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Abstract. A generalization of a classical argument of Mark G. Krein leads us to the
conclusion that the Neumann-Poincaré operator associated to the Lamé system of
linear elastostatics equations in two dimensions has the same spectrum on Lebesgue
space of the boundary as well the more natural energy space. A similar result for
the Neumann-Poincaré operator associated to the Laplace equation was stated by
Poincaré’s and was proved rigorously a century ago my means of a symmetrization
principle for non-selfadjoint operators. We develop the necessary theoretical frame-
work underlying the spectral analysis of the Neumann-Poincaré operator, including
also a discussion of spectral asymptotics of a Galerkin type approximation. Sev-
eral examples from function theory of a complex variables and harmonic analysis are
included.

1. Introduction

The present note is motivated by some recently accumulated spectral analysis facts
referring to the Neumann-Poincaré operator (henceforth denoted by the NP operator).
This is a boundary integral operator acting on the Lebesgue spaces of the boundary
of a domain in Euclidean space, explicitly appearing in the double layer potential of a
charge with some prescribed regularity. It is a compact operator if the boundary of the
domain is smooth enough, and a singular integral operator if the boundary has corners.
It is not our aim to present the full theory of the NP operator, but merely to extract
from its (sometimes ad-hoc) spectral analysis a general framework which might be of
interest for wider classes of problems.

A basic observation, going back more than a century ago, and attributed to Poincaré,
is that a natural space to consider the NP operator is an energy space, rather than any
natural functional space on the boundary of the underlying domain. This was one of
the first occurrences of the necessity to study a linear transformation in more than a
single normed space. In modern terminology, the energy space isolated by Poincaré is
a negative fractional Sobolev space, a concept which took shape a few good decades
later. The article [13] contains details about Poincaré’s variational problem, its modern
interpretation and his amazing intuition on what we call today the completeness of the
root vectors of the non-symmetric NP operator.
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It was Mark G. Krein who found in 1947 (and probably much earlier) a theoretical ex-
planation for the spectral behavior of “symmetrisable compact linear transformations”,
a term already used in potential theory by a good dozen of authors. For an authorita-
tive account of these early efforts see the chapter with the same title in Zaanen’s book
[21]. Krein’s arguments are simple, irreducible in their beauty and applicability, and
have been rediscovered by P. Lax, J. Dieudonné, and possibly others, see for references
[13].

We adapt Krein’s proofs to the case on non-compact and not necessarily symmetris-
able operators (in a Hilbert space endowed with a weaker inner product norm), and as
an application we prove that the NP operators associated to the Laplace equation and
the Lamé system of linear elastostatics have the same spectra in Lebesgue L2 space and
the energy space. This is the first proof of spectral permanence for the Lamé system
of equations.

In practice, linear operators are approximated by finite rank truncations, via adapted
Galerkin type approximation methods [15, 20]. It is notorious that the spectrum of
these truncations may not converge to the spectrum of the whole operator. Think
for instance to the unilateral shift. Moreover, the choice of the increasing sequence
of finite rank projections may significantly alter the spectral asymptotics. A second
theme of our note adds a few observations on these topic and has a numerical analysis
flavor. Specifically, we study the simultaneous finite rank approximation of an operator
acting on a Hilbert space endowed with a weaker norm. We analyze the norm gap
between the two sequences of finite central truncations of a linear bounded operator
with respect to an ascending nest of finite dimensional subspaces and the orthogonal
projections onto them in the two different metrics. Here the examples from complex
or harmonic analysis abound, and we only discuss a perturbation argument (inspired
by the last part of Krein’s article [14]). A partial conclusion is that performing the
finite central truncation with respect to the subspaces spanned by the simultaneous
orthogonal system of vectors (in the two metrics) will not distort their limiting spectra.
A second conclusion is that a small perturbation (in a precise multiplicative sense) of
the weaker inner product will also leave invariant the spectral asymptotics of the finite
truncations. References on finite central truncations, known also under the name of
the moment method, are [4, 15, 20].

