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Newtonian Potential Problem: A Review

Hyeonbae Kang∗

February 22, 2008

Abstract

In this paper we review recent solutions to conjectures of Pólya-Szegö and Eshelby,
and their relation to the classical Newtonian potential problem. We also review some
recent progress on construction of extremal structures with multiple components.

1 Introduction

The Pólya-Szegö conjecture asserts that the inclusion whose electrical polarization tensor has
the minimal trace takes the shape of a disk or a ball, while the Eshelby conjecture does that if
the field inside an inclusion is uniform for all uniform loadings, then the inclusion is of elliptic
or ellipsoidal shape. Recently Kang & Milton found a strong connection between these
two seemingly unrelated conjectures [15] and proved a stronger version of the Pólya-Szegö
conjecture, which implies the original Pólya-Szegö conjecture, and the Eshelby conjecture by
reducing them to the Newton potential problem [16]. Following earlier work of Cherepanov
they (with Kim) also constructed extremal structures with two components inside which the
fields are uniform for all uniform loadings, and equivalently the polarization tensor associated
with the structure satisfies the minimal equality [14]. In this paper we review these results
for the purpose of conveying basic ideas of proofs. In the course of review, we will get a
glimpse of history of the problems and some of their applications.

Quite recently, Liu [22] also proved the Eshelby conjecture by transforming the problem
to an obstacle problem and solving it by a variational method. By similar methods he was
able to show that the stronger version of the Eshelby conjecture is false in three dimensions
and to construct extremal structures with arbitrary number of components in which the
fields are uniform for each uniform loading. We will briefly discuss the connection between
methods of Kang-Milton and Liu.

2 The Eshelby conjecture

Consider in Rd, d = 2, 3, an inclusion Ω, which is a bounded Lipschitz domain being inserted
into a homogeneous medium of conductivity 1 in which there existed a uniform electric field
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E = −a. We assume that the conductivity of Ω is k 6= 1. The insertion of the inclusion
perturbs the uniform electric field and the perturbed electric field is given by E = −∇u
where the potential u is the solution to the electric polarization problem:

{ ∇ · (1 + (k − 1)χ(Ω)
)∇u = 0 in Rd,

u(x)− a · x = O(|x|1−d) as |x| → ∞,
(2.1)

where a is a constant vector in Rd indicating the direction of the uniform field and χ(Ω)
denotes the indicator function of Ω. Fig. 1 shows the equipotential lines of the solution to
(2.1). As one can see from Fig. 1, the field inside and outside the inclusion is perturbed and
it seems unlikely for the field inside the inclusion to be uniform. However, if the inclusion
takes an elliptic shape, it turns out that the field inside the inclusion is uniform as one can
see from Fig. 2.
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Figure 1: Equipotential lines of the solution
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Figure 2: Elliptic inclusion

Apparently the fact that the electric field inside elliptic or ellipsoidal inclusions is uniform
has been known for long time and its proofs go back to Poisson (1826) and Maxwell (1873)
(see [22, 23]). The simpler version of Eshelby’s conjecture for conductivity is the converse:
if the electric field inside is uniform for any uniform field −a, then the inclusion is of an
elliptic or ellipsoidal shape.
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In [16] Kang & Milton showed that the Eshelby conjecture is equivalent to the following
problem which is called the Newtonian Potential Problem: Let Ω be a simply connected do-
main and Γ(x) be the fundamental solution (the Green function) for the Laplacian, namely,

Γ(x) =





1
2π

ln |x| , d = 2 ,

− 1
4π|x| , d = 3 .

(2.2)

If

−
∫

Ω

Γ(x− y)dy =
1
2

d∑

j=1

ajx
2
j + C, x ∈ Ω (2.3)

with aj > 0, then Ω must be an ellipse or an ellipsoid. In other words, if the Newtonian
potential of the constant function 1 is quadratic in Ω, then Ω must be an ellipse or an
ellipsoid.

Surprisingly, the Newtonian potential problem was solved by Dive in 1931 [8] and by
Nikliborc in 1932 [32] (see also [7]). The reason why Dive and Nikliborc considered this
problem was to prove the converse of a theorem of Newton: Let Ω be a simply connected
domain whose center of mass is 0 ∈ Ω and let λΩ be a dilation of Ω by λ > 1, i.e.,
λΩ = {λx : x ∈ Ω}. If the gravitational force induced by the uniform mass on λΩ \ Ω is
equal to zero in Ω, then Ω must be an ellipsoid. A theorem due to Newton states that if Ω
is an ellipsoid, then the gravitational force in Ω is zero [19].

