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1 Electromagnetic Polarization Tensors

Layer Potentials for the Laplacian

(1

2—1n]aj\ d=2,
Dla)=4"" |

SR d> 3,

\(2—d)wd

where wy is the area of (d—1) dimensional unit sphere. The
single and double layer potentials of the density function
¢ on B are defined by

Spola) = | Tle=y)o(doty). « e
d
Dyo(z LBa—%rx— b(y)doly), =€RI\IB.
Trace formula (Fabes-Jodeit-Riviere, Verchota):
0 1
5,2580(2) = (F51 + Kp)o(z),
(Dpé)ls = (751 + Kp)olw), = € 0B,

where

Kpd(z) = —pv. /8 T 900 4o (y)

W B ’33 —y’d

and K% is the L*-adjoint of Kp.



Polarization Tensor

B: a Lipschitz bounded domain in R?

The conductivity of B is k (k # 1), and that of back-
ground is 1.

The polarization tensor is M = (my;), 1 < 14,5 <d, is
defined by

myi= (1= ) |38+ =1 [ 52 wdotw)].

where 1); is the unique solution of
(ij(x):(), r € BURY\ B,
2?j|+ — |- =0 ondB,

< 0

8y+¢j—k —1); =v; on 0B,

| ¥j(x) — 0 as x| — oc.

(Polya-Szego-Schiffer, Cedio.Fenya-Moskow-Vogelius, Friedman-
Vogelius)

Theorem 1.1 M s symmetric and positive-definite.

[Cedio.Fenya-Moskow-Vogelius, Movchan-Serkov]



V=
Thus
0
k=1 | ugzvioty
_ /8 ; yl-(%] + )M = Kp) " (v)(y)do(y)
—— [ ygdot) + (et 5) | = K5) 0 0)dot)
0B

OB
k

= —ay1Bl+ 5 | w(M — Ky) ) w)doy)

1 * \—1 , o
o TSB = K A= g

Therefore we prove that the polarization tensor M associ-
ated with B and £ is given by

L) my= /a N = K5) ) (da(y),

Generalized Polarization Tensor
Q = (ala SR O‘d)?ﬁ = (617 T 76d) S Nd) define the
Mozﬁ by

Mg = / Yy da(y)do(y),
OB
where

da(x) = (N — K3) (v, - Vy*)(z), =€ IB.



Properties of GPT

Theorem 1.2 (Symmetry) Suppose that a, and bg
are constants such that ) a.y® and ) _; bsy® are har-
monic polynomials. Then

Z aabgmag = Z aabgmga.
.3 .3

Theorem 1.3 (Positivity) There exists a constant C
depending only on the Lipschitz character of B such
that if Y .5 aax® is a harmonic polynomial, then

k? 1
/ \V a,x®)|Pdr < i ’ Z aaagmag‘
acl

a,fel

<C’/\V aqx”)|[*dz.

el
In particular, if |a| = || = 1, then
k+1
|B| < o1 | Z anagmas| < C|B].

a,fel



Theorem 1.4 (Center of Mass) Let B be a Lips-
chitz domain and x* the center of mass of B. Let
aj = ej and Bj = 2e;, g =1,...,d. Then there exists
C' which depends only on the Lipschitz character of B
such that

diam(B).

Theorem 1.5 (Dirichlet-to-Neumann map) Let ()
be o domain compactly containing B. Then the GTP
uniquely determines the Dirichlet-to-Neumann map on

0€2, and hence k and B.



Asymptotic Expansion of Voltage Potential

e ): conductor in R? (with a connected Lipschitz bound-
ary),

e Flectric inhomogeneity D in () :
D = U;n:le = Ugnzl(EBj + Zj)

where B; is a bounded Lipschitz domain in R? and
z;j represents the location of D;, and € is the common
order of magnitude.

e D; has conductivity k;
e D; are well-separated: there exists dy > 0 such that

inlf) dist(z, 082) > dy, |z — zj| > db.
T



Let u,. be the solution to
(

v-(x@\JD + 3 kax(D)) Vi =0 in 0

$ =1 =1
ou,
\ 5\39 =9

Theorem 1.6 (Asymptotic Expansion) On 0f)

n—lal+1 |a|+|ﬁ|

lﬁl

0" U (2)) M50/ N (2, 2)

where U 1is the background solution, Miﬁ = M.s(k;, B;)
are GPT, and N(x,z) is the Neumann function.