2. Preliminaries

LetH be a complex separable Hilbert space and T ∈ L(H) a linear bounded operator
acting on H. The spectrum of T is denoted by σ(T ) and the numerical range of T is
by W (T ) = {⟨Tφ, φ⟩, ∥φ∥ = 1}, where ⟨ , ⟩ denotes the inner product on H. By a
theorem of Hausdorff and Toeplitz we know that the closure of W (T ) is a compact set,
containing σ(T ). In many applications, notably in the stability analysis of semigroups,
it turns out that locating the numerical range of an operator (bounded or not) is much
easier than computing the spectrum. For a proof of Hausdorff-Toeplitz theorem and a
variety of insights into numerical range estimates we refer to the monograph [9].

We endow H with a weaker pre-hilbertian space norm:

(φ,ψ) = ⟨Aφ,ψ⟩, φ, ψ ∈ H, (2.1)
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where A is a positive, bounded linear symmetric operator acting on H. Let K denote
the Hilbert space completion of H with respect to the new norm. We have H ⊂ K,
with dense range inclusion. If the operator A has a bounded inverse, then H = K,
although not isometrically. This scenario is less interesting for our aims, and we assume
henceforth that the operator A is not invertible.

An outstanding example is H = L2(∂Ω), where Ω is a bounded domain in Rd (d ≥ 2)
with the Lipschitz boundary and A being the single layer potential on ∂Ω, namely,

A[φ](x) = S[φ](x) :=
∫
∂Ω

Γ(x− y)φ(y) dσ(y) , x ∈ ∂Ω, (2.2)

where Γ(x) is the fundamental solution to the Laplacian, i.e.,

Γ(x) =


− 1

2π
ln |x| , d = 2 ,

1

(d− 2)ωd
|x|2−d , d ≥ 3 ,

(2.3)

with ωd being the area of the unit sphere in Rd. We emphasize that the single layer
potential here has the opposite sign to that in [1]. This is to make it a positive operator.
The single layer potential S is symmetric and positive in three dimensions, and the
completion of L2(∂Ω) with respect to the inner product ( , ) is K = H−1/2(∂Ω). In
two dimensions, S∂Ω may not be positive. However, we slightly vary the definition of
the single layer potential so that the varied one, which we still denote by S, becomes
positive (see [2]). It is known (see [11]) that the norm induced by ( , ) is equivalent to

the usual Sobolev norm on H−1/2(∂Ω).

3. Boundedness and spectral permanence

It is known since Krein’s landmark article [14] that an operator T ∈ L(H) which is
symmetric with respect to the weaker norm is automatically bounded with respect to
it. Moreover, he proved in the same work that the additional compactness assumption
on T ∈ L(H) implies the compactness and spectral permanence of T , with respect to
the weaker norm. We slightly generalize below these two observations, having as an
example the NP operator.

Proposition 3.1. Assume that two linear bounded operators S, T ∈ L(H) satisfy

AT = SA. (3.1)

Then T extends to a bounded linear transform of the Hilbert space K, that is there
exists a linear bounded map M ∈ L(H) satisfying

√
AT =M

√
A. (3.2)

Proof. Since T ∗A = AS∗, the operators X = T + S∗ and Y = i(T − S∗) satisfy

AX = X∗A and AY = Y ∗A,

which imply that X and Y are symmetric with respect to ( , ). So, according to Krein’s
observation [14], both X and Y extend continuously to the Hilbert space K. Let us
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include a simple proof. For every vector φ ∈ H, we have

(Xφ,Xφ)2 = ⟨AXφ,Xφ⟩2 = ⟨Aφ,X2φ⟩2

= (φ,X2φ)2 ≤ (φ,φ)(X2φ,X2φ).

Consequently, leaving aside the trivial case of vanishing denominators, we have

(Xφ,Xφ)

(φ,φ)
≤ (X2φ,X2φ)

(Xφ,Xφ)
≤ . . . ≤ (Xnφ,Xnφ)

(Xn−1φ,Xn−1φ)
.

