, we also use the notation (M)jk, j, k =
1, . . . , 2K, to denote the real valued entry of the CGPT matrix.

Theorem 3.3. Assume that the condition of Lemma 3.2 holds; assume also that the additive
noise is in the regime (3.7), Then for j, k so that (M)jk is non-zero, the relative error in
its reconstructed CGPT satisfies

√
E|(Mest)jk − (M)jk|2

|(M)jk|2
≤ C

σnoise

N
ε−dj/2e−dk/2e

⌈
j

2

⌉⌈
k

2

⌉
. (3.9)

Here, the symbol dle is the smallest natural number larger than or equal to l. For vanishing
(M)jk, the error

√
E|(Mest)jk − (M)jk|2 can be bounded by the right-hand side above with

ε replaced by R−1. In particular, the resolving order m0 satisfies

(m0ε
1−m0)2 ' τ0SNR, (3.10)

where τ0 is the tolerance number.

Proof. From the analytical formula of the least squares reconstruction (3.4) and the
expression of V (3.6), we see that for each fixed j, k = 1, . . . , 2K,

(Mest −M)jk =
22σnoise

N2
(D−1CtWCD−1)jk +

22

N2
(D−1CtECD−1)jk.

Let us denote these two terms by Ijk1 and Ijk2 respectively. For the first term, define W̃

to be (
√

2/NC)tW(
√

2/NC), which is an N×N random matrix. Due to the orthogonality

(3.3), W̃ remains to have mean zero Gaussian entries with unit variance. Because D is
diagonal, we have for each j, k = 1, . . . 2K,

E(Ijk1)
2 =

22σ2
noise

N2
(Djj)

−2E|W̃jk|
2(Dkk)

−2 =
26π4σ2

noise

N2
R2(dj/2e+dk/2e)

⌈
j

2

⌉2 ⌈k

2

⌉2

.

Note that dj/2edk/2e is the order of CGPT element (M)jk; see (2.20). It is known that
(M)jk(δB) = δdj/2e+dk/2e(M)jk(B). When this term is non-zero, it is of order δdj/2e+dk/2e.
This fact and the above control of Ijk1 show that

√
E|Ijk1|2/|(M)jk|2 satisfies the estimate

in (3.9).
For the second term, since E is symmetric, it has the decomposition E = PtEP, where P

is an N×N orthonormal matrix, and E is an N×N diagonal matrix consisting of eigenvalues
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of E. Then (
√

2/NC)tE(
√

2/NC) can be written as QtEQ where Q =
√

2/NPC is an
N × 2K matrix satisfying QtQ = I2K . Then the calculation for Ijk1 shows that

(Ijk2)
2 =

26π4

N2
R2(dj/2e+dk/2e)

⌈
j

2

⌉2 ⌈k

2

⌉2
(

N∑

l=1

EllQ
t
jlQlk

)2

.

Since E is of order εK+2 as shown in (A.1), the sum is of order NεK+2. Therefore, we have

√
E|Ijk2|2 ≤ CεK+2−dj/2e−dk/2ed

j

2
ed

k

2
e.

Since we assumed that (3.7) holds, this error is dominated by that due to the noise. Hence,
(3.9) is proved.

For diagonal blocks Mmm, their Frobenius norms do not vanish and (3.8) is well defined.
In particular, (3.9) applied to the case j, k = 2m−1, 2m, shows that the relative error made
in the block Mmm is of order σnoisem

2ε−2m. Using the definition of SNR, we verify (3.10).
�

Remark 3.4. If E has only several (of order one) non-zero eigenvalues, then the preceding
calculation shows that (Ijk2)

2 ≤ Cε2(K+2) and condition (3.7) can be replaced with εK+2 �
σnoise � ε2.

4 Complex CGPTs under Rigid Motions and Scaling

As we will see later, a complex combination of CGPTs is most convenient when we consider
the transforms of CGPTs under dilation and rigid motions, i.e., translation and rotation.
Therefore, for a double index mn, with m, n = 1, 2, . . ., we introduce the following complex
combination of CGPTs:

N(1)
mn(λ, D) = (M cc

mn −M ss
mn) + i(M cs

mn + M sc
mn),

N(2)
mn(λ, D) = (M cc

mn + M ss
mn) + i(M cs

mn −M sc
mn).

(4.1)

Then, from (2.9), we observe that

N(1)
mn(λ, D) =

∫

∂D
Pn(y)(λI −K∗

D)−1[〈ν,∇Pm〉](y) ds(y),

N(2)
mn(λ, D) =

∫

∂D
Pn(y)(λI −K∗

D)−1[〈ν,∇Pm〉](y) ds(y),

where Pn and Pm are defined by (2.12). In order to simplify the notation, we drop λ in the

following and write simply N
(1)
mn(D),N

(2)
mn(D).

We consider the translation, the rotation and the dilation of the domain D by introducing
the following notation:

• Translation: TzD = {x + z, for x ∈ D}, for z ∈ R2;

• Rotation: RθD = {eiθx, for x ∈ D}, for θ ∈ [0, 2π);

10



• Scaling: sD = {sx, for x ∈ D}, for s > 0.

Proposition 4.1. For all integers m, n, and geometric parameters θ, s, and z, the following
holds:

N(1)
mn(RθD) = ei(m+n)θN(1)

mn(D), N(2)
mn(RθD) = ei(n−m)θN(2)

mn(D), (4.2)

N(1)
mn(sD) = sm+nN(1)

mn(D), N(2)
mn(sD) = sm+nN(2)

mn(D), (4.3)

N(1)
mn(TzD) =

m∑

l=1

n∑

k=1

Cz
mlN

(1)
lk (D)Cz

nk, N(2)
mn(TzD) =

m∑

l=1

n∑

k=1

Cz
mlN

(2)
lk (D)Cz

nk, (4.4)

where Cz is a lower triangle matrix with the m, n-th entry given by

Cz
mn =

(
m

n

)
zm−n, (4.5)

and Cz denotes its conjugate. Here, we identity z = (z1, z2) with z = z1 + iz2.