2 Helmholtz Equation

D = 2+ 0B. Consider

1
(2.1) V- (—=Vu) +wsu =0 in €,

Hs
with the boundary condition u = f on 0€2, where w > 0 is
a given frequency. Here us and €5 denote the constitutive

parameters of the inhomogeneity defined by

e, e \E,
22w ={ 95D

_J e, TE Q) \ D,
(2.3) 65([13) = { e, rc D,

where u, g, €, and ¢ are positive constants. If we allow
the degenerate case § = 0, then the functions ps(z) and
es(x) equal the constants pg and y. Problem (2.1) can be

written as
)

(A + wepup)u =0 in Q\ D,

(A +w?ep)u =0 in D,

1 1

(2.4) \ —@\_ — —@\Jr =0 ondD,
o Ov

u|- —ul+ =0 ondD,

u=f on Of.
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Layer Potential. Let ky := w./couo and k = w/ep.
Let ®x(x) be the fundamental solution for A + k*, that is
for x # 0,
iﬂé(k‘x_y‘)v d:27
(I)]{;(ZU) = eik|x_y’

R d= 37
|z — y|

where Hg is the Hankel function of the first kind of order
0. Let
P(z) = Py(x).

Let

Shio(z) = / Dz — y)p(y)doly), = € R,
oD

k _ OPk(z —y) o . d
Dheta) = | T Hoty)doty). « e R\ 0D,

Jump Relation:

A(Spy) 1 *
al; ‘i(@ :( + §]+ (’le)) )80(33)7 a.e. x € 0D,
1
(D%SO)H = ($§I + K%)go(x), a.c. x € 0D,
where

Kheta) = p. [ L)

oY) p(y)do(y).
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Theorem 2.1 Suppose that k3 is not a Dirichlet eigen-
value for the Laplacian on D. For each (F,G) € HY(OD)x
L*(OD), there exists a unique solution (f,g) € L*(0D)x
L*(0D) to the integral equation

Spf—Spg=F

la(sz]%f)‘ _ia(8g09)| _a on 9.
w Oov 'm puy Ov 't

There exists a constant C' independent of F' and G such
that

1l z2om) + 1191l 200y < CUIE 100y + Gl 2200))-

Moreover, if kg and k go to zero, then the constant C
can be chosen independently of ky and k.
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Representation of Solutions

Theorem 2.2 Suppose that k3 is not a Dirichlet eigen-
value for the Laplacian on D. Let u be the solution of

(2.4) and g := 5%|9q. Define
Hiz) = S(9)(w) - DY), o eRI\ I,

and (p,) € L*(OD) x L*(0D) be the unique solution
of

Spy — S = H

15(31‘590)‘ _ia(sj’;w)} 1oy ondD.
w Oov '— py Ov 't g v

Then u can be represented as

" H(z)+SPp(z), = eQ\D,

u(x) =
Sho(x), x € D.

Moreover, there exists C' > 0 independent of H such

that

el r2om) + 1Yl 200y < CU1H |20y + IVHI 12000 -
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Let G(x,y) be the Dirichlet Green function for A + k2
in €2, i.e., for each y € (2,

(A + k) G(z,y) = 0,(x), x €,
G(z,y) =0, x € 0.
Define

Gpp(z) = /aD G(z,y)p(y)doly), = €.

Theorem 2.3 Let ¢ be the function defined before.
Then

Ou, . Odug (G py)
5(1’) = E(x) =3, (x), x € .
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Asymptotic Formula

Theorem 2.4 The following pointwise asymptotic ex-
pansion on OS2 holds for d =2, 3:

n+1 n+l—|3| slal+1s

0 0
a_'l;< ) UO 5d QZ Z '5' >

161=0 " |a[=0

n-+2—|al—|3|~d

s T,z
(- % w1Qp><muo<z>>>f‘%i;; s
+O(5n+d),

where the remainder O(569") is dominated by C(Sd+”\\f\\H1/g(aQ)
for some C' independent of x € Of).

Here,

W, — /8 b (wido{w)

koo a
82690& — SBO Yo =1

Lo(SEen) LSV _ Lowe MO
poovo T p Ov g Ov

Important Fact.

7
Wag = mas(—) + O(9).
o
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If D = U (0Bs + z5), well separated. The mag-
netic permeability and electric permittivity of the inclusion
0By + z5 are ug and €5, s = 1,...,m.

Theorem 2.5 The following pointwise asymptotic ex-
pansion on OS2 holds for d =2, 3:

ou ouyg
) = S2a)
m d+1 d+1—|f|
glel+s] 007G (x, 2)
_sd—2 o z ) 5
0 SZY > al ! 0 up(2) ov(z) afs
s=1[B]=0 |a|=0
+ 0(6%9).
Here Wasﬁ corresponds to By, lis, €.
The first order term:
ou 6u0
5, %) =5 (@) -
. OV.G(x, z
_ M
5! (Vo) o)
0G(z, z)
2 _ )
+Ppole = el Blun(2) =5 =)

+ O,

This formula is obtained by Vogelius-Volkov.
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3 Detection of Inclusions

Inverse Problem. Given f, measure a“ Using (f, a“),
determine the location and size of inclusions.

We apply plane waves:
f=e*"r e =1.
Let us be the corresponding solution.

Goal: Reconstruct the electromagnetic inhomogeneities
{D;}*, from limited current-to-voltage pairs

1kO-x 8%5
e"™ a0, =—loa |-
ov

Define A(g(’x‘,ﬁ k) by

Sﬁ(% 00)(x) — Da(e™"¥]g0)(x)
ezk\xl 1
= Aa(ﬂ 0, k)47r\a:\ O(w)

as |x| — oo.

Note that A5(|x|,9 k) is directly computed from the

current-to voltage pairs (eikg.y‘aﬂa %’89).

17



Theorem 3.1
T

= X
As(,0.k) = 8K :[m - Ml(%) 0
=1

]

HE =15+ 0,
0

for any L und 6 € 8%, where O(6*) is independent of
x
the set of points {z}]",.

Reconstruction of Single Inclusion

Magnitude:
‘A(S(_e) (97 k)‘ ~ 63'

Location:

e As(0,—0.F)
idkt-z1 _ o\Y, )
e A,(—0.0.%) + O(6).
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Multiple Inclusions

Assume that By, for [ = 1,...,m, are balls.

M, <ﬂ> = (1— ﬂ>ml]37

Ho Ho
where I3 is the 3 X 3 identity matrix and
m; = 87‘("3[’ H .
i+ Mo
1. Let
(0) = o Aal .0, B)
g |$’7 1253 ) |.’E’7 )

2. Let M be the analytic variety
M={¢eche¢=1)
S? is a totally real submanifold of M. On M x M,

Ho €0

g6, &) = ) e Mat)a [(1 ~ g &+ (L - 1)1B)
=1

This is a unique analytic continuation of g.
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3. Idea of Calderon and Sylvester-Uhlmann: for any
¢ € R3 there exist &, & € M such that & = % Since

1
&6 =1-k¢f

we can rewrite g as follows

CNC e [ P Lo a
066 = 30 (1= Rm(L— R + (i)
Define

(&) = g(&1, &),
Then

FEE) = S L),
=1

where L; are, second order differential operators with con-
stant coefficients.
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4 The Full Maxwell’s Equations

Let Ej denote the electric field in the presence of the im-
perfections. It is the solution to full Maxwell’s equations

1
V X <—V><E5) —w2€5E5:O , iHQ,
Hs

with
Esxv=f , onofl.

Let
1

F@w%=ﬂ%yﬂ+k2

Apply |
flx) = ™0 x v,

Define As(%, 0,0, k) by

m;

V><I‘><1/-E5—/ VxEsxv-T

o0 o0
= A(;(—,Q,@’,k) -I-O(—)
|z| || ||

as |x| — oo,
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Using an asymptotic expansion formula of Ammari-Vogelius-
Volkov,

Theorem 4.1
T

A 7661
= i'5 [(Ml(%xe X (6% 8))) x %

€0 r xt €0 ik(0—2) 2
11— —)I—-—— )M;(—)0 x 0 o]
(1= = M0 x 0)]e
+O(6Y).
for any ‘%, 0, and ' € S?, where the remainder O(5%)
x

is independent of the set of points {z}]" ;.
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