The product of all factors is telescopic, and yields[
(Xφ,Xφ)

(φ,φ)

]n
≤ (Xnφ,Xnφ)

(φ,φ)
≤ ∥A∥∥X∥2n∥φ∥

(φ,φ)
,

where ∥ ∥ is the norm on H. Hence we have

(Xφ,Xφ)

(φ,φ)
≤ lim inf

n→∞

[
∥A∥∥X∥2n∥φ∥

(φ,φ)

]1/n
= ∥X∥2.

Thus X extends to a linear bounded operator of the space K, with the norm not
exceeding the norm on H. Then T = X−iY

2 is bounded on K, that is,

⟨ATφ, Tφ⟩ ≤ C⟨Aφ,φ⟩, φ ∈ H,

for a universal positive constant C. Or equivalently,

T ∗AT ≤ CA

in the operator norm. Written on vector, the above inequality becomes

∥
√
ATφ∥ ≤ ∥

√
C
√
Aφ∥.

Thus, the linear map √
C
√
Aφ 7→

√
ATφ

is well-defined and contractive.
Consequently there exists a linear bounded map M1 ∈ L(H) satisfying

√
AT =M1

√
C
√
A,

and we can absorb the constant into the intertwiner: M =M1

√
C. □

Note that T is symmetric with respect to the inner space K if and only if M =M∗

as an operator of H.

Corollary 3.2. The following spectral inclusion relations hold:

σp(T,H) ⊂ σp(M,H), (3.3)

and

σap(T,K) = σap(M,H), (3.4)

where σp and σap denote point spectrum and approximative point spectrum, respectively.
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Proof. The first inclusion is obvious from (3.2). For proving the second one, let φn ∈ H
be a sequence of vectors, normalized in the weaker norm: (φn, φn) = ⟨Aφn, φn⟩ = 1,

n ≥ 1. If limn→∞(Tφn, Tφn) = 0, then and only then limn→∞ ∥M
√
Aφn∥ = 0. This

proves that the point λ = 0 belongs to the approximative point spectrum of T ∈ L(K)
if and only if it belongs to the approximative point spectrum of M ∈ L(H). For the
case when λ ̸= 0 we simply consider T − λ. □

Theorem 3.3. Let T ∈ L(H) be a symmetric operator with respect to the second inner
product, namely,

AT = T ∗A, (3.5)

and assume that the point spectrum of T on H is a discrete subset in the complement
of the essential spectrum of T ∈ L(H). Then the point spectrum of the extension
T ∈ L(K) is real, and equal to the point spectrum of T ∈ L(H), with equal multiplicities,
respectively.

Proof. By a root vector, corresponding to the eigenvalue λ, we mean a non-zero element
of ker(T − λ). Due to the symmetry of T with respect to the inner product (·, ·), we
have ker(T−λ) ̸= 0 only for real values of λ. We prove that root subspaces of T ∈ L(H)
and T ∈ L(K) coincide.

By assumption, every element λ ∈ σp(T,H) does not belong to the essential spectrum
of T , and hence ker(T − λ) is finite dimensional and ran(T − λ) is a closed subspaces
of H, of finite codimension. Moreover, T − λ is of Fredholm index 0. Let

Vλ = {φ ∈ H : (φ,ψ) = 0 for all ψ ∈ ker(T − λ,H)}.

Notice that Vλ is a closed finite codimensional subspace of H, invariant under T .
Moreover, ker(T − λ, Vλ) = 0 and hence (T − λ)Vλ = Vλ by the invariance of the
Fredholm index under finite rank perturbations. Then the operator (T − λ, Vλ)

−1 is
bounded on Vλ and it is also symmetric, hence bounded by Proposition 3.1 in the
weak norm of the space K ⊖ ker(T − λ,H). In conclusion, we have ker(T − λ,H) =
ker(T − λ,K). □

Corollary 3.4. Assume, in addition to assumptions of Theorem 3.3, that σp(T,H) is
dense in σ(T,H). Then σ(T,H) = σ(T,K).