An ingredient that we will need in the proof is the following chain rule between the
gradient of a function and its push forward under transformation. In fact, for any dif-
feomorphism T from R2 to R2 and a scalar valued differentiable map f on R2, we have

d(f ◦ T )
∣∣
x
(h) =

(
df
∣∣
T (x)
◦ dT

∣∣
x

)
(h), (4.6)

for any tangent vector h ∈ R2, with dT being the differential of T .
Proof of Proposition 4.1. We will follow proofs of similar relations that can be found
in [4]. Let us first show (4.2) first for the rotated domain Dθ := RθD. For a function
ϕ(y), y ∈ ∂D, we define a function ϕθ(yθ), yθ := Rθy ∈ ∂Dθ by

ϕθ(yθ) = ϕ ◦R−θ(yθ) = ϕ(y).

It is proved in [4] that λI −K∗
D is invariant under the rotation map, that is,

(λI −K∗
Dθ

)[ϕθ](yθ) = (λI −K∗
D)[ϕ](y). (4.7)

We also check that Pm(Rθy) = eimθPm(y).

We will focus on the relation for N
(1)
mn, the other one can be proved in the same way.

By definition, we have

N(1)
mn(λ, D) =

∫

∂D
Pn(y)ϕD,m(y)ds(y),

N(1)
mn(λ, Dθ) =

∫

∂Dθ

Pn(yθ)ϕDθ,m(yθ)ds(yθ),
(4.8)

where
ϕD,m(y) = (λI −K∗

D)−1[〈ν,∇Pm〉](y),

ϕDθ,m(yθ) = (λI −K∗
Dθ

)−1[〈ν,∇Pm〉](yθ).

11



Note that the last function differs from ϕθ
D,m. By the change of variables yθ = Rθy in the

first expression of (4.8), we obtain

N(1)
mn(λ, D) =

∫

∂Dθ

Pn(R−θyθ)ϕD,m(R−θyθ)ds(yθ)

= e−inθ

∫

∂Dθ

Pn(yθ)ϕ
θ
D,m(yθ)ds(yθ).

From (4.7), we have

(λI −K∗
Dθ

)[ϕθ
D,m](yθ) = (λI −K∗

D)[ϕD,m](y)

= 〈νy,∇Pm(y)〉.

Moreover, Pm(y) = e−imθPm(yθ) so that, by applying the chain rule (4.6) with f = Pm,
T = Rθ, x = y and h = νy, we can conclude that

〈νy,∇Pm(y)〉 = e−imθ〈Rθνy,∇Pm(yθ)〉

= e−imθ〈νyθ
,∇Pm(yθ)〉.

Therefore, ϕθ
D,m = e−imθϕDθ,m, and we conclude that N

(1)
mn(λ, Dθ) = ei(m+n)θN

(1)
mn(λ, D).

The second identity in (4.2) results from the same computation as above (the minus
sign comes form the conjugate in the definition of N(2)), and the two equations in (4.3) are
proved in the same way, replacing the transformed function ϕθ by

ϕs(sy) = ϕ(y).

Thus, only (4.4) remains. Since the difference between these two comes from the conju-
gation, we will focus only on the first identity in (4.4). The strategy will be once again the
following: for a function ϕ(y), y ∈ ∂D, we define a function ϕz(yz), yz = y + z ∈ ∂Dz, with
Dz := TzD, by

ϕz(yz) = ϕ ◦ T−z(yz) = ϕ(y),

which also verifies an invariance relation similar to (4.7)

(λI −K∗
Dz

)[ϕz](yz) = (λI −K∗
D)[ϕ](y). (4.9)

Moreover, for every integer q ∈ N one has the following

Pq(yz) = (y + z)q =

q∑

r=0

(
q

r

)
yrzq−r. (4.10)

Equations (4.8) become

N(1)
mn(λ, D) =

∫

∂D
Pn(y)ϕD,m(y)ds(y),

N(1)
mn(λ, Dz) =

∫

∂Dz

Pn(yz)ϕDz ,m(yz)ds(yz),

12



where
ϕD,m(y) = (λI −K∗

D)−1[〈ν,∇Pm〉](y),

ϕDz ,m(yz) = (λI −K∗
Dz

)−1[〈ν,∇Pm〉](yz).

Thus, combining (4.9) and (4.10) leads us to

(λI −K∗
Dz

)[ϕDz ,m](yz) = 〈νyz ,∇Pm(yz)〉

= 〈νy,
m∑

l=1

(
m

l

)
zm−l∇Pl(y)〉

=
m∑

l=1

(
m

l

)
zm−l(λI −K∗

D)[ϕD,l](y)

=

m∑

l=1

(
m

l

)
zm−l(λI −K∗

Dz
)[ϕz

D,l](yz),

so that we have

ϕDz ,m(y) =
m∑

l=1

(
m

l

)
zm−lϕz

D,l(yz).

Hence, returning to the definition of N
(1)
mn(λ, Dz) with the substitution yz ↔ y, we obtain

N(1)
mn(λ, Dz) =

m∑

l=1

(
m

l

)
zm−l

∫

∂Dz

Pn(yz)ϕ
z
D,l(yz)ds(yz),

=
m∑

l=1

n∑

k=1

(
m

l

)(
n

k

)
zm−lzn−kN

(1)
lk (λ, D),

which is the desired result. Note that the index k begins with k = 1 because
∫
∂Dz

ϕz
D,l = 0.

This completes the proof. �

4.1 Some properties of complex CGPTs

We define the complex CGPT matrices by N(1) := (N
(1)
mn)m,n and N(2) := (N

(2)
mn)m,n. We

set w = seiθ and introduce the diagonal matrix Gw with the m-th diagonal entry given by
smeimθ. Proposition 4.1 implies immediately that

N(1)(TzsRθD) = CzGwN(1)(D)Gw(Cz)t, (4.11)

N(2)(TzsRθD) = CzGwN(2)(D)Gw(Cz)t, (4.12)

where Cz is defined by (4.5). Relations (4.11) and (4.12) still hold for the truncated CGPTs
of finite order, due to the triangular shape of the matrix Cz. Using the symmetry of the
CGPTs ([7, Theorem 4.11]) and the positivity of the GPTs as proved in [7], we easily
establish the following result.

