Asymptotic expansion for the Helmholtz equation and Applications (Based on Joint Works with Habib Ammari at Ecole Polytechnique)

Hyeonbae Kang Seoul National University www.math.snu.ac.kr/ hkang

International Workshop on Spectra of Differential Operators and Inverse Problems RIMS, Kyoto, Oct. 28 - Nov. 1, 2002

Contents
1 Electromagnetic Polarization Tensors 3
2 Helmholtz Equation 10
3 Detection of Inclusions 17
4 The Full Maxwell's Equations 21

1 Electromagnetic Polarization Tensors

Layer Potentials for the Laplacian

$$
\Gamma(x)= \begin{cases}\frac{1}{2 \pi} \ln |x|, & d=2 \\ \frac{1}{(2-d) \omega_{d}}|x|^{2-d}, & d \geq 3\end{cases}
$$

where ω_{d} is the area of ($d-1$) dimensional unit sphere. The single and double layer potentials of the density function ϕ on B are defined by

$$
\begin{aligned}
\mathcal{S}_{B} \phi(x) & :=\int_{\partial B} \Gamma(x-y) \phi(y) d \sigma(y), \quad x \in \mathbb{R}^{d} \\
\mathcal{D}_{B} \phi(x) & :=\int_{\partial B} \frac{\partial}{\partial \nu_{y}} \Gamma(x-y) \phi(y) d \sigma(y), \quad x \in \mathbb{R}^{d} \backslash \partial B
\end{aligned}
$$

Trace formula (Fabes-Jodeit-Riviere, Verchota):

$$
\begin{aligned}
\frac{\partial}{\partial \nu^{ \pm}} \mathcal{S}_{B} \phi(x) & =\left(\pm \frac{1}{2} I+\mathcal{K}_{B}^{*}\right) \phi(x), \\
\left.\left(\mathcal{D}_{B} \phi\right)\right|_{ \pm} & =\left(\mp \frac{1}{2} I+\mathcal{K}_{B}\right) \phi(x), \quad x \in \partial B,
\end{aligned}
$$

where

$$
\mathcal{K}_{B} \phi(x)=\frac{1}{\omega_{d}} \text { p.v. } \int_{\partial B} \frac{\left\langle x-y, \nu_{y}\right\rangle}{|x-y|^{d}} \phi(y) d \sigma(y)
$$

and \mathcal{K}_{B}^{*} is the L^{2}-adjoint of \mathcal{K}_{B}.

Polarization Tensor

B : a Lipschitz bounded domain in \mathbb{R}^{d}
The conductivity of B is $k(k \neq 1)$, and that of background is 1 .

The polarization tensor is $M=\left(m_{i j}\right), 1 \leq i, j \leq d$, is defined by

$$
m_{i j}:=\left(1-\frac{1}{k}\right)\left[\delta_{i j}|B|+(k-1) \int_{\partial B} y_{i} \frac{\partial \psi_{j}}{\partial \nu^{+}}(y) d \sigma(y)\right]
$$

where ψ_{j} is the unique solution of

$$
\left\{\begin{array}{l}
\Delta \psi_{j}(x)=0, \quad x \in B \cup \mathbb{R}^{d} \backslash \bar{B} \\
\left.\psi_{j}\right|_{+}-\left.\psi_{j}\right|_{-}=0 \quad \text { on } \partial B \\
\frac{\partial}{\partial \nu^{+}} \psi_{j}-k \frac{\partial}{\partial \nu^{-}} \psi_{j}=\nu_{j} \quad \text { on } \partial B \\
\psi_{j}(x) \rightarrow 0 \text { as }|x| \rightarrow \infty
\end{array}\right.
$$

(Polya-Szego-Schiffer, Cedio.Fenya-Moskow-Vogelius, FriedmanVogelius)

Theorem 1.1 M is symmetric and positive-definite.
[Cedio.Fenya-Moskow-Vogelius, Movchan-Serkov]

$$
\psi_{j}=\frac{1}{k-1} \mathcal{S}_{B}\left(\lambda I-\mathcal{K}_{B}^{*}\right)^{-1}\left(\nu_{j}\right), \quad \lambda:=\frac{k+1}{2(k-1)} .
$$