Let us now see why the Eshelby conjecture and the Newtonian potential problem are
equivalent. The solution u to (2.1) satisfies the harmonic equation in Ω and Rd \Ω, and the
following boundary conditions along the interface ∂Ω:





u|+ = u|− on ∂Ω,

∂u

∂n

∣∣∣
+

= k
∂u

∂n

∣∣∣
−

on ∂Ω,
(2.4)

where the subscripts ± indicate the limit from outside and inside of Ω, respectively, and ∂
∂n

denotes the derivative in the direction of the outward normal on ∂Ω . The condition (2.4)
means that the matrix and the inclusion are perfectly bonded.

In view of the condition (2.4), it is quite natural to represent the solution u to (2.1) in
terms of the single layer potential. The single layer potential for the harmonic equation on
∂Ω is defined by

SΩ[φ](x) :=
∫

∂Ω

Γ(x− y)φ(y)dσ(y), x ∈ Rd, (2.5)

for functions φ defined on ∂Ω. Then SΩ[φ] is continuous across ∂Ω and its normal derivative
enjoys the following jump relation:

∂

∂n
SΩ[φ]

∣∣∣∣
+

(x)− ∂

∂n
SΩ[φ]

∣∣∣∣
−

(x) = φ(x) a.e. x ∈ ∂Ω. (2.6)

For the theory of layer potentials we refer to [2].
Indeed, it is known (see, for example, [17]) that the solution u to (2.1) is given by

u(x) = a · x + (k − 1)SΩ

[
∂u

∂n

∣∣∣
−

]
(x), x ∈ Rd. (2.7)
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Therefore, if u is linear in Ω, it follows from (2.7) that

SΩ[nj ](x) = linear in Ω, j = 1, · · · , d. (2.8)

Then by the divergence theorem, we end up with the formula (2.3).
The connection between the Eshelby conjecture and the Newtonian potential problem

and the solution of the latter problem by Dive and Nikliborc yields the proof of the Eshelby’s
conjecture. The precise statement of the theorem obtained in [16] is as follows.

Theorem 2.1 Let Ω be a simply connected bounded Lipschitz domain in Rd, d = 2, 3. The
solution u to (2.1) is linear in Ω for any vector a if and only if Ω is an ellipse or ellipsoid.

We now describe the original Eshelby’s conjecture in the context of the linear isotropic
elasticity. Consider an elastic inclusion Ω, whose Lamé parameters are λ̃, µ̃, embedded in
a medium in Rd with Lamé parameters λ, µ. The elasticity tensor of the inclusion-matrix
composite C = (Cijkl) is given by

Cijkl :=
(
λχ(Rd \ Ω) + λ̃ χ(Ω)

)
δijδkl+

(
µ χ(Rd \ Ω) + µ̃ χ(Ω)

)
(δikδjl + δilδjk) . (2.9)

For given constants d× d matrix A, consider the following problem for the Lamé system of
the linear elasticity:

{ ∇ · (C(∇u +∇uT ))
)

= 0 in Rd,

u(x)−Ax = O(|x|1−d) as |x| → ∞.
(2.10)

If u is the solution to (2.10), then ∇u represents the field perturbed due to the presence of
the inclusion Ω under the uniform loading given by ∇(Ax). The conductivity model (2.1) in
two dimensions can be regarded as the anti-plane elasticity model of (2.10). In [9], Eshelby
showed that if Ω is an ellipse or an ellipsoid, then for any given uniform loading the elastic
field inside Ω is uniform, and in [10] he conjectured that ellipses and ellipsoids are the only
domains with this property.

The following theorem was obtained in [16].

Theorem 2.2 Let Ω be a simply connected bounded Lipschitz domain in Rd, and suppose
that λ− λ̃ and µ− µ̃ have the same signs. The solution u to (2.10) is linear in Ω for all A
if and only if Ω is an ellipse or an ellipsoid.

Theorem 2.2 was proved using the single layer potential for the Lamé system. The special
structure of the Kelvin matrix of the fundamental solutions to the Lamé system made it
possible to reduce the proof to the Newtonian potential problem.