Proposition 4.2. The complex CGPT matrix N(1) is symmetric: (N(1))t = N(1), and N(2)

is Hermitian: (N(2))H = N(2). Consequently, the diagonal elements of N(2) are strictly
positive if λ > 0 and strictly negative if λ < 0.
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Furthermore, the CGPTs of rotation invariant shapes have special structures:

Proposition 4.3. Suppose that D is invariant under rotation of angle 2π/p for some integer
p ≥ 2, i.e., R2π/pD = D, then

N(1)
mn(D) = 0, if p - (m + n), (4.13)

N(2)
mn(D) = 0, if p - (m− n). (4.14)

Proof. Suppose that p - (m + n), and define r := 2π(n + m)/p mod 2π. Then by the
rotation symmetry of D and the symmetry property of the CGPTs, we have

N(1)
mn(D) = N(1)

mn(R2π/pD) = ei(m+n)2π/pN(1)
mn(D) = eirN(1)

mn(D).

Since r < 2π and r 6= 0, we conclude that N
(1)
mn(D) = 0. The proof of (4.14) is similar. �

5 Shape Identification by the CGPTs

We call a dictionary D to be a collection of standard shapes, which are centered at the
origin and with characteristic sizes of order 1. Given the CGPTs of an unknown shape D,
and assuming that D is obtained from a certain element B ∈ D by applying some unknown
rotation θ, scaling s and translation z, i.e., D = TzsRθB, our objective is to recognize
B from D. For doing so, one may proceed by first reconstructing the shape D using its
CGPTs through some optimization procedures as proposed in [11], and then match the
reconstructed shape with D. However, such a method may be time-consuming and the
recognition efficiency depends on the shape reconstruction algorithm.

We propose in subsections 5.1 and 5.2 two shape identification algorithms using the
CGPTs. The first one matches the CGPTs of data with that of the dictionary element by
estimating the transform parameters, while the second one is based on a transform invariant
shape descriptor obtained from the CGPTs. The second approach is computationally more
efficient. Both of them operate directly in the data domain which consists of CGPTs and
avoid the need for reconstructing the shape D. The heart of our approach is some basic
algebraic equations between the CGPTs of D and B that can be deduced easily from (4.11)
and (4.12). Particularly, the first four equations read:

N
(1)
11 (D) = w2N

(1)
11 (B), (5.1)

N
(1)
12 (D) = 2N

(1)
11 (D)z + w3N

(1)
12 (B), (5.2)

N
(2)
11 (D) = s2N

(2)
11 (B), (5.3)

N
(2)
12 (D) = 2N

(2)
11 (D)z + s2wN

(2)
12 (B), (5.4)

where w = seiθ.
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5.1 CGPTs matching

5.1.1 Determination of transform parameters

Suppose that the complex CGPT matrices N(1)(B),N(2)(B) of the true shape B are given.
Then, from (5.3), we obtain that

s =

√
N

(2)
11 (D)/N

(2)
11 (B). (5.5)

Case 1: Rotational symmetric shape. If the shape B has rotational symmetry, i.e.,

R2π/pB = B for some p ≥ 2, then from Proposition 4.3 we have N
(2)
12 (B) = 0 and the

translation parameter z is uniquely determined from (5.4) by

z =
N

(2)
12 (D)

2N
(2)
11 (D)

. (5.6)

On the contrary, the rotation parameter θ (or eiθ) can only be determined up to a multiple
of 2π/p, from CGPTs of order dp/2e at least, where de denotes the integer part. Although
explicit expressions of eipθ can be deduced from (5.1) - (5.4) (or higher order equations if
necessary), we propose to recover eipθ by solving the least squares problem:

min
θ

(∥∥∥N(1)(TzsRθB)−N(1)(D)
∥∥∥

2

F
+
∥∥∥N(2)(TzsRθB)−N(2)(D)

∥∥∥
2

F

)
. (5.7)

Here, s and z are given by (5.5) and (5.6) respectively, and N(1)(D) and N(2)(D) are the
truncated complex CGPTs matrices of dimension dp/2e × dp/2e.

Case 2: Non rotational symmetric shape. Consider a non rotational symmetric shape
B which satisfies the assumption:

N
(1)
11 (B) 6= 0 and det

(
N

(1)
11 (B) N

(2)
11 (B)

N
(1)
12 (B) N

(2)
12 (B)

)
6= 0. (5.8)

From (5.2) and (5.4), it follows that we can uniquely determine the translation and the
rotation parameters from CGPTs of orders one and two by solving the following linear
system:

N
(1)
12 (D)/N

(1)
11 (D) = 2z + wN

(1)
12 (B)/N

(1)
11 (B),

N
(2)
12 (D)/N

(2)
11 (D) = 2z + wN

(2)
12 (B)/N

(2)
11 (B). (5.9)

5.1.2 Debiasing by least squares solutions

In practice (for both the rotational symmetric and non rotational symmetric cases), the
value of the parameters z, s and θ provided by the analytical formulas and numerical proce-
dures above may be inexact, due to the noise in the data and the ill-conditioned character
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of the linear system (5.9). Let z∗, s∗, θ∗ be the true transform parameters, which can be
considered as small perturbations around the inexact estimations z, s, θ:

z∗ = z + δz, s∗ = sδs, and θ∗ = θ + δθ, (5.10)

for δz, δθ small and δs close to 1. To find these perturbations, we solve a nonlinear least
squares problem:

min
z′,s′,θ′

(∥∥∥N(1)(Tz′s
′Rθ′B)−N(1)(D̃)

∥∥∥
2

F
+
∥∥∥N(2)(Tz′s

′Rθ′B)−N(2)(D̃)
∥∥∥

2

F

)
. (5.11)

Here, D̃ := R−θs
−1T−zD, the inverse transformed data using z, s and θ, and the order of

the CGPTs in (5.11) is taken to be 2 in the non rotational case and max(2, [p/2]) in the
rotational symmetric case. Thanks to the relations (4.11) and (4.12), one can calculate
explicitly the derivatives of the objective function, therefore can solve (5.11) by means of
standard gradient-based optimization methods (with z′ = 0, s′ = 1, θ′ = 0 as initializations).
Let (z′, s′, θ′) be a solution to (5.11), finally we set:

δz = sRθz
′, δs = s′, and δθ = θ′, (5.12)

and plug back in (5.10) to get the final estimations.

5.1.3 First algorithm for shape identification

For each dictionary element, we determine the transform parameters as above, then measure
the similarity of the complex CGPT matrices using the Frobenius norm, and choose the
most similar element as the identified shape. Intuitively, the true dictionary element will
give the correct transform parameters hence the most similar CGPTs. This procedure is
described in Algorithm 1.

Algorithm 1 Shape identification based on CGPT matching

Input: the first k-th order CGPTs N(1)(D),N(2)(D) of an unknown shape D
for Bn ∈ D do

1. Estimation of z, s, θ using the procedures described in subsections 5.1.1 and 5.1.2;
2. D̃ ← R−θs

−1T−zD, and calculate N(1)(D̃) and N(2)(D̃);
3. E(1) ← N(1)(Bn)−N(1)(D̃), and E(2) ← N(2)(Bn)−N(2)(D̃);

4. en ← (
∥∥E(1)

∥∥2

F
+
∥∥E(2)

∥∥2

F
)1/2/(

∥∥N(1)(Bn)
∥∥2

F
+
∥∥N(2)(Bn)

∥∥2

F
)1/2;

5. n← n + 1;
end for

Output: the true dictionary element n∗ ← argminnen.

5.2 Transform invariant shape descriptors

From (5.3) and (5.4) we deduce the following identity:

N
(2)
12 (D)

2N
(2)
11 (D)

= z + seiθ N
(2)
12 (B)

2N
(2)
11 (B)

, (5.13)
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which is well defined since N
(2)
11 6= 0 thanks to the Proposition 4.2. Identity (5.13) shows a

very simple relationship between
N

(2)
12 (B)

2N
(2)
11 (B)

and
N

(2)
12 (D)

2N
(2)
11 (D)

for D = TzsRθB. .

Let u =
N

(2)
12 (D)

2N
(2)
11 (D)

. We first define the following quantities which are translation invariant:

J (1)(D) = N(1)(T−uD) = C−uN(1)(D)(C−u)t, (5.14)

J (2)(D) = N(2)(T−uD) = C−uN(2)(D)(C−u)t, (5.15)

with the matrix C−u being the same as in Proposition 4.1. From J (1)(D) = (J
(1)
mm(D))m,n

and J (2)(D) = (J
(2)
mm(D))m,n, we define, for any indices m, n, the scaling invariant quanti-

ties:

S(1)
mn(D) =

J
(1)
mn(D)

(
J

(2)
mm(D)J

(2)
nn (D)

)1/2
, S(2)

mn(D) =
J

(2)
mn(D)

(
J

(2)
mm(D)J

(2)
nn (D)

)1/2
. (5.16)

Finally, we introduce the CGPT-based shape descriptors I(1) = (I
(1)
mn)m,n and I(2) =

(I
(2)
mn)m,n:

I(1)
mn(D) = |S(1)

mn(D)|, I(2)
mn(D) = |S(2)

mn(D)|, (5.17)

where | · | denotes the absolute value of a complex number. Constructed in this way, I(1)

and I(2) are clearly invariant under translation, rotation, and scaling.

It is worth emphasizing the symmetry property, I
(1)
mn = I

(1)
nm, I

(2)
mn = I

(2)
nm, and the fact

that I
(2)
mm = 1 for any m.

5.2.1 Second algorithm for shape identification

Thanks to the transform invariance of the new shape descriptors, there is no need now for
calculating the transform parameters, and the similarity between a dictionary element and
the unknown shape can be directly measured from I(1) and I(2). As in Algorithm 1, we
use the Frobenius norm as the distance between two shape descriptors and compare with
all the elements of the dictionary. We propose a simplified method for shape identification,
as described in Algorithm 2.

Algorithm 2 Shape identification based on transform invariant descriptors

Input: the first k-th order shape descriptors I(1)(D), I(2)(D) of an unknown shape D
for Bn ∈ D do

1. en ←
(∥∥I(1)(Bn)− I(1)(D)

∥∥2

F
+
∥∥I(2)(Bn)− I(2)(D)

∥∥2

F

)1/2
;

2. n← n + 1;
end for

Output: the true dictionary element n∗ ← argminnen.
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6 Numerical Experiments

In this section we present a variety of numerical results on the theoretical framework dis-
cussed in this paper in the context of target identification from MSR noisy measurements.
Given a shape D0 of characteristic size δ, the procedure of our numerical experiment can
be summarized as follows:

1. Data simulation. N sources (and also receivers) are equally distributed on a circle of
radius R, which is centered at an arbitrary point z0 ∈ D0 and includes D0, see Figure
1. The MSR matrix is obtained by evaluating numerically its integral expression (2.7)
then adding a white noise of variance σ2

noise. For simplicity, here we suppose that the
reference point z0 ∈ D0 can be estimated by means of algorithms such as MUSIC
[2, 7].

2. Reconstruction of the CGPTs of D = D0− z0 using formula (3.4) or the least squares
algorithm (3.2).

3. For a given dictionary D, apply Algorithm 1 (or Algorithm 2) using the CGPTs of D
and identify the true shape from D.

We emphasize that the reconstructed CGPTs of shape D depend on the reference point z0.
We fix the conductivity parameter κ = 4/3 throughout this section.

−1.5 −1 −0.5 0 0.5 1 1.5 2

−1.5

−1

−0.5

0

0.5

1

1.5

Figure 1: An example of the configuration for MSR data simulation. The unknown shape
is an ellipse whose long and short axes are 2 and 1, respectively. N = 51 sources/receivers
(marked by “x”) are equally placed on a circle of radius R = 2 centered at z0 = [0, 0]
(marked by “*”).