Proof. We have from Theorem 3.3 the equality of spectra σp(T,H) = σp(T,K), and
by density σ(T,H) ⊂ σ(T,K). On the other hand, we infer from (3.4) that σ(T,K) ⊂
σ(T,H). □

4. Finite section method

In this section we study the asymptotic equivalence of finite central truncations of a
linear operator T defined on the stronger space H and the weaker space K whose inner
product is defined in terms of A. It is helpful to have in mind the examples H = L2

and K = H−1/2 explained in section 2.
Let Hn ⊂ H be an increasing sequence of finite-dimensional subspaces, whose union

is dense in H. In most applications Hn is the Krylov subspace, that is the span of
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{ξ, T ξ, . . . , Tn−1ξ}, where ξ is a non-null vector of H. In this scenario, and others, the
chain of subspaces (Hn) is related to the operator T by the assumption

T (Hn) ⊂ Hn+1, n ≥ 0. (4.1)

This means that the block matrix decomposition of T with respect to the orthogonal
direct sum H = H0 ⊕ (H1 ⊖ H0) ⊕ (H2 ⊖ H1) ⊕ . . . has only the first sub-diagonal
non-zero. This structure is known in numerical analysis as a block Hessenberg matrix.
Note that we do not ask T to be a symmetric transformation. If it were so, the matrix
associated to T would have only the main and adjacent block-diagonals non-zero, a
classical structure known under the name of a block Jacobi matrix.

We denote by Pn the orthogonal projection of H onto Hn, and by Qn the orthogonal
projection of K onto Hn. Note that Pn → I in the strong operator topology of L(H).
Two sets of projections satisfy:

PnQn = Qn, QnPn = Pn, (4.2)

when regarded as linear endomorphisms of H. The compression An = PnAPn of the
operator A to the subspace Hn is positive, hence invertible.

Lemma 4.1. For every vector φ ∈ H one has

Qnφ = A−1
n PnAφ. (4.3)

Proof. For every vector ψ ∈ Hn we obtain

(φ−A−1
n PnAφ,ψ) = ⟨A(φ−A−1

n PnAφ), ψ⟩
= ⟨PnAφ− PnAPnA

−1
n PnAφ,ψ⟩ = ⟨PnAφ− PnAφ,ψ⟩ = 0.

This completes the proof. □
We are concerned with the asymptotic behavior of the spectra of the finite central

truncations. We focus on the distance between the finite central truncations

Tn := PnTPn and T̃n := QnTQn. (4.4)

The starting point is the following simple identity.

Lemma 4.2. For every n ≥ 0 one has

T̃n − Tn = A−1
n PnA(I − Pn)TPn. (4.5)

Moreover, if (4.1) holds, then

T̃n − Tn = A−1
n PnA(Pn+1 − Pn)TPn. (4.6)

Proof. Let φ,ψ ∈ Hn. Then we have

(T̃nφ,ψ) = ⟨AT̃nφ,ψ⟩ = ⟨APnT̃nφ, Pnψ⟩ = ⟨AnT̃nφ,ψ⟩,
and on the other hand

(T̃nφ,ψ) = (QnTQnφ,ψ) = (TQnφ,Qnψ) = (Tφ, ψ) = ⟨ATφ,ψ⟩.
Furthermore, we have

⟨ATφ,ψ⟩ = ⟨PnATPnφ,ψ⟩ = ⟨AnPnTPnφ,ψ⟩+ ⟨PnA(I − Pn)TPnφ,ψ⟩
= ⟨AnTnφ,ψ⟩+ ⟨PnA(I − Pn)TPnφ,ψ⟩
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Therefore, we have

AnT̃n = AnTn + PnA(I − Pn)TPn,

which immediately yields (4.5). The identity (4.6) follows from the observation (I −
Pn)TPn = (Pn+1 − Pn)TPn which holds because of (4.1). □