Eshelby’s conjecture was proved by making use of its connection to the Newtonian po-
tential problem. Yet there is another equivalence to be exploited. Let

wΩ(x) := −
∫

Ω

Γ(x− y)dy, x ∈ Rd. (2.11)

When (2.3) holds, wΩ is the solution to




∆w = χ(Ω),

w(x) =
1
2

d∑

j=1

ajx
2
j + C x ∈ Ω,

(2.12)
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with an appropriate condition at infinity which is determined by the total of the inclusion
and the behavior of Γ(x) when |x| → ∞. The problem (2.12) is an obstacle problem and Liu
showed in [22] that ellipses or ellipsoids are the only free boundary solutions to the problem
to prove Theorem 2.1 and Theorem 2.2.

It should be noted that only the three dimensional case in Theorem 2.1 and Theorem
2.2 is new. In two dimensions the strong Eshelby conjecture was proved by Sendeckyj for
elasticity [40]. What we call the strong Eshelby conjecture asserts that if the solution u to
(2.10) for a single nonzero A is linear inside Ω, then Ω is an ellipse or an ellipsoid. The
strong Eshelby conjecture for antiplane elasticity was proved by Ru & Schiavone [39] by the
same method as that of Sendeckyj, which uses the conformal mapping. Alternative proofs
for the strong Eshelby conjecture in two dimensional elasticity are given by Kang & Milton
[15, 16] and Liu [22].

With help of the Newtonian potential problem (2.3), one can see rather clearly why the
strong Eshelby conjecture should be true in two dimensions. To see that, let wΩ be as in
(2.11). The solution u being linear in Ω for a certain direction a is equivalent to b · ∇wΩ

being linear in Ω for some nonzero vector b. But since ∆wΩ(x) = 1 in Ω, we immediately
conclude that b⊥ ·∇wΩ is linear where b⊥ is the orthogonal vector to b, and hence ξ ·∇wΩ is
linear in Ω for any vector ξ in two dimensions. However in three dimensions, even if b ·∇wΩ

is linear for some b, there are two other linearly independent directions to be determined,
and there is Ω such that ∇wΩ is not linear in Ω even if b · ∇wΩ is linear for some nonzero b.
Such an inclusion Ω was constructed by Liu [22] to show that the strong Eshelby conjecture
is not true in three dimensions.

Since Sendeckyj’s work in two dimensions, there have been some partial solutions of the
Eshelby conjecture in three dimensions, mainly dealing with polyhedra and domains whose
boundaries have flat parts. Rodin [38] proved that the field cannot be uniform inside poly-
gons or polyhedra, and exact expressions for these non-uniform fields were later obtained
[33, 18, 34]. Markenscoff showed that the field cannot be uniform if any portion of the
boundary was planar [27] and that the only small perturbations of any ellipsoid boundary
that preserve field uniformity in the interior are those which perturb the ellipsoid into an-
other ellipsoid [28]. Lubarda and Markenscoff [24] showed that the field cannot be uniform
for inclusions bounded by polynomial surfaces of higher than second degree, nor for inclu-
sions bounded by segments of two or more different surfaces, and argued that non-convex
inclusions are also excluded. It is worth emphasizing that Theorem 2.1 and Theorem 2.2
hold for domains with Lipschitz boundaries which include polygons or polyhedra.

It was also proved in [16] that even when the conductivity of the matrix and inclusions
are anisotropic, the same result as that of Theorem 2.1 holds. However, if the elasticity
tensor of either the matrix or the inclusion is anisotropic (or transversally isotropic), it does
not seem to be known whether the Eshelby conjecture is true or not.

3 The Pólya-Szegö conjecture

In Fig. 1, not only the field inside the inclusion but also the one outside undergoes pertur-
bation and we now turn our attention to the field outside the inclusion. The solution u to
(2.1) has a dipole asymptotic expansion at infinity:

u(x) = a · x +
1
ωd

〈a,Mx〉
|x|d + O(|x|−d), as |x| → ∞. (3.1)
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Here ωd is the area of the d−1 dimensional unit sphere and M is a constant d×d symmetric
matrix independent of a and x. The matrix M = M(Ω, k) := (Mij) is called the polarization
tensor (PT) associated with the inclusion Ω and the conductivity contrast k. See [1, 29]. It
is worthwhile noting that the concept of PT can be defined even when Ω consists of multiple
components and depends only on Ω and the conductivity contrast k.

The concept of the PT appears in various contexts such as the theory of composites as
the low volume faction limit of the effective conductivity (see [29, 2] and references therein)
and the study of potential flow [37]. Another important recent usage of the concept is
for the electrical impedance tomography problem to detect diametrically small inclusions by
means of boundary measurements. In fact, the leading order approximation of the boundary
voltage induced by the injected current is expressed in terms of the location and the PT
of the inclusions, and hence one can approximately detect, by boundary measurements, the
location and the PT of the inclusion. Since the PT carries important geometric information,
such as the volume of the inclusion, we are able to recover that information from boundary
measurements. It was Friedman & Vogelius [11] who first used the PT for the detection of
small inclusions. We refer to [1, 2] and references therein for recent developments of this
theory.

In their book [37] Pólya and Szegö conjectured that the inclusion whose PT has the mini-
mal trace takes the shape of a disk or a ball. In connection with this conjecture various kinds
of isoperimetric inequalities for the PT have been obtained. See, for example, [35, 36, 41].
After about 40 years since Pólya and Szegö wrote their conjecture, the optimal isoperimet-
ric inequalities for the PT have been obtained by Lipton [21], and later by Capdeboscq &
Vogelius [5] using the variational argument similar to that of Kohn & Milton [20]. The
bounds are called the Hashin-Shtrikman (HS) bounds after names of the scientists who first
found the optimal bounds on the effective conductivity of isotropic two-phase composites
[13]. These bounds can be derived as the low volume fraction limit of the bounds of the
effective conductivity [25, 26, 30, 31]. The HS bounds for PT are given as follows: Let |Ω|
denote the volume of Ω. Then

Tr(M) ≤ |Ω|(k − 1)(d− 1 +
1
k

), (3.2)

and
|Ω|Tr(M−1) ≤ d− 1 + k

k − 1
, (3.3)

where Tr denotes the trace and |Ω| is the volume of Ω. These bounds are optimal in the
sense that every point inside the bounds (except the upper bound) is the pair (or triple) of
eigenvalues of the PT associated with a certain domain [3, 5]. We note that the PTs for
the ellipses and ellipsoids can be computed explicitly and they satisfy the lower HS-bound
(3.3). For example, if Ω is an ellipse whose semi-axes are on the x1− and x2−axes and of
length a and b, respectively, then its polarization tensor M takes the form

M = (k − 1)|Ω|




a + b

a + kb
0

0
a + b

b + ka


 , (3.4)

and hence it satisfies the equality in (3.3) [4]. Thus, from the viewpoint of the isoperimetric
inequality, we ask ourselves the following stronger version of the Pólya-Szegö conjecture: If

6



the PT satisfies the equality in (3.3), then the domain must be an ellipse or an ellipsoid.
This stronger version of the Pólya-Szegö conjecture was proved by Kang & Milton [16].

Theorem 3.1 Let Ω be a simply connected bounded Lipschitz domain in Rd, d = 2, 3. If
the polarization tensor M(Ω) of Ω satisfies the equality in (3.3), then Ω must be an ellipse
or an ellipsoid.

The original Pólya-Szegö conjecture asserts that if in addition to (3.3) the eigenvalues
of the PT are all the same, then the inclusion must be a disk or a ball. This conjecture
immediately follows from Theorem 3.1. We also note that Theorem 3.1 is not true if the
domain is not simply connected as we will see in the next section.

In proving Theorem 3.1 we relate the stronger version of the Pólya-Szegö conjecture with
the Eshelby conjecture. The following theorem was proved in [15].

Theorem 3.2 Let Ω be a bounded Lipschitz domain in Rd, d = 2, 3. If the polarization
tensor M(Ω) of Ω satisfies the equality in (3.3), then for any vector a ∈ Rd the solution u
to (2.1) is linear in Ω.

The stronger version of the Pólya-Szegö conjecture follows from Theorem 2.1 and the
above theorem.

The finding of Theorem 3.2 is rather surprising in some sense. In view of the dipole
expansion (3.1), the PT M provides only the first order approximation the perturbation of
the solution, namely, u(x) − a · x, at infinity. Therefore it is not so easy to imagine that
the PT determines the behavior of the field inside the inclusion, and it is not the case in
general. However, if the PT satisfies the lower HS-bound, then the field inside the inclusion
must be uniform.

In order to prove Theorem 3.2, we follow the variational argument to derive HS-bounds in
[5]. One can show that if the equality holds in (3.3), then for any direction a the maximizer
of the functional

G(v) = − 1
k − 1

∫

Ω

|v|2 dx + 2a ·
∫

Ω

v dx−
∫

Rd

∇∆−1(∇ · v) · v dx (3.5)

is given by bχ(Ω) where b is a constant vector in Rd, from which Theorem 3.2 follows.

4 Extremal structures with many components

Theorems in previous sections show that ellipses and ellipsoids are unique structures, among
simply connected ones, which are extremal in two equivalent senses: in the sense of Eshelby
(the field inside is uniform) and that of Pólya-Szegö (the PT satisfies the lower HS-bound).
There are other extremal structures which have multiple components. These structures are
important as counter examples to the conjectures of Eshelby and Pólya-Szegö. Even more
important aspect of these structures is that these extremal structures have the minimal
internal energy [12].

We are constructing inclusions Ω1, . . . , Ωm in Rd, with the same conductivities k such
that for any uniform loading (or uniform electric field) −a, the field inside Ωj is uniform for
j = 1, . . . , m. In two dimensions, it amounts to constructing bounded domains Ω1, . . . , Ωm

in the complex plane such that for a given complex number α they admit a function f
holomorphic in C \ ∪m

s=1Ωs satisfying

f(z)− αz = O(1) as |z| → ∞, (4.1)
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Figure 3: Equipotential lines of ux and uy where ux and uy are solutions corresponding to
the e1 and e2 fields.

and
f(z) = <(βz) + qs on ∂Ωs (4.2)

for some complex number β and qs, s = 1, . . . ,m. Note that we require the number β to
be the same for all s = 1, . . . ,m, which is equivalent to saying that the uniform fields inside
the inclusions have the same direction and magnitude. It is not clear whether we can have
structures with many components such that uniform fields inside inclusions have different
directions. Constructing Ωs, s = 1, . . . , m, and f satisfying (4.1) and (4.2) is a free boundary
problem.

Cherepanov [6] solved the free boundary problem to construct the extremal structures
with arbitrary number of components. His method uses a powerful theorem in complex
analysis: the region outside of multiple simply connected domains in the complex plane is
conformally equivalent to a complex plane with the same number of slits. In recent work
[14] (without knowledge of Cherepanov’s results), Kang-Kim-Milton explicitly solved the free
boundary problem to construct a two parameter family of structures with two components
using the Schwarz-Christoffel formula and the Weierstrass ζ-function, and exploited their
various connections with the conjectures of Eshelby and Pólya-Szegö. Figure 4 shows a
typical shape of the structure and the fields inside the inclusion: they are uniform!

Another way of constructing the extremal structures is to use the Newtonian potential.
Similarly to the Newtonian potential problem, inclusions Ω1, . . . , Ωm should satisfy

−
m∑

s=1

∫

Ωs

Γ(x− y)dy = x ·Qx + bs · x + cs in Ωs, (4.3)

where Q is a constant d × d matrix, bs is a constant vector and cs is a constant for s =
1, . . . , m. Note that Q is independent of s since we imposed the condition that the direction
of fields are the same inside all inclusions. If we put

w(x) = −
m∑

s=1

∫

Ωs

Γ(x− y)dy, (4.4)
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then w satisfies




∆w =
m∑

s=1

χ(Ωs),

w(x) = x ·Qx + bs · x + cs x ∈ Ωs, s = 1, . . . ,m,

(4.5)

with an appropriate condition at infinity which is determined by the total volume of the
inclusions and the behavior of Γ(x) when |x| → ∞.

In [22], Liu used variational methods to solve (4.5) and numerically constructed structures
with arbitrary number of components. His construction is valid in three dimensions as well
as in two dimensions.

For the application to composites, construction of such extremal structures in periodic
setting are important. The periodic extremal structures with a single component was con-
structed by Vigdergauz [42, 43]. Gravobsky and Kohn reconstructed the Vigdergauz struc-
ture in two dimensions in mathematically rigorous way [12]. They also showed in the same
paper that the low volume limit of the Vigdergauz structure is an ellipse. Recently Liu
et al constructed the periodic extremal structures in two and three dimensions using the
variational approach described above [23].

Acknowledgement: I would like to take this opportunity to thank Graeme Milton for
wonderful collaborations. I also thank him and Habib Ammari for helpful comments on this
article.

References

[1] H. Ammari and H. Kang, Reconstruction of small inhomogeneities from boundary mea-
surements, Lecture Notes in Math. 1846, Springer, 2004.

[2] H. Ammari and H. Kang, Polarization and Moment Tensors with Applications to In-
verse Problems and Effective Medium Theory, Applied Mathematical Sciences Series,
Vol 162, Springer, 2007.

[3] H. Ammari, Y. Capdeboscq, H. Kang, E. Kim, and M. Lim, Attainability by Simply
Connected Domains of Optimal Bounds for Polarization Tensors, European Jour. of
Applied Math, 17 (2) (2006), 201-219.
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