Preprints

- H. Ammari, B. Davies, E.O. Hiltunen, H. Lee and S. Yu, Exceptional points in parity-time-symmetric subwavelength metamaterials, preprint, http://arxiv.org/abs/2003.07796


Books

- H. Ammari, H. Kang, and H. Lee, Layer potential techniques in spectral analysis,
Mathematical Surveys and Monographs series 153, Amer. Math. Soc., 2009, 202 pages,
ISBN-10: 0-8218-4784-8, ISBN-13: 978-0-8218-4784-8.


- H. Ammari, E. Bretin, J. Garnier, H. Kang, H. Lee, and A. Wahab, Mathematical Methods in Elasticity Imaging
Princeton Series in Appied Mathematics, Princeton Univ. Press, 2015,
ISBN:9781400866625 .


Papers

[49 ] H. Ammari, B. Davies, E.O. Hiltunen, H. Lee and S. Yu, Wave interaction with subwavelength resonators, Applied Mathematical Problems in Geophysics, Lecture Notes in Mathematics, Vol 2308, Springer 2022, https://doi.org/10.1007/978-3-031-05321-4_3.

[48] H. Ammari, B. Davies, E.O. Hiltunen, H. Lee and S. Yu, Bound states in the continuum and Fano resonances in subwavelength resonator arrays, Journal of Mathematical Physics, 62 (2021), 101506

[47] H. Ammari, B. Davies, E.O. Hiltunen, H. Lee and S. Yu, High-order exceptional points and enhanced sensing in subwavelength resonator arrays, Studies in Applied Mathematics, 146 (2021), 440-462.

[46] H. Ammari, B. Fitzpatrick, H. Lee, E. Orvehed Hiltunen, and S. Yu, Honeycomb-lattice Minnaert bubbles, SIAM Journal on Mathematical Analysis, 52 (2020), no. 6, 5441-5466.

[45] H. Ammari, B. Fitzpatrick, H. Lee, E. Orvehed Hiltunen, and S. Yu, Subwavelength resonances of encapsulated bubbles, J. Diff. Eq., 267(2019), 4719-4744.

[44] H. Ammari, B. Fitzpatrick, H. Lee, S. Yu and H. Zhang, Double-negative acoustic metamaterials, Quaterly of Applied Math. 77(2019), no.4, 767-791.

[43] H. Ammari, H. Lee and H. Zhang, Bloch waves in bubbly crystal near the first band gap: a high-frequency homogenization approach, SIAM Journal on Mathematical Analysis, 51(1) (2019), 45-59.

[42] H. Ammari, B. Fitzpatrick, D. Gontier, H. Lee and H. Zhang, Minnaert resonances for acoustic waves in bubbly media, Ann. I. H. Poincar\'e 35(2018), 1975-1998.

[41] H. Ammari, B. Fitzpatrick, D. Gontier, H. Lee and H. Zhang, Sub-wavelength focusing of acoustic waves in bubbly media, Proc. R. Soc. A 473: 20170469.

[40] X. Li, H. Lee and Y. Wang, Asymptotic Analysis of the Narrow Escape Problem in Dendritic Spine Shaped Domain: Three Dimension, J. Phys. A:Math. Theor. 50(2017) 325203(14pp).

[39] H. Ammari, B. Fitzpatrick, H. Lee, S. Yu and H. Zhang, Subwavelength phononic bandgap opening in bubbly media, J. Diff. Eq., 263(2017), 5610-5629.

[38] H. Ammari, B. Fitzpatrick, D. Gontier, H. Lee and H. Zhang, A mathematical and numerical framework for bubble meta-screens, SIAM Journal on Applied Mathematics, 77(5) (2017), pp. 1827–1850.

[37] T. Feng, H. Kang, and H. Lee,  Construction of GPT-vanishing structures using shape derivative, J Comp Math, 35(5)(2017), 569-585.

[36] H. Kang, H. Lee and S. Sakaguchi, An over-determined boundary value problem arising from neutrally coated inclusions in three dimensions, Annali della Scuola Normale Superiore di Pisa, Classe di Scienze, Vol. XVI (2016), 1193-1208

[35] H. Lee and J. Lee, Array dependence of effective parameters of dilute periodic elastic composite, Contemporary Mathematics 660(2016), 59-71

[34] H. Kang, K. Kim, H. Lee and J. Shin, Spectral properties of the Neumann-Poincar\'e operator and uniformity of estimates for the conductivity equation with complex coefficients, arXiv 1406.3873, J London Math Soc 2016 93 (2): 519-545 doi: 10.1112/jlms/jdw003

[33] H. Kang, H. Lee and K. Yun, Optimal estimates and asymptotics for the stress concentration between closely located stiff inclusions, Math.Annalen 363 (2015), 1281-1306.

[32] H. Kang, H. Lee and M. Lim, