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"Imperfection in the metallic structure can lead to a
significant reduction in the performance of a given item,
but worse still can be "inclusion’ or 'defect’” (small particles
of other materials trapped in the metal). Metallic items
normally ultimately fail by cracking and inclusions can
act as the starting points for cracks - the larger the inclu-
sion, the larger the crack and the quicker it will grow. In
aerospace applications, inclusions as small as 1-hundredths
of a millimetre are important. To put this in perspective
an inclusion of about 20 millionth of a gramme can lead
to failure in a component a metre long.

On 19 July 1989, United Airlines Flight 232, a wide-
bodied DC-10, crashed at Sioux City, lowa, ultimately re-
sulting in 112 deaths (Randall, 1991). This crash was a
direct consequence of a fatigue failure initiated by the pres-
ence of a 'hard alpha’ inclusion in a titanium alloy engine
component. Ensuring the safe performance of such com-
ponents is therefore of paramount importance. However,
it is not just the aerospace industry which requires pre-
dictable long life from significantly stressed components -
in both the medical and offshore industries, the effects of
component failure could be disastrous.”

Source : www.irc.bham.ac.uk/themel /plasma/production.htm
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1 Problem

e () : elastic body R? (with a connected Lipschitz bound-
ary),

e (A, 1) : Lamé coefficients (constant) of €2,
e Flastic inhomogeneity D in 2 :

D=UlLD; =UL,(eB; + 2)

where B; is a bounded Lipschitz domain in R3 and
z; represents the location of D;, and € is the common
order of magnitude.

~

e (A, 11;) : Lamé constants of D,

e Assume

~

i >0, 33X +20; >0, (A= Aj)(p—py) > 0.
e D; are well-separated: there exists dy > 0 such that

inf diSt(iE, 8Q> > d, ‘ZZ — Zj‘ > dp.
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Consider the transmission problem:

( 3
0 0

Yy o (Cijklﬂ> —0 inQ, =123,

! i Ox; ox;

o

Gy N =9,

where

Cig = (M(@\ D) + zmj AX(D.)) 56

s=1
+ (ux(Q \ D)+ ﬁsx(Ds)> (0ikdj1 + 0udjn),
s=1
(x(D) is the characteristic function of D),
% denotes the conormal derivative:
ou
ov
(N: outward unit normal to 0D, T": the transpose),

= \(div @)N + p(Vii + Vil )N on 9D,

g satisfies the usual compatibility condition:
/ g’-@;da:()forallzgelll
oD

where W is the set of all 1; satisfying



Or equivalently,
( ,C)\”uﬁ:() inQ\E,
E}“\j’ﬁju =0 1In Dj,

< Uy =u|- on 0D,

ou ou
ol =gl on oD,
ou

X a\aﬁzgl (ﬁ‘aQ—qu)a

Ly ,0 = pAu + (A + p)Vdiv 4.

Problem. Derive an asymptotic expansion of 4 as
¢ — 0 in terms of € and the background solution U, i.e.,
the solution without inhomogeneities:

3 —
5,
> C;}M% =0 inQ, i=123,
< Py 8:(:]- 6@;

oU B

\ %‘aﬁzga

where

(

Ozojkl = )\5ij5kl + M(5ik5jl + 5@'153'!{;)-



2 Asymptotic Formula

Theorem 2.1
71(96) = (7 (%)
3 4l E\ar+|5|+1
-y 7 2.2 G

s=1 j=1la|=1]p]=1

+0(€"),

U;)(2)07N (z, 2) M)

uniformly x € 0S).

where N(x,y) be the Neumann function (matriz) for

ﬁ)\’ﬂ wmn €

( L)\,,LLN(xa y) -
ON 1

7\

\

- T
v 0 0Q|
N(-,y) LV for each y € €,

—0y(z)I  in €,

where the differentiations act on the x-variables, and
Mésﬁ)] is the (generalized) Elastic Moment Tensor (Pdlya-

Szego tensor).



Remark. 1. A complete expansion formula is obtained.
2. Other related works :

e Conductivity : Cedio-Fenya-Moskow-Vogelius (first or-
der term), Ammari-Kang (complete expansion)

e Maxwell System : Ammari-Vogelius-Volkov (first or-
der term)

e Elasticity : Maz'ya-Nazarov (first order term for cav-
ity or hard inclusion). Cavity: A = p = 0, Hard
inclusion: A = 1 = o0



3 Layer Potentials for the Lamé System

The Kelvin matrix of fundamental solutions I' = (I';;) for
the Lameé system corresponding to the Lamé parameters

(A, p):
Fw(aj) - A 5ij X B Lily

J E R?)? 07
dlz| 4w |z]? ! 7

The single and double layer potentials of the density
function ¢ on D associated with the Lamé parameters

(A, p) are defined by
Spila) = [ ra=y)iln)ioy). = <R

/wa_uy”_ \B(y)doly), = €R3\ D,



Lemma 3.1 (Dahlberg-Kenig-Verchota)

R ] R
Dpdls = (F51 +Kp)p, on D,

2
0 . - 1 oo
589@5& = (i§] + Kp)p, on 0D,

where Kp 1s defined by

B 9 B
Kpd() = p.u /a D =)oty x € oD,

and K% is the adjoint operator of KCp on L*(0D). Here
and throughout this paper i|, and @|_ denote the limit
from inside D and outside D, respectively.

Theorem 3.2 ([Dahlberg-Kenig-Verchota) / The
operators I + K5, and —1I + K}, are invertible on
L%(0D) and L*(OD), respectively.

Corollary 3.3 The null space of 31 + Kp on L*(0D)
is .
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4 Transmission Problem

D = eB + z with the Lamé parameters (X, [1).