The residual term

Xn = A−1
n PnA(Pn+1 − Pn) (4.7)

in (4.6) naturally appears in the Cholesky type decomposition of the one-step ex-
tension of the matrix An to An+1. Specifically, the matrix An+1 has the following
block structure factorization with respect to the orthogonal decomposition Hn+1 =
Hn ⊕ (Hn+1 ⊖Hn):

An+1 =

[
An PnA(Pn+1 − Pn)

(Pn+1 − Pn)APn (Pn+1 − Pn)A(Pn+1 − Pn)

]
=

[
I 0
X∗

n I

] [
An 0
0 Dn+1

] [
I Xn

0 I

]
, (4.8)

where

Dn+1 = (Pn+1 − Pn)A(Pn+1 − Pn)−X∗
nAnXn.

This matrix factorization, sometimes abridged in numerical analysis by the initials
LDU, was instrumental in the classical study of Volterra type operators (see [8]), and
later entered in the theory of nest algebras [4].

We are interested in conditions assuring

lim
n→∞

∥T̃n − Tn∥ = 0. (4.9)

A stronger requirement would be

lim
n→∞

trace|T̃n − Tn| = 0, (4.10)

which would imply that the counting measures

µ̃n =
1

n

∑
λ∈σ(T̃n)

δλ

and

µn =
1

n

∑
λ∈σ(Tn)

δλ

have the same cluster points in the weak-* topology, This is a much desired outcome
in the theory of orthogonal polynomials and random matrices, see for instance [18, 19].

The weaker condition (4.9) is well suited for numerical range estimates. Indeed,
remark first that

W (Tn) ⊂W (T ), (4.11)

because in the definition of W (Tn) only a subset of unit vectors in H are occurring.

Assume next that λn ∈ σ(T̃n) ⊂ W (T̃n). Pick a unit vector φ ∈ Hn so that λn =

⟨T̃nφ,φ⟩. Since
⟨(T̃n − Tn)φ,φ⟩ ≤ ∥T̃n − Tn∥,
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we infer from (4.11) that

dist(λn,W (T )) ≤ ∥T̃n − Tn∥.
Thus, if λ is the limit of a subsequence λn(k) we find

dist(λ,W (T )) ≤ lim sup ∥T̃n − Tn∥ = 0.

One obvious instance for condition (4.9) to hold is when the operator A is block-
diagonal with respect to the chain of subspaces Hn:

A = diag (D0, D1, D2, . . .). (4.12)

In such a case, Xn = 0 for all n, and (4.9) is achieved by (4.6).
A second sufficient condition for the asymptotic equivalence (4.9) is

lim
n→∞

∥A−1
n PnA(Pn+1 − Pn)∥ = 0, (4.13)

and a third

sup
n

∥A−1
n PnA(Pn+1 − Pn)∥ <∞ and lim

n→∞
∥(I − Pn)TPn∥ = 0. (4.14)

Next we show that the latter two sufficient conditions for the asymptotic equivalence
of the two sequences of finite central truncations are not affected by a structured
compact perturbation of the operator A. By a strictly lower triangular operator with
respect to the chain of subspaces (Hn)

∞
n=0 we mean an element L ∈ L(H) satisfying

PnL = PnLPn−1, n ≥ 1

with P0 ≡ 0, or more intuitively and equivalently

L∗Pn = Pn−1L
∗Pn, n ≥ 1,

which in turn implies L∗(Hn) ⊂ Hn−1. Note that in this case ker(I +L) = 0.In fact, if
(I + L)φ = 0, then

Pnφ = −PnLPn−1φ, n ≥ 1,

and hence

Pnφ = −PnLPn−1φ = PnLPn−1LPn−2φ = . . . (−1)nPnLPn−1 . . . LP0φ = 0.

If L is in addition compact, then I + L is invertible by the Fredholm alternative.
The next result affects only perturbations of the weaker norm induced by the operator

A.