Thus

$$
\begin{aligned}
& (k-1) \int_{\partial B} y_{i} \frac{\partial}{\partial \nu^{+}} \psi_{j}(y) d \sigma(y) \\
& =\int_{\partial B} y_{i}\left(\frac{1}{2} I+\mathcal{K}_{B}^{*}\right)\left(\lambda I-\mathcal{K}_{B}^{*}\right)^{-1}\left(\nu_{j}\right)(y) d \sigma(y) \\
& =-\int_{\partial B} y_{i} \nu_{j} d \sigma(y)+\left(\lambda+\frac{1}{2}\right) \int_{\partial B} y_{i}\left(\lambda I-\mathcal{K}_{B}^{*}\right)^{-1}\left(\nu_{j}\right)(y) d \sigma(y) \\
& =-\delta_{i j}|B|+\frac{k}{k-1} \int_{\partial B} y_{i}\left(\lambda I-\mathcal{K}_{B}^{*}\right)^{-1}\left(\nu_{j}\right)(y) d \sigma(y) .
\end{aligned}
$$

Therefore we prove that the polarization tensor M associated with B and k is given by

$$
\begin{equation*}
m_{i j}=\int_{\partial B} y_{i}\left(\lambda I-\mathcal{K}_{B}^{*}\right)^{-1}\left(\nu_{j}\right)(y) d \sigma(y) . \tag{1.1}
\end{equation*}
$$

Generalized Polarization Tensor

$$
\alpha=\left(\alpha_{1}, \ldots, \alpha_{d}\right), \beta=\left(\beta_{1}, \cdots, \beta_{d}\right) \in \mathbb{N}^{d} \text {, define the }
$$

$M_{\alpha \beta}$ by

$$
M_{\alpha \beta}:=\int_{\partial B} y^{\beta} \phi_{\alpha}(y) d \sigma(y),
$$

where

$$
\phi_{\alpha}(x):=\left(\lambda I-\mathcal{K}_{B}^{*}\right)^{-1}\left(\nu_{y} \cdot \nabla y^{\alpha}\right)(x), \quad x \in \partial B .
$$

Properties of GPT

Theorem 1.2 (Symmetry) Suppose that a_{α} and b_{β} are constants such that $\sum_{\alpha} a_{\alpha} y^{\alpha}$ and $\sum_{\beta} b_{\beta} y^{\beta}$ are harmonic polynomials. Then

$$
\sum_{\alpha, \beta} a_{\alpha} b_{\beta} m_{\alpha \beta}=\sum_{\alpha, \beta} a_{\alpha} b_{\beta} m_{\beta \alpha}
$$

Theorem 1.3 (Positivity) There exists a constant C depending only on the Lipschitz character of B such that if $\sum_{\alpha \in I} a_{\alpha} x^{\alpha}$ is a harmonic polynomial, then

$$
\begin{aligned}
\int_{B}\left|\nabla\left(\sum_{\alpha \in I} a_{\alpha} x^{\alpha}\right)\right|^{2} d x & \leq \frac{k+1}{|k-1|}\left|\sum_{\alpha, \beta \in I} a_{\alpha} a_{\beta} m_{\alpha \beta}\right| \\
& \leq C \int_{B}\left|\nabla\left(\sum_{\alpha \in I} a_{\alpha} x^{\alpha}\right)\right|^{2} d x
\end{aligned}
$$

In particular, if $|\alpha|=|\beta|=1$, then

$$
|B| \leq \frac{k+1}{|k-1|}\left|\sum_{\alpha, \beta \in I} a_{\alpha} a_{\beta} m_{\alpha \beta}\right| \leq C|B| .
$$

Theorem 1.4 (Center of Mass) Let B be a Lipschitz domain and x^{*} the center of mass of B. Let $\alpha_{j}:=e_{j}$ and $\beta_{j}:=2 e_{j}, j=1, \ldots, d$. Then there exists C which depends only on the Lipschitz character of B such that

$$
\left|\frac{m_{\alpha_{j} \beta_{j}}}{m_{j j}}-x_{j}^{*}\right| \leq C \frac{|k-1|}{k+1} \operatorname{diam}(B) .
$$

Theorem 1.5 (Dirichlet-to-Neumann map) Let Ω be a domain compactly containing \bar{B}. Then the GTP uniquely determines the Dirichlet-to-Neumann map on $\partial \Omega$, and hence k and B.

Asymptotic Expansion of Voltage Potential

- Ω : conductor in \mathbb{R}^{d} (with a connected Lipschitz boundary),
- Electric inhomogeneity D in Ω :

$$
D=\cup_{j=1}^{m} D_{j}=\cup_{j=1}^{m}\left(\epsilon B_{j}+z_{j}\right)
$$

where B_{j} is a bounded Lipschitz domain in \mathbb{R}^{d} and z_{j} represents the location of D_{j}, and ϵ is the common order of magnitude.

- D_{j} has conductivity k_{j}
- D_{j} are well-separated: there exists $d_{0}>0$ such that

$$
\inf _{x \in D} \operatorname{dist}(x, \partial \Omega)>d_{0}, \quad\left|z_{i}-z_{j}\right|>d_{0} .
$$

Let u_{ϵ} be the solution to

$$
\left\{\begin{array}{l}
\nabla \cdot\left(\chi\left(\Omega \backslash \bigcup_{l=1}^{m} \overline{D_{l}}\right)+\sum_{l=1}^{m} k_{l} \chi\left(D_{l}\right)\right) \nabla u_{\epsilon}=0 \quad \text { in } \Omega, \\
\left.\frac{\partial u_{\epsilon}}{\partial \nu}\right|_{\partial \Omega}=g .
\end{array}\right.
$$

Theorem 1.6 (Asymptotic Expansion) $O n \partial \Omega$

$$
\begin{aligned}
& u_{\epsilon}(x)=U(x) \\
& -\epsilon^{d-2} \sum_{j=1}^{m} \sum_{|\alpha|=1}^{d} \sum_{|\beta|=1}^{n-|\alpha|+1} \frac{\epsilon^{|\alpha|+|\beta|}}{\alpha!\beta!} \partial^{\alpha} U\left(z_{j}\right) M_{\alpha \beta}^{j} \partial_{z}^{\beta} N\left(x, z_{j}\right) \\
& +O\left(\epsilon^{2 d}\right),
\end{aligned}
$$

where U is the background solution, $M_{\alpha \beta}^{j}=M_{\alpha \beta}\left(k_{j}, B_{j}\right)$ are GPT, and $N(x, z)$ is the Neumann function.

2 Helmholtz Equation

$D=z+\delta B$. Consider

$$
\begin{equation*}
\nabla \cdot\left(\frac{1}{\mu_{\delta}} \nabla u\right)+\omega^{2} \varepsilon_{\delta} u=0 \text { in } \Omega \tag{2.1}
\end{equation*}
$$

with the boundary condition $u=f$ on $\partial \Omega$, where $\omega>0$ is a given frequency. Here μ_{δ} and ε_{δ} denote the constitutive parameters of the inhomogeneity defined by

$$
\begin{align*}
& \mu_{\delta}(x)= \begin{cases}\mu_{0}, & x \in \Omega \backslash \bar{D} \\
\mu, & x \in D\end{cases} \tag{2.2}\\
& \varepsilon_{\delta}(x)= \begin{cases}\varepsilon_{0}, & x \in \Omega \backslash \bar{D} \\
\varepsilon, & x \in D\end{cases}
\end{align*}
$$

where $\mu, \mu_{0}, \varepsilon$, and ε_{0} are positive constants. If we allow the degenerate case $\delta=0$, then the functions $\mu_{\delta}(x)$ and $\varepsilon_{\delta}(x)$ equal the constants μ_{0} and ε_{0}. Problem (2.1) can be written as
(2.4)

$$
\left\{\begin{array}{l}
\left(\Delta+\omega^{2} \varepsilon_{0} \mu_{0}\right) u=0 \quad \text { in } \Omega \backslash \bar{D} \\
\left(\Delta+\omega^{2} \varepsilon \mu\right) u=0 \quad \text { in } D \\
\left.\frac{1}{\mu} \frac{\partial u}{\partial \nu}\right|_{-}-\left.\frac{1}{\mu_{0}} \frac{\partial u}{\partial \nu}\right|_{+}=0 \quad \text { on } \partial D \\
\left.u\right|_{-}-\left.u\right|_{+}=0 \quad \text { on } \partial D \\
u=f \quad \text { on } \partial \Omega
\end{array}\right.
$$

Layer Potential. Let $k_{0}:=\omega \sqrt{\varepsilon_{0} \mu_{0}}$ and $k:=\omega \sqrt{\varepsilon \mu}$. Let $\Phi_{k}(x)$ be the fundamental solution for $\Delta+k^{2}$, that is for $x \neq 0$,

$$
\Phi_{k}(x)= \begin{cases}\frac{i}{4} H_{0}^{1}(k|x-y|), & d=2, \\ \frac{e^{i k|x-y|}}{4 \pi|x-y|}, & d=3,\end{cases}
$$

where H_{0}^{1} is the Hankel function of the first kind of order 0. Let

$$
\Phi(x)=\Phi_{0}(x) .
$$

Let

$$
\begin{aligned}
& \mathcal{S}_{D}^{k} \varphi(x)=\int_{\partial D} \Phi_{k}(x-y) \varphi(y) d \sigma(y), x \in \mathbb{R}^{d}, \\
& \mathcal{D}_{D}^{k} \varphi(x)=\int_{\partial D} \frac{\partial \Phi_{k}(x-y)}{\partial \nu(y)} \varphi(y) d \sigma(y), \quad x \in \mathbb{R}^{d} \backslash \partial D
\end{aligned}
$$

Jump Relation:

$$
\begin{aligned}
\left.\frac{\partial\left(\mathcal{S}_{D}^{k} \varphi\right)}{\partial \nu}\right|_{ \pm}(x) & =\left(\pm \frac{1}{2} I+\left(\mathcal{K}_{D}^{k}\right)^{*}\right) \varphi(x), \quad \text { a.e. } x \in \partial D, \\
\left.\quad \mathcal{D}_{D}^{k} \varphi\right)\left.\right|_{ \pm} & =\left(\mp \frac{1}{2} I+\mathcal{K}_{D}^{k}\right) \varphi(x), \quad \text { a.e. } x \in \partial D,
\end{aligned}
$$

where

$$
\mathcal{K}_{D}^{k} \varphi(x)=\text { p.v. } \int_{\partial D} \frac{\partial \Phi_{k}(x, y)}{\partial \nu(y)} \varphi(y) d \sigma(y) .
$$

Theorem 2.1 Suppose that k_{0}^{2} is not a Dirichlet eigenvalue for the Laplacian on D. For each $(F, G) \in H^{1}(\partial D) \times$ $L^{2}(\partial D)$, there exists a unique solution $(f, g) \in L^{2}(\partial D) \times$ $L^{2}(\partial D)$ to the integral equation

$$
\left\{\begin{array}{l}
\mathcal{S}_{D}^{k} f-\mathcal{S}_{D}^{k_{0}} g=F \\
\left.\frac{1}{\mu} \frac{\partial\left(\mathcal{S}_{D}^{k} f\right)}{\partial \nu}\right|_{-}-\left.\frac{1}{\mu_{0}} \frac{\partial\left(\mathcal{S}_{D}^{k_{0}} g\right)}{\partial \nu}\right|_{+}=G
\end{array} \text { on } \partial D .\right.
$$

There exists a constant C independent of F and G such that

$$
\|f\|_{L^{2}(\partial D)}+\|g\|_{L^{2}(\partial D)} \leq C\left(\|F\|_{H^{1}(\partial D)}+\|G\|_{L^{2}(\partial D)}\right) .
$$

Moreover, if k_{0} and k go to zero, then the constant C can be chosen independently of k_{0} and k.

Representation of Solutions

Theorem 2.2 Suppose that k_{0}^{2} is not a Dirichlet eigenvalue for the Laplacian on D. Let u be the solution of (2.4) and $g:=\left.\frac{\partial u}{\partial \nu}\right|_{\Omega \Omega}$. Define

$$
H(x):=\mathcal{S}_{\Omega}^{k_{0}}(g)(x)-\mathcal{D}_{\Omega}^{k_{0}}(f)(x), \quad x \in \mathbb{R}^{d} \backslash \partial \Omega,
$$

and $(\varphi, \psi) \in L^{2}(\partial D) \times L^{2}(\partial D)$ be the unique solution of

$$
\left\{\begin{array}{l}
\mathcal{S}_{D}^{k} \varphi-\mathcal{S}_{D}^{k_{0}} \psi=H \\
\left.\frac{1}{\mu} \frac{\partial\left(\mathcal{S}_{D}^{k} \varphi\right)}{\partial \nu}\right|_{-}-\left.\frac{1}{\mu_{0}} \frac{\partial\left(\mathcal{S}_{D}^{k_{0}} \psi\right)}{\partial \nu}\right|_{+}=\frac{1}{\mu_{0}} \frac{\partial H}{\partial \nu} \quad \text { on } \partial D .
\end{array}\right.
$$

Then u can be represented as

$$
u(x)=\left\{\begin{array}{l}
H(x)+\mathcal{S}_{D}^{k_{0}} \psi(x), \quad x \in \Omega \backslash \bar{D}, \\
\mathcal{S}_{D}^{k} \varphi(x), \quad x \in D .
\end{array}\right.
$$

Moreover, there exists $C>0$ independent of H such that

$$
\|\varphi\|_{L^{2}(\partial D)}+\|\psi\|_{L^{2}(\partial D)} \leq C\left(\|H\|_{L^{2}(\partial D)}+\|\nabla H\|_{L^{2}(\partial D)}\right) .
$$

Let $G(x, y)$ be the Dirichlet Green function for $\Delta+k_{0}^{2}$ in Ω, i.e., for each $y \in \Omega$,

$$
\left\{\begin{array}{l}
\left(\Delta+k_{0}^{2}\right) G(x, y)=\delta_{y}(x), \quad x \in \Omega \\
G(x, y)=0, \quad x \in \partial \Omega
\end{array}\right.
$$

Define

$$
G_{D} \varphi(x):=\int_{\partial D} G(x, y) \varphi(y) d \sigma(y), \quad x \in \bar{\Omega}
$$

Theorem 2.3 Let ψ be the function defined before. Then

$$
\frac{\partial u}{\partial \nu}(x)=\frac{\partial u_{0}}{\partial \nu}(x)-\frac{\partial\left(G_{D} \psi\right)}{\partial \nu}(x), \quad x \in \partial \Omega .
$$

Asymptotic Formula

Theorem 2.4 The following pointwise asymptotic expansion on $\partial \Omega$ holds for $d=2,3$:

$$
\begin{aligned}
& \frac{\partial u}{\partial \nu}(x)=\frac{\partial u_{0}}{\partial \nu}(x)-\delta^{d-2} \sum_{|\beta|=0}^{n+1} \sum_{|\alpha|=0}^{n+1-|\beta|} \frac{\delta^{|\alpha|+|\beta|}}{\alpha!\beta!} \times \\
& {\left[\left(\left(I+\sum_{p=1}^{n+2-|\alpha|-|\beta|-d} \delta^{d+p-1} \mathcal{Q}_{p}\right)\left(\partial^{\gamma} u_{0}(z)\right)\right)_{\alpha} \frac{\partial \partial_{z}^{\beta} G(x, z)}{\partial \nu(x)} W_{\alpha \beta}\right]} \\
& \quad+O\left(\delta^{n+d}\right)
\end{aligned}
$$

where the remainder $O\left(\delta^{d+n}\right)$ is dominated by $C \delta^{d+n}\|f\|_{H^{1 / 2}(\partial \Omega)}$ for some C independent of $x \in \partial \Omega$.

Here,

$$
W_{\alpha \beta}:=\int_{\partial B} w^{\beta} \psi_{\alpha}(w) d \sigma(w)
$$

$$
\left\{\begin{array}{l}
\mathcal{S}_{B}^{k \delta} \varphi_{\alpha}-\mathcal{S}_{B}^{k_{0} \delta} \psi_{\alpha}=x^{\alpha} \\
\left.\frac{1}{\mu} \frac{\partial\left(\mathcal{S}_{B}^{k \delta} \varphi_{\alpha}\right)}{\partial \nu}\right|_{-}-\left.\frac{1}{\mu_{0}} \frac{\partial\left(\mathcal{S}_{B}^{k_{0} \delta} \psi_{\alpha}\right)}{\partial \nu}\right|_{+}=\frac{1}{\mu_{0}} \frac{\partial x^{\alpha}}{\partial \nu} \quad \text { on } \partial B
\end{array}\right.
$$

Important Fact.

$$
W_{\alpha \beta}=m_{\alpha \beta}\left(\frac{\mu}{\mu_{0}}\right)+O(\delta)
$$

If $D=\cup_{s=1}^{m}\left(\delta B_{s}+z_{s}\right)$, well separated. The magnetic permeability and electric permittivity of the inclusion $\delta B_{s}+z_{s}$ are μ_{s} and $\epsilon_{s}, s=1, \ldots, m$.

Theorem 2.5 The following pointwise asymptotic expansion on $\partial \Omega$ holds for $d=2,3$:

$$
\begin{aligned}
& \frac{\partial u}{\partial \nu}(x)=\frac{\partial u_{0}}{\partial \nu}(x) \\
& -\delta^{d-2} \sum_{s=1}^{m} \sum_{|\beta|=0}^{d+1} \sum_{|\alpha|=0}^{d+1-|\beta|} \frac{\delta^{|\alpha|+|\beta|}}{\alpha!\beta!} \partial^{\alpha} u_{0}(z) \frac{\partial \partial_{z}^{\beta} G(x, z)}{\partial \nu(x)} W_{\alpha \beta}^{s} \\
& \quad+O\left(\delta^{2 d}\right) .
\end{aligned}
$$

Here $W_{\alpha \beta}^{s}$ corresponds to $B_{s}, \mu_{s}, \epsilon_{s}$.

The first order term:

$$
\begin{aligned}
& \frac{\partial u}{\partial \nu}(x)=\frac{\partial u_{0}}{\partial \nu}(x) \\
& -\delta^{d}\left(\nabla u_{0}(z) M\left(\frac{\mu}{\mu_{0}}\right) \frac{\partial \nabla_{z} G(x, z)}{\partial \nu(x)}\right. \\
& \left.+\omega^{2} \mu_{0}\left(\epsilon-\epsilon_{0}\right)|B| u_{0}(z) \frac{\partial G(x, z)}{\partial \nu(x)}\right) \\
& \quad+O\left(\delta^{d+1}\right)
\end{aligned}
$$

This formula is obtained by Vogelius-Volkov.

3 Detection of Inclusions

Inverse Problem. Given f, measure $\frac{\partial u}{\partial \nu}$. Using $\left(f, \frac{\partial u}{\partial \nu}\right)$, determine the location and size of inclusions.

We apply plane waves:

$$
f=e^{i k \theta \cdot x}, \quad|\theta|=1
$$

Let u_{δ} be the corresponding solution.
Goal: Reconstruct the electromagnetic inhomogeneities $\left\{D_{l}\right\}_{l=1}^{m}$ from limited current-to-voltage pairs

$$
\left(\left.e^{i k \theta \cdot x}\right|_{\partial \Omega},\left.\frac{\partial u_{\delta}}{\partial \nu}\right|_{\partial \Omega}\right)
$$

Define $A_{\delta}\left(\frac{x}{|x|}, \theta, k\right)$ by

$$
\begin{aligned}
& \mathcal{S}_{\Omega}\left(\left.\frac{\partial u_{\delta}}{\partial \nu}\right|_{\partial \Omega}\right)(x)-\mathcal{D}_{\Omega}\left(\left.e^{i k \theta \cdot y}\right|_{\partial \Omega}\right)(x) \\
& =A_{\delta}\left(\frac{x}{|x|}, \theta, k\right) \frac{e^{i k|x|}}{4 \pi|x|}+O\left(\frac{1}{|x|^{2}}\right)
\end{aligned}
$$

as $|x| \rightarrow \infty$.
Note that $A_{\delta}\left(\frac{x}{|x|}, \theta, k\right)$ is directly computed from the current-to voltage pairs $\left(\left.e^{i k \theta \cdot y}\right|_{\partial \Omega},\left.\frac{\partial u_{\delta}}{\partial \nu}\right|_{\partial \Omega}\right)$.

Theorem 3.1

$$
\begin{aligned}
A_{\delta}\left(\frac{x}{|x|}, \theta, k\right) & =\delta^{3} k^{2} \sum_{l=1}^{m}\left[\frac{x}{|x|} \cdot M_{l}\left(\frac{\mu_{l}}{\mu_{0}}\right) \cdot \theta\right. \\
& \left.+\left(\frac{\epsilon_{l}}{\epsilon_{0}}-1\right)\left|B_{l}\right|\right] e^{i k\left(\theta-\frac{x}{|x|}\right) \cdot z_{l}}+O\left(\delta^{4}\right),
\end{aligned}
$$

for any $\frac{x}{|x|}$ and $\theta \in S^{2}$, where $O\left(\delta^{4}\right)$ is independent of the set of points $\left\{z_{l}\right\}_{l=1}^{m}$.

Reconstruction of Single Inclusion

Magnitude:

$$
\left|A_{\delta}(-\theta, \theta, k)\right| \approx \delta^{3} .
$$

Location:

$$
e^{i 4 k \theta \cdot z_{1}}=\frac{A_{\delta}(\theta,-\theta, k)}{A_{\delta}(-\theta, \theta, k)}+O(\delta) .
$$

Multiple Inclusions

Assume that B_{l}, for $l=1, \ldots, m$, are balls.

$$
M_{l}\left(\frac{\mu_{l}}{\mu_{0}}\right)=\left(1-\frac{\mu_{l}}{\mu_{0}}\right) m_{l} I_{3}
$$

where I_{3} is the 3×3 identity matrix and

$$
m_{l}=8 \pi\left|B_{l}\right| \frac{\mu_{l}}{\mu_{l}+\mu_{0}}
$$

1. Let

$$
\begin{aligned}
& g\left(\frac{x}{|x|}, \theta\right):=\frac{1}{k^{2} \delta^{3}} A_{\delta}\left(\frac{x}{|x|}, \theta, k\right) \\
& =\sum_{l=1}^{m} e^{i k\left(\theta-\frac{x}{|x|}\right) \cdot z_{l}}\left[\left(1-\frac{\mu_{l}}{\mu_{0}}\right) m_{l} \frac{x}{|x|} \cdot \theta+\left(\frac{\epsilon_{l}}{\epsilon_{0}}-1\right)\left|B_{l}\right|\right], \\
& \quad\left(\frac{x}{|x|}, \theta\right) \in S^{2} \times S^{2} .
\end{aligned}
$$

2. Let M be the analytic variety

$$
M=\left\{\xi \in C^{3}, \xi \cdot \xi=1\right\}
$$

S^{2} is a totally real submanifold of M. On $M \times M$,
$g\left(\xi_{1}, \xi_{2}\right)=\sum_{l=1}^{m} e^{-i k\left(\xi_{1}-\xi_{2}\right) \cdot z_{l}}\left[\left(1-\frac{\mu_{l}}{\mu_{0}}\right) m_{l} \xi_{1} \cdot \xi_{2}+\left(\frac{\epsilon_{l}}{\epsilon_{0}}-1\right)\left|B_{l}\right|\right]$.
This is a unique analytic continuation of g.
3. Idea of Calderón and Sylvester-Uhlmann: for any $\xi \in \mathbb{R}^{3}$ there exist $\xi_{1}, \xi_{2} \in M$ such that $\xi=\frac{\xi_{1}-\xi_{2}}{k}$. Since

$$
\xi_{1} \cdot \xi_{2}=1-\frac{1}{2} k^{2}|\xi|^{2}
$$

we can rewrite g as follows
$g\left(\xi_{1}, \xi_{2}\right)=\sum_{l=1}^{m} e^{-i \xi \cdot z_{l}}\left[\left(1-\frac{\mu_{l}}{\mu_{0}}\right) m_{l}\left(1-\frac{1}{2} k^{2}|\xi|^{2}\right)+\left(\frac{\epsilon_{l}}{\epsilon_{0}}-1\right)\left|B_{l}\right|\right]$.
Define

$$
\widetilde{g}(\xi)=g\left(\xi_{1}, \xi_{2}\right),
$$

Then

$$
\mathcal{F}^{-1}(\widetilde{g}(\xi))=\sum_{l=1}^{m} L_{l}\left(\delta_{z_{l}}\right),
$$

where L_{l} are, second order differential operators with constant coefficients.

4 The Full Maxwell's Equations

Let E_{δ} denote the electric field in the presence of the imperfections. It is the solution to full Maxwell's equations

$$
\nabla \times\left(\frac{1}{\mu_{\delta}} \nabla \times E_{\delta}\right)-\omega^{2} \epsilon_{\delta} E_{\delta}=0 \quad, \quad \text { in } \Omega
$$

with

$$
E_{\delta} \times \nu=f \quad, \quad \text { on } \partial \Omega
$$

Let

$$
\boldsymbol{\Gamma}(x, y)=\Gamma(x, y) I+\frac{1}{k^{2}} \nabla_{x} \nabla_{x} \cdot(\Gamma(x, y) I)
$$

Apply

$$
f(x)=e^{i k \theta \cdot x} \theta^{\prime} \times \nu
$$

Define $A_{\delta}\left(\frac{x}{|x|}, \theta, \theta^{\prime}, k\right)$ by

$$
\begin{aligned}
& \int_{\partial \Omega} \nabla \times \boldsymbol{\Gamma} \times \nu \cdot E_{\delta}-\int_{\partial \Omega} \nabla \times E_{\delta} \times \nu \cdot \boldsymbol{\Gamma} \\
&:=A_{\delta}\left(\frac{x}{|x|}, \theta, \theta^{\prime}, k\right) \frac{e^{i k|x|}}{|x|}+O\left(\frac{1}{|x|^{2}}\right)
\end{aligned}
$$

as $|x| \rightarrow \infty$,

Using an asymptotic expansion formula of Ammari-VogeliusVolkov,

Theorem 4.1

$$
\begin{aligned}
& A_{\delta}\left(\frac{x}{|x|}, \theta, \theta^{\prime}, k\right) \\
& =i k^{3} \delta^{3} \sum_{j=1}^{l}\left[\left(M_{l}\left(\frac{\mu_{0}}{\mu_{l}}\right)\left(\theta \times\left(\theta \times \theta^{\prime}\right)\right)\right) \times \frac{x}{|x|}\right. \\
& \left.+\left(1-\frac{\varepsilon_{0}}{\varepsilon_{l}}\right)\left(I-\frac{x}{|x|} \frac{x}{|x|}\right) M_{l}\left(\frac{\varepsilon_{0}}{\varepsilon_{l}}\right)(\theta \times \theta)\right] e^{i k\left(\theta-\frac{x}{|x|}\right) \cdot z_{l}} \\
& +O\left(\delta^{4}\right) .
\end{aligned}
$$

for any $\frac{x}{|x|}$, , and $\theta^{\prime} \in S^{2}$, where the remainder $O\left(\delta^{4}\right)$ is independent of the set of points $\left\{z_{l}\right\}_{l=1}^{m}$.