6.1 Reconstruction of CGPTs

The theoretical analysis presented in section 3 suggests the following two step method for
the reconstruction of CGPTs. First we apply (3.4) (or equivalently solve the least squares
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problem (3.2)) by fixing the truncation order K as in (3.7):

K ≤ min

(
log(σnoise/N)

log ε
− 2, N/2

)
. (6.1)

Here, σnoise is the standard deviation of the measurement noise and ε = δ/R with δ being
the characteristic size of the target and R the distance between the target center and the
circular array of transmitters/receivers. Then, we keep only the first m0 orders in the
reconstructed CGPTs, with m0 being the resolving order deduced from estimation (3.10):

m0 =
log σnoise − log τ0

2 log ε
, (6.2)

and τ0 ≤ 1 is the tolerance number introduced in (3.8). In all our numerical experiments
we set the noise level σnoise to:

σnoise = (Vmax −Vmin)σ0, (6.3)

with a positive constant σ0 and Vmax and Vmin being the maximal and the minimal co-
efficient in the MSR matrix V. Using the configuration given in Figure 1 and for various
noise level, we reconstruct the CGPTs of the ellipse up to a truncation order K which is de-
termined as in (6.1). For each k ≤ K, the relative error of the first k-th order reconstructed
CGPTs is evaluated by comparing with their theoretical value ([7, Proposition 4.7]). The
results are shown in Figure 2. In Figure 3 we plot the resolving order m0 given by (6.2)
and the relative error of the reconstruction within this order, for σ0 in the range [10−3, 1].

6.2 Dictionary matching

We are now ready to present the results of the dictionary matching algorithms discussed in
the sections 5.1 and 5.2. Unless specified, in the following we suppose that the unknown
shape D0 is an exact copy of some element from the dictionary, up to a rigid transform and
dilation.

6.2.1 Matching on a dictionary of flowers

We start by considering a simple dictionary of rotation invariant “flowers”, on which the
shape identification algorithm can be greatly simplified. The boundary of the p-th flower
Bp is defined as a small perturbation of the standard disk:

∂Bp(ξ) = x(ξ)(1 + η cos(pξ)), x(ξ) =

(
cos ξ
sin ξ

)
, (6.4)

where p ≥ 2 is the number of petals and η > 0 is a small constant. According to Proposition

4.3, N
(1)
mn(Bp) is zero if p - m + n. For an unknown shape D = TzsRθBp, the translation

parameter is given by z =
N

(2)
12 (D)

2N
(2)
11 (D)

. Moreover, simple calculations show that I(1)(D) and

N(1)(Bp) have exactly the same zero patterns.
Therefore, we can find the true number of petals by searching the first nonzero anti-

diagonal entry in I(1)(D).

19



0 2 4 6 8 10 12 14 16 18
10

−5

10
−4

10
−3

10
−2

10
−1

10
0

Order of CGPT

R
el

at
iv

e 
er

ro
r

(a) σ0 = 0.01, m0 = 6
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(b) σ0 = 0.1, m0 = 4
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(c) σ0 = 0.5, m0 = 3
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(d) σ0 = 1.0, m0 = 2

Figure 2: Relative error of the reconstructed CGPTs. For each noise level, we repeat the
experiment 100 times (corresponding to 100 realizations of the noise) and the reconstruction
is taken as their mean value. The horizontal solid line in each figure indicates the resolving
order m0 given by (6.2) with the tolerance number τ0 = 10−1.
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Figure 3: The resolving order m0, for σ0 ∈ [10−3, 1], τ0 = 10−1, and the relative error of the
reconstruction within this order. As in Figure 2, we repeat the experiment 100 times and
the reconstruction is taken as their mean value. The large variations of the relative error
in (b) for σ0 > 10−1 indicate the instability of the reconstruction for very noisy data.

We fix η = 0.3 (the amplitude of the perturbation introduced in (6.4)) and δ/R =
0.5. The unknown shape D0 is obtained by applying the transform parameters z =
[16.3,−46.7], s = 7.5, θ = 2.69 on Bp, and the reference point for data acquisition is
z0 = [15,−45.5]. The results for two flowers of 5 and 7 petals are shown in Figure 4, where
we plot the mean absolute value of the anti-diagonal entries mn, for m+n = l, l = 2, . . . , 11,
in I(1)(D) by varying the noise level σ0. One can clearly distinguish the peak which indicates
the true number of petals for σ0 up to 10−2.

Stability. Let us consider now the model (6.4) with a general C1 function h(ξ) in place
of cos(pξ). It was proven in [4] that:

N(1)
mn(λ, Bp) = 2πη

mn

λ2
ĥm+n + O(η2). (6.5)

Therefore as long as the perturbation h(ξ) is close to cos(pξ), the significant nonzero coeffi-
cients in I(1)(D) will concentrate on the same anti-diagonals. We confirm this observation
by applying the same procedure above on a flower with one damaged petal:

∂Bp(ξ) =





x(ξ)f(ξ, t) for ξ ∈ [0, 2π/p),

x(ξ)(1 + η cos(pξ)) for ξ ∈ [2π/p, 2π).
(6.6)

Here, f(·, t) : R 7→ R is a polynomial of order 6, constructed such that ∂Bp is C2-smooth,
and t ∈ (0, 1) is the percentage of the damage; see Figure 5. In Figure 6 we plot the mean
value of the anti-diagonal entries at different noise levels. Compared to Figure 4, we see
that the effect of the damage in the petal dominates the measurement noise. Nonetheless,
the peak indicating the true number of petals is still visible.
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(b) p = 7

Figure 4: Mean values of the anti-diagonal entries of I(1) for the flowers of 5 and 7 petals
at different noise levels.
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Figure 5: Flowers with one damaged petal. The following parameters are used in (6.6):
p = 7, η = 0.3, t = 0.5 for (a) and t = 0.8 for (b).
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Figure 6: Mean value of the anti-diagonal entries of I(1) for the flowers of Figure 5 at
different noise levels. The peaks indicate the number of petals.

6.2.2 Dictionary of letters

Next we consider here a dictionary consisting of 26 English capital letters without rotational
symmetry. The shapes are defined in such a way that the holes inside the letters are filled,
see Figure 12. We set δ/R = 0.5, s = 2.4762, θ = 6.0827, z = [33.3505, 73.8395] and the
center of mass of the target at [33.4042, 73.8627].

Performance of Algorithm 1. First we test Algorithm 1 on the letter “P”. For the
noiseless case (σ0 = 0), the values of en defined in Algorithm 1 are plotted in Figure 7
(a) and (b). These results suggest that the high order CGPTs can better distinguish
similar shapes such as “P” and “R”, since they contain more high frequency information
[4]. Nonetheless, the advantage of using high order CGPTs drops quickly when the data are
contaminated by noise, and low order CGPTs provide more stable results in this situation,
see Figure 7 (c) and (d).

By repeating the same procedure as above, we apply Algorithm 1 on all letters at noise
levels σ0 = 0 and σ0 = 0.1, and show the result in Figure 8 (a) and (c). At the coordinate
(m, n), the unknown shape is the m-th letter and the color represents the relative error
(in logarithmic scale) of the CGPTs when compared with the n-th standard letter of the
dictionary.

Stability. In real world applications we would like to have Algorithm 1 work also on
letters which are not exact copies of the dictionary, such as handwriting letters. Figure 13
shows the letters obtained by perturbing and smoothing the dictionary elements. With
these letters as unknown shapes, we repeat the experiment of Figure 8 (a) and (c) by
applying Algorithm 1 on the standard dictionary and show the results in Figure 8 (b) and
(d). Comparing with the results of Figure 8 (a) and (c), we see that Algorithm 1 remains
quite stable, despite of some slight degradations.
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5 10 15 20 25
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Letter

R
el

at
iv

e 
er

ro
r 

of
 C

G
P

T

(b) σ0 = 0, order ≤ 5
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(c) σ0 = 0.1, order ≤ 2
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(d) σ0 = 0.1, order ≤ 5

Figure 7: The identification of the letter “P” using the first 2, and 5 orders CGPTs at noise
levels σ0 = 0 and σ0 = 0.1. The bar represents the relative error en between the CGPTs
of the n-th letter and that of the data, as defined in Algorithm 1, and the shortest one in
each figure corresponds to the identified letter. For (c) and (d), the experiment has been
repeated for 100 times, using independent draws of white noise, and the results are the
mean values of all experiments.
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Figure 8: Algorithm 1 applied on the all 26 letters using the standard dictionary (Figure 12)
at noise level σ0 = 0 (first column) and σ0 = 0.1 (second column), with the color indicating
the relative error en in logarithmic scale. The unknown shapes in the first row are exact
copies of the standard dictionary, and in the second row are those of Figure 13. In (a)
all letters are correctly identified, while in (b) letters ’E’ is identified as ’H’. For the noisy
case, the experiment has been repeated 100 times, using independent draws of white noise,
and the results in (c) and (d) are the mean values of all experiments, where only the first
order CGPT is taken into account. 22 and 21 letters are correctly identified in (c) and (d),
respectively.
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Performance of Algorithm 2. In the case of noiseless data, Algorithm 2 provides correct
results with low computational cost. Here we repeat the experiment in Figure 7 (a) and (c)
using Algorithm 2, and plot the error en defined in Algorithm 2 in Figure 9. Nonetheless,
when data are noisy, Algorithm 1 performs significantly better than Algorithm 2, as shown
by Figure 10 where we compare the two algorithms for identifying letter “P” at various
noise levels. Thanks to the debiasing step (5.11), Algorithm 1 is much more robust with
respect to noise than Algorithm 2, in which there is no debiasing and the invariance of the
shape descriptors I(1) and I(2) may be severely affected by noise.
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Figure 9: Algorithm 2 applied on the all 26 letters using the standard dictionary (Figure 12)
at noise level σ0 = 0. The unknown shapes in (a) are exact copies of the standard dictionary,
while in (b) are those of Figure 13. The color indicates the error en in logarithmic scale.
All letters are correctly identified in both (a) and (b).

7 Comparison Between GPT- and Moment-based Represen-

tations.

In this section we compare between GPT- and moment-based representations for the dic-
tionary of letters.

Recall that the central moment of order m, n of a shape D is defined as:

µmn =

∫

D
(x− x̄)m(y − ȳ)ndxdy, (7.1)

with (x̄, ȳ) being the center of mass of D. Based on the polynomial combinations of µmn,
seven shape descriptors which are invariant under translation, scaling and rotation have
been introduced in [23], and successfully applied to recognition problems [18]. In [23] and
[25], it has been pointed out that two of these descriptors:

X1 =
√

µ2,0 + µ0,2 and X2 =
√

(µ3,0 − 3µ1,2)2 + (3µ2,1 − µ0,3)2 (7.2)
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Figure 10: Comparison of Algorithm 2 and Algorithm 1 on identification of the standard
letter “P”. At each noise level, the experiment has been repeated 1000 times, using inde-
pendent draws of white noise. For each algorithm, the curve represents the percentage of
experiments where the letter “P” is correctly identified.

contain sufficient information to separate the 26 capital letters. Figure 11 (a) represents
visually all letters in the feature space of (7.2).

Compared with the moment based ones, the descriptors I(1), I(2) in (5.17) are natural
choices in the framework of inverse and imaging problems [4, 11, 12]. Furthermore, all their
combinations remain invariant under translation, rotation and scaling while only a limited
number of invariants can be constructed (in a non trivial manner) using central moments.
Based on the shape descriptors I(1), I(2) we extract the features:

X1 =

√
I

(1)
11 and X2 =

√
(I

(2)
12 + I

(2)
21 )/2 =

√
I

(2)
12 , (7.3)

which have a total order of 2 and 3, respectively. Figure 11 (b) shows the position of each
letter in the feature space defined by (7.3), where most points are fairly distinct from each
other, and less cluttered than those in Figure 11 (a) obtained from (7.2).

8 Conclusion

In this paper, we have designed two fast algorithms which identify a target using a dic-
tionary of precomputed GPTs data. The target GPTs are computed from multistatic
measurements by solving a linear system. The first algorithm matches the computed GPTs
to precomputed ones (the dictionary elements) by finding rotation, scaling, and translation
parameters and therefore, identifies the true target shape. The second algorithm is based
on new invariants for the CGPTs. We have provided new shape descriptors which are in-
variant under translation, rotation, and scaling. The stability (in the presence of additive
noise in multistatic measurements) and the resolution issues for both algorithms have been
numerically investigated. The second algorithm is computationally much cheaper than the
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Figure 11: Positions of the 26 letters of Figure 12 in the feature space. (a): the feature
X1, X2 defined by (7.2) using moment invariants, (b): the feature X1, X2 defined by (7.3)
using I(1), I(2). (b) is less cluttered.

first one. However, it is more sensitive to measurement noise in the imaging data. To the
best of our knowledge, our procedure is the first approach for real-time target identification
in imaging using dictionary matching. It shows that GPT-based representations are an
appropriate tool for imaging. Our approach can be extended to electromagnetic and elastic
imaging as well [12, 5]. We also to plan to use it for target tracking from imaging data.

A Appendix: Several Technical Estimates

A.1 The truncation error in the MSR expansion

Recall the expansion of the element in the MSR matrix (2.11). We prove the following
estimate of the truncation error.

Proposition A.1. Let Ers be as in (2.11). Set ε = δ/R, the ratio between the typical
length scale of the inclusion D and the distance of the receivers (sources) from the inclusion.
Assume also that ε is much smaller than one. Then

|Ers| . εK+2. (A.1)

Proof. From the Taylor expansion of multivariate functions ([30], Chapter 1), we verify
that the truncation error Ers can be written as

∫

∂D
eK(y; xr, z)(λI −K∗

D)−1

[
∂Γ(· − xs)

∂ν

]
(y)ds(y)

+

∫

∂D
ΓK(y; xr, z)(λI −K∗

D)−1

[
∂

∂ν
eK(·; z, xs)

]
(y)ds(y).
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Figure 12: Dictionary of standard letters.
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Figure 13: Non standard letters obtained by perturbing and smoothing those in Figure 12.
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Here, ΓK(y; xr, z) and eK(y; xr, z) (and similarly eK(y; z, xs)) are given by

ΓK(y; xr, z) =
K∑

k=1

∑

|α|=k

(−1)|α|

α!
∂αΓ(xr − z)(y − z)α,

eK(y; xr, z) =
∑

|α|=K+1

( 1

α!

∫ 1

0
(1− s)K∂αΓ(xr − z − s(y − z))ds

)
(y − z)α.

Due to the invariance relation (4.7), the operator (λI −K∗
D)−1, as an operator from the

space L2(∂D) to itself, is bounded uniformly with respect to the scaling of D. Consequently,
the first term in Ers is bounded by

C‖eK(·; xr, z)‖L∞(∂D)‖
∂Γ(· − xs)

∂ν
‖L2(∂D)|∂D|

1
2 ≤ C‖eK‖L∞(∂D)‖

∂Γ(· − xs)

∂ν
‖L∞(∂D)|∂D|.

Assume that z ∈ D; the distance between D and the receivers (sources) is of order R. From
the above expression of eK , the explicit form of ∂αΓ in (2.18), and the fact that |y−z| ≤ Cδ
for y ∈ D, we have

|eK(y; xr, z)| ≤ C


 ∑

|α|=K+1

1

α!
‖∂αΓr(xr − ·)‖C(D)


 |y − z|K+1 ≤ C

(
δ

R

)K+1

.

Similarly, we have ‖∂νΓ(· − xs)‖L∞(∂D) ≤ CR−1. The measure |∂D| in dimension two is of
order δ. Substituting these estimates into the bound for the first term in Ers, we see that
it is bounded by CεK+2.

The second term can be bounded from above by

C‖ΓK‖L∞(∂D)‖
∂eK(·; z, xs)

∂ν
‖L∞(∂D)|∂D|.

We have ‖ΓK(·; xr, z)‖L∞(∂D) ≤ Cε, which is the order of the leading term. Further, from
the explicit form of eK , we verify that

‖
∂eK(·; z, xs)

∂ν
‖L∞(∂D) ≤ C

(
‖Γ(· − xs)‖CK+2(D)δ

K+1 + ‖Γ(· − xs)‖CK+1(D)δ
K
)
≤ C

δK

RK+1
.

As a result, the above upper bound for the second term in Ers is of order εK+2 as well.
This proves (A.1). �

Proposition A.2. The solution us(x) defined by the transmission problem (2.2) satisfies
the symmetry property

us(xr) = ur(xs). (A.2)

Proof. Let Ωε
s be the the ball of radius ε centered at xs, and Ωε

r the ball of radius ε centered
at xr. Let Ωε be the domain BR\(Ω

ε
r ∪ Ωε

s ∪D) where BR is a sufficiently large ball with
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radius R. Then we have

0 =

∫

Ωε

(
us(x)∆ur(x)− ur(x)∆us(x)

)
dx =

∫

∂Ωε

(
us(x)

∂ur

∂n
(x)− ur(x)

∂us

∂n
(x)

)
ds(x)

= −

∫

∂Ωε
s

(
us(x)

∂ur

∂n
(x)− ur(x)

∂us

∂n
(x)

)
ds(x)−

∫

∂Ωε
r

(
us(x)

∂ur

∂n
(x)− ur(x)

∂us

∂n
(x)

)
ds(x)

−

∫

∂D

(
us(x)

∂ur

∂n
(x)
∣∣∣
+
− ur(x)

∂us

∂n
(x)
∣∣∣
+

)
ds(x) +

∫

∂BR

(
us(x)

∂ur

∂n
(x)
∣∣∣
+
− ur(x)

∂us

∂n
(x)
∣∣∣
+

)
ds(x)

= Jε
s + Jε

r + JD + JR.

For JD, thanks to the jump conditions in (2.2), we have that

JD = κ

∫

∂D

(
ur(x)

∂us

∂n
(x)
∣∣∣
−
−us(x)

∂ur

∂n
(x)
∣∣∣
−

)
ds(x) = κ

∫

D

(
ur(x)∆us(x)−us(x)∆ur(x)

)
dx = 0.