Theorem 4.3. Let (x, y) = ⟨Ax, y⟩ be a second, weaker inner product structure on a
Hilbert space H, implemented by the positive operator A ∈ L(H). Suppose that one of
the following two assumptions holds: either

lim
n→∞

∥A−1
n PnA(Pn+1 − Pn)∥ = 0 (4.15)

or
sup
n

∥A−1
n PnA(Pn+1 − Pn)∥ <∞. (4.16)

Then for any strictly lower triangular compact operator L ∈ L(H), the multiplicative
perturbation B = (I + L)A(I + L∗) fulfills the same conditions, respectively:

lim
n→∞

∥B−1
n PnB(Pn+1 − Pn)∥ = 0, (4.17)
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or
sup
n

∥B−1
n PnB(Pn+1 − Pn)∥ <∞. (4.18)

Proof. Recall that any compact operator K satisfies

lim
n→∞

∥(I − Pn)K∥ = lim
n→∞

∥K(I − Pn)∥ = 0.

In particular, the finite central truncations Kn = PnKPn converge in operator norm
to K. To prove this it is enough to approximate K by finite rank operators.

Assume that either (4.15) or (4.16) holds true. Denote, as customary by now, Ln =
PnLPn and consider the matrix decomposition

I + Ln+1 =

[
I + Ln 0
Gn Fn

]
where Fn = (Pn+1−Pn)(I+L)(Pn+1−Pn) and Gn = (Pn+1−Pn)LPn. Note that I+Ln

is invertible, that limn→∞Gn = 0 by the compactness assumption, and supn ∥Fn∥ ≤
∥I + L∥.

The LD factorization is in order:

I + Ln+1 =

[
I + Ln 0
Gn Fn

]
=

[
I 0

Gn(I + Ln)
−1 I

] [
I + Ln 0

0 Fn

]
.

Next we multiply I + Ln+1 by the left factor of An+1 in (4.8):

(I + Ln+1)

[
I 0
X∗

n I

]
=

[
I 0

Gn(I + Ln)
−1 I

] [
I + Ln 0
FnX

∗
n Fn

]
=

[
I 0

GnX
∗
n(I + Ln)

−1 I

] [
I 0

FnX
∗
n(I + Ln)

−1 I

] [
I + Ln 0

0 Fn

]
.

All in all

Pn+1BPn+1 = Pn+1(I + L)Pn+1APn+1(I + L∗)Pn+1

=

[
I 0

(Gn + FnX
∗
n)(I + Ln)

−1 I

] [
Bn 0
0 FnDn+1F

∗
n

] [
I (I + L∗

n)
−1(G∗

n +XnF
∗
n)

0 I

]
We obtain this way and from the factorization similar to 4.8 a closed form expression:

B−1
n PnB(Pn+1 − Pn) = (I + L∗

n)
−1(G∗

n +XnF
∗
n). (4.19)

It remains to remark that supn ∥(I + L∗
n)

−1∥ < ∞. This can be inferred from
limn ∥Ln − L∥ = 0 and the factorization

(I + Ln) = (I + L+ (Ln − L)) = (I + L)(I + (I + L)−1(Ln − L)).

This completes the proof. □

5. Examples

5.1. Spectrum of the Neumann-Poincaré operator. Let Ω be a bounded domain
in Rd, d ≥ 2, with the Lipschitz boundary. The Neumann-Poincaré (NP) operator on
∂Ω, denoted by K, is defined by

K[φ](x) = p.v.
1

ωd

∫
∂D

(x− y) · ν(y)
|x− y|d

φ(y) dσ(y) , x ∈ ∂Ω, (5.1)
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where p.v. stands for the Cauchy principal value, ωd the area of the unit sphere in Rd,
and ν(y) the outward unit normal vector to ∂Ω at y. This operator appears naturally
when solving Dirichlet or Neumann boundary value problems for Laplacian using layer
potentials. In fact, if we take the normal derivative of the single layer potential in (2.2),
then the following jump relation holds:

∂

∂ν
S[φ]

∣∣∣
±
(x) =

(
∓1

2
I −K∗

)
[φ](x) a.e. x ∈ ∂Ω, (5.2)

where the subscripts + and − above indicate the limits from outside and inside of Ω,
respectively, and K∗ (this is also called the NP operator) is the adjoint operator of K
in L2-space (see, for example, [1, 7]).