Theorem 4.1 (Escauriaza-Seo) Suppose that (A —
N — 1) > 0. For any given (F,G) € L2(0D) x
L2(OD), there ezists a unique pair (f,§) € L*(OD) x
L*(0D) such that

Spfls —Spgl-=F ondD,

0 ~ 0
—=S — =
ov DﬂJF ov
and there exists a constant C depending only on X\, u,
A, 1, and the Lipschitz character of D such that

Spg|_=G on oD,

1Nl 200 + 191l 200) < CUIE | 2200y + |Gl 2(0D))-

Moreover, if G € L2(0D), then § € L2(dD).
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Theorem 4.2 There ezists a unique pair (3,7) € L*(OD)x
L%(0D) such that the solution i is represented by

ﬁ(a:) _ ﬁ(x) —l_SDZE(CU), T € Q\E’
Spd(z), zeD,

where H is defined by

— —

H(z) = So(7)(x) — Do(f)(x), f = s,
There exists C such that
11l z2@m) + 191l 220p) < ClH || 120Dy

For each integer n there exists C, depending only on
dy and A\, (not on A\, 1) such that

[H || cn ) < Calldll 2(00)-
Moreover,

H(z) = =Spib(z), zeR\Q
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The following lemma relates the fundamental solution
with the Neumann function.

Lemma 4.3 Forz € Q andx € 09, let ', (z) = T'(z—
z) and N,(x) .= N(x,z). Then

(%1 L Ko)(N)(@) = Tu(z)  mod W,

or to be more precise, for any simply connected Lips-

chitz domain D compactly contained in () and for any
g € L3(0D), we have

/ap(%] + Ko)(N.)(z)g(z)do(z)

= /8D [, (z)g(2)do(z), Vx € 0.

Let

—

Npf(z) = . N(z,y)fy)do(y), =€

Theorem 4.4
d(z) = U(x) + Np(z), z € dQ,
where @E 15 defined in Theorem 4.2
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5 Elastic Moment Tensors

We now introduce the notion of elastic moment tensors.

Definition 5.1 (Elastic Moment Tensors). For multi-
index o« € N* and j = 1,2,3, let f] and g’ in L*(OB)
be the solution of

Spflls — Spdl|- = 2%¢jlon,
0 ~ o . d(x%e;
6,~33f]\+ - a_SB Fl- = (8V ])|88-

For 3 € N3, the elastic moment tensor (EMT) M’
associated with the domain B_and Lamé parameters
(A, i) for the background and (X, 1) for B is defined by

Miﬁ = (mimvmiﬁmmiﬁ?) = /833! 9%( )do(y).
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Remark.

e The first order EMT is the elastic version of the po-
larization tensor in electro-magnetism introduced by
Pélya-Schiffer-Szego

e In the case of cavities and hard inclusions, the first
order EMT was introduced by Maz'ya-Nazarov, and
studied by Lewinski-Sokolowski, Movchan-Serkov, and
a lot more.

e Our definition includes non-cavity cases and higher
order tensors.

e Polarization Tensors of all orders and their properties
(conductivity case): Ammari-Kang

— Polarization tensors of all orders determine the
Dirichlet-to-Neumann map.

— First order tensor - volume, second order - center
of mass

e Anisotropic Polarization Tensor : Kang-Kim-Kim.
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When oo = e; and 8 =e, (i,p = 1,2,3), put

e ] . _
My = Mg, D7 =1,2,3.

Lemma 5.2 Properties of EMT

o EMT 1is symmetric: m; = mg, mg = mj., and
ij — 2 Pd S
mqu_ 17’ p7Q7Z7]_17273'

o FKMT 1s positive definite on the space of symmetric
matices.

e Suppose i # j and that B satisfies diam(B)|0B| <
Co|B| for some Cy. Then there exists C = C(A, u, A, 11, C)
such that

M‘ﬂ—ﬁ
f+

|B| < |mjj| < C|B].
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6 Application: Detection of an Inclusion

Inverse Problem Given a Neumann data g, measure o
on 0f). Determine the location and size (or other geome-
try) of inclusions by means of (]aq, §).

For a given Neumann data ¢, let

H[f(z) := Sa(g)(x) — Doliilon)(z), =€ R*\Q.

As a consequence of the asymptotic expansion of u,

Theorem 6.1 For z € R3\ (),

3 L dlal g .
IES DI G ————(0"U;)(2)0°T (x — 2) M2,

J=1la|=1]8|=1

+O(-=

]2

),

where Mjﬁ are the elastic moment tensors and I' is the
Kelvin matrix of fundamental solutions corresponding
to the Lamé parameters (A, ).

Remember! H[j](z) (x € R*\ Q) can be computed
from the measured data (u]aq, ).

17



[Reconstruction Procedure]
Let

. (BT
Ey = (52u53v)2] 1 and Gy = <6V )|8Q

Step 1 (Detection of EMT) Compute
o = hm tQHk[gm](tel) kylyuyv=1,2,3.

Then the entries my}, u, v, k,l = 1,2,3 of the elastic
moment tensor can be recovered, modulo O(e%), as

follows:
3
ST(A + 2 A
3A+5u 211 —
u,v,1=1,2,3,

Emit = —An( A+ 2R, u, vk, 1=1,23, k #1.
Step 2 (Detection of Size) Having found €’ my,
Eémij| ~ @B, i

gives the order of magnitude of D.
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Step 3 (Detection of Center) The idea is as follows:
From H{[g,.], we can recover VI'(z—z). It means that,
. x— 2z
basically, we can recover W for x near oo. From
T — 2z
this information we can recover z.

Step 3’ (Detection of Center) We can use second or-
der homogeneous solution and proceed as Step 1 to
detect the center.

Another important application: Effective Moduli of Di-
lute Materials

7 Numerical Results
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