The other two terms Jε
s and Jε

r can be treated similarly; hence we focus on the first
item. We’ve shown that us(x) = Γ(x− xs) + SD[φs]. In a neighborhood of Ωε

s, we have

‖ur‖L∞ + ‖∇ur‖L∞ + ‖SD[φs]‖L∞ + ‖∇SD[φs]‖L∞ ≤ C.

Consequently,
∣∣∣∣∣

∫

∂Ωε
s

us(x)
∂ur

∂n
(x)

∣∣∣∣∣ ≤ C

∫

∂Bε(xs)
(1 + | log ε|)ds(x) ≤ Cε| log ε|.

∣∣∣∣∣

∫

∂Ωε
s

ur(x)

(
∂us

∂n
(x)−

∂Γ

∂n
(x− xs)

)∣∣∣∣∣ ds(x) ≤

∣∣∣∣∣

∫

∂Ωε
s

ur(x)
∂SD[φs]

∂n
(x)ds(x)

∣∣∣∣∣ ≤ Cε.

These estimates imply that

lim
ε→0

Jε
s = lim

ε→0

∫

∂Bε(xs)
ur(xs + y)

∂Γ

∂n
(y)ds(y) = lim

ε→0

1

2πε

∫ 2π

0
εur(xs + εθ)dθ = ur(xs).

The same analysis applied to Jε
r shows that limε→0 Jε

r = −us(xr).
To control JR, we recall the fact that SD[φ] decays as |x|−1 and ∇SD[φ] decays as |x|−2

for φ ∈ L2(∂D) satisfying
∫
∂D φds = 0; these estimates imply that the logarithmic part of

us dominates. Therefore,

lim
R→∞

JR = lim
R→∞

∫

∂BR

log |x− xs|
〈νx, x− xr〉

|x− xr|2
− log |x− xr|

〈νx, x− xs〉

|x− xs|2
ds(x).

The integrand above can be written as
(

log
|x− xs|

|x− xr|

)
〈νx, x− xr〉

|x− xr|2
+ log |x− xr|

[
〈νx, x− xr〉

|x− xr|2
−
〈νx, x− xs〉

|x− xs|2

]
.

We verify that the first term is of order o( 1
R); its contribution to the limiting integral is

hence negligible. The second term in the integrand can be further written as

log |x− xr|

[
〈νx, x− xr〉

(
1

|x− xr|2
−

1

|x− xs|2

)
+
〈νx, x− xr − (x− xs)〉

|x− xs|2

]
.
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From
1

|x− xr|2
−

1

|x− xs|2
=
|xs|

2 − |xr|
2 + 2〈x, xr − xs〉

|x− xr|2|x− xs|2
,

we verify that the second term in the integrand is of order O(log R/R2); hence its contri-
bution to the limiting integral is also zero. To summarize, we have limR→∞ JR = 0.

From the above analysis, we take the limit ε→ 0, R→∞ on the equality 0 = Jε
s +Jε

r +
JD + JR and conclude that (A.2) holds. �

A.2 Proof of formula (2.18)

Formula (2.18) is well-known. We include a proof for reader’s sake.
In order to prove (2.18), we need to find the derivative of the function log |x|. To this

end, we consider the Taylor expansion of the logarithmic function around the point x.
The most convenient method for this expansion is to view the space variables as complex
numbers. For a small perturbation z of the point x (x, z ∈ C), we calculate

log |x− z| − log |x| =
1

2
([log(x− z)− log x] + [log(x− z)− log x]) .

To expand the first item on the right-hand side of the above equality, we write it as log(1− z
x),

and since | zx | < 1 we obtain the expansion

log(1−
z

x
) = −

∞∑

j=1

1

j

( z

x

)j
= −

∞∑

j=1

1

j

(
rze

iθz

rxeiθx

)j

.

Taking the conjugate, we obtain the expansion for log(x−z)− log x. Consequently, we have

log |x− z| − log |x| = −
1

2

∞∑

j=1

1

j

[(
rze

iθz

rxeiθx

)j

+

(
rze

−iθz

rxe−iθx

)j
]

= −

∞∑

j=1

1

j

(
cos jθx

rj
x

[rj
z cos jθz] +

sin jθx

rj
x

[rj
z sin jθz]

)

= −
∞∑

j=1

1

j


cos jθx

rj
x

∑

|α|=j

aj
αzα +

sin jθx

rj
x

∑

|α|=j

bj
αzα


 .

In the last equality, we understood the variable z as real variable and used the representation
(2.13). Compare the last term of the above formula with the (real-variable) multivariate
expansion of log |x− z| − log |x|, we observe that

∑

|α|=j

(−1)j

α!
(∂α

x log |x|)zα = −
∑

|α|=j

1

j

(
cos jθx

rj
x

aj
α +

sin jθx

rj
x

bj
α

)
zα.

For each double index α, we get (2.18).
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A.3 Proof of formula (3.3)

The proof is a straightforward computation. The elements of the matrix CtC correspond to
inner products of columns of the matrix C, that is, the inner products of vectors formed by
evaluating sin and cos functions at (k1θ1, . . . , k1θN ) and at (k2θ1, . . . , k2θN ), where k1, k2 =
1, 2, . . . , K, k1 + k2 ≤ 2K < N , and θj = 2πj/N , j = 1, 2, . . . , N . When two cos vectors are
chosen, the inner product becomes

N∑

j=1

cos k1θj cos k2θj =
1

4

N∑

j=1

(
ei

2π(k1+k2)j
N + e−i

2π(k1+k2)j
N + ei

2π(k1−k2)j
N + e−i

2π(k1−k2)j
N

)
.

Since k1 + k2 is an integer less than N , the first two sums always vanish because

N∑

j=1

ei
2π(k1+k2)j

N =
1− ei2π(k1+k2)

1− ei
2π(k1+k2)

N

= 0.

When k1 = k2, the last two sums contribute and the overall result is N/2. When k1 6= k2,
the inner products under estimation is zero according to the above observation.

The case of inner product with sin and sin or cos and cos vectors can be similarly
analyzed, and it can be easily seen that (3.3) holds.
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