If ∂Ω is C1,α for some α > 0, then the operator K∗ is compact on L2(∂Ω) (and

H−1/2(∂Ω)). It is worth mentioning that if ∂Ω is merely Lipschitz continuous, then K∗

is a singular integral operator and its boundedness on L2(∂Ω) was proved in [5]. The
NP operator is not symmetric with respect to the inner product on H = L2(∂Ω) unless
Ω is a disk or a ball [16]. However, Plemelj’s symmetrization principle

SK∗ = KS (5.3)

makes it possible for K∗ to be realized as a symmetric operator on K [13], and K is

actually the space H−1/2(∂Ω) [11]. So, the two norm scenario shows that K∗ is bounded

on H−1/2(∂Ω), and

σ(K∗,H−1/2(∂Ω)) = σ(K∗, L2(∂Ω)), (5.4)

provided that ∂Ω is C1,α smooth (so that σ(K∗,H−1/2(∂Ω)) is discrete with 0 as accu-
mulation point). We emphasize that if ∂Ω has a corner, then K∗ may have continuous
spectrum as was shown for intersecting disks in [12], and we do not know if (5.4) holds
in this case. We also emphasize that K∗ exhibits a completely different spectra on Lp

spaces for p ̸= 2 (see [17]).
Let us now consider the NP operator for the Lamé system of linear elastostatics. Let

Γ = (Γij)
d
i,j=1 is the Kelvin matrix of fundamental solutions to the Lamé operator:

Γij(x) =


α1

4π

δij
|x|

+
α2

4π

xixj
|x|3

, if d = 3,

−α1

2π
δij ln |x|+

α2

2π

xixj
|x|2

, if d = 2,
(5.5)

where

α1 =
1

2

(
1

µ
+

1

2µ+ λ

)
and α2 =

1

2

(
1

µ
− 1

2µ+ λ

)
. (5.6)

Here λ and µ are Lamé constants. The NP operator for the Lamé system is defined by

K[f ](x) := p.v.

∫
∂Ω
∂νyΓ(x− y)f(y)dσ(y) a.e. x ∈ ∂Ω. (5.7)

Here, the conormal derivative on ∂Ω is defined to be

∂νu := (C∇̂u)n = λ(∇ · u)n+ 2µ(∇̂u)n on ∂Ω, (5.8)
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with n being the outward unit normal to ∂Ω, and the conormal derivative ∂νyΓ(x−y)
of the Kelvin matrix with respect to y-variables is defined by

∂νyΓ(x− y)b = ∂νy(Γ(x− y)b) (5.9)

for any constant vector b.
There is a significant difference between NP operators for Laplace and Lamé opera-

tors: The one for the Lamé operator is not compact even if the domain has a smooth
boundary (see [6]). However, it is proved in [3] that if the domain Ω in two dimensions
has C1,α boundary, then K2−k20 is compact where k0 =

µ
2(2µ+λ) . As an immediate con-

sequence it is shown that the elasto-static NP operator K on planar domains with C1,α

boundaries has only eigenvalues accumulating at k0 and −k0. Since the symmetrization
principle like (5.3) holds with the single layer potential for the Lamé system, we infer
from results of this paper that

σ(K∗,H−1/2(∂Ω)2) = σ(K∗, L2(∂Ω)2), (5.10)

if Ω is a planar domain and has C1,α boundary.

5.2. Restriction operators on spaces of analytic functions. We illustrate below
by means of a simple scenario what can go wrong with the spectral asymptotics of the
finite central truncation of a simple operator, in the presence of two non-equivalent
Hilbert space norms.

Let Ω be a bounded, simply connected open set of the complex plane and denote
by L2

a(Ω) the associated Bergman space. That is the space of analytic functions in
Ω which are square summable with respect to the area measure dA. Let µ be an
arbitrary positive measure, with infinite and closed support K contained in Ω. Then
the restriction map, defined by

R : L2
a(Ω) −→ L2(µ), Rf = f |K , (5.11)

is linear and compact. The operator A = R∗R is positive, compact, injective and
non-invertible. The assumption about the cardinality of K implies, via the uniqueness
principle for analytic functions, that the linear operator A is injective.

For a detailed potential theoretic study of the restriction map we refer to [10, 18].
The scenario of two norms is now evident:

⟨Af, g⟩2,Ω = ⟨R∗Rf, g⟩2,Ω = ⟨f, g⟩2,µ, f, g ∈ L2
a(Ω).

Let T = Mz denote the multiplication by the complex variable operator (sometimes
called the Bergman shift) and let Hn be the Krylov subspaces generated by the constant
function and T , that is the spaces of polynomials of degree less than n:

Hn = {p ∈ C[z], deg p < n}.
The finite central truncations of T with respect to the two norms are classical. First

the spectra of Tn, the compressions of T to the spaces Hn, coincide with the zeros of the
complex orthogonal polynomials. Their asymptotic behavior is quite involved, and not
fully understood, reflecting the geometry of the boundary of Ω, the equipotential lines
of the complement and the Schwarz reflection map, see for details [19]. On the other

hand, finite central truncations T̃n of T in the norm of the space L2(µ) are governed

by the normality of the operator T ∈ L2(µ). In particular, the spectra of T̃n cluster
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in the convex hull of the support of the measure µ. As the choice of the measure
µ was arbitrary, the two finite central truncations are far from being asymptotically
equivalent.

On the other hand, letting aside the Krylov subspace method, let ϕn denote the
eigenfunctions of the positive compact operator A. Since A is injective, the system
(ϕn)

∞
n=0 spans the Bergman space L2

a(Ω) and at the same time it is dense in the closure
of the range of the restriction operator R in L2(µ). Choose now

Hn = span{ϕ0, ϕ1, . . . , ϕn−1}.

Since the operator A is diagonal with respect to the chain of subspaces Hn, Lemma
4.2 implies Tn = T̃n. That is the two finite central truncations of the operator T are in
this case identical.

The ellipse offers the optimal scenario for both cases analyzed above. Indeed, de-
noting E a solid ellipse with foci at ±1, Chebyshev polynomials of the second kind
are orthogonal and span the Bergman space L2

a(E), and in the same time they are
orthogonal and span L2(µ), where dµ = dx√

1−x2
, see [10] for details.

5.3. Pseudodifferential operators of order zero. Let T = P (x,D) denote a pseudo-
differential operator of order zero, acting on a torus Tn. The basis formed by the
characters eiα·x, α ∈ Zn, diagonalizes all partial derivative operators. Hence, the finite
central truncations of T in any Sobolev space W s,2(Tn) are, according to Lemma 4.2,
asymptotically equivalent. This simple observation implies that the asymptotics of the
finite central truncations of P (x,D), or any operator T which is bounded on every
W s,2(Tn), is not sensitive to the Sobolev scale, as soon as one works with increasing
sequences of finite projections on the Fourier modes.

When dealing with the NP or Lamé operator in two real dimensions, a parametriza-
tion of the (assumed) smooth Jordan boundary by the unit circle would put these
operators in the framework of this subsection. Indeed, it is well known that the NP
operators for the Laplace equation or Lamé system is bounded on Hs(∂Ω) and has
values in the same space for any s if ∂Ω is C∞. In this way the finite central trun-
cations along the pull-back of the Fourier modes on ∂Ω will have the same spectral
asymptotics, regardless of the underlying Sobolev space.

Finally, with respect to the same nest of finite dimensional Fourier modes subspaces,
we note that a perturbation of the norm of the energy space of the form ⟨(I +L)S(I +
L∗)f, f⟩2,∂Ω, where L is any lower triangular and compact operator, will not alter the
spectral asymptotics of the two sequences of truncated NP operators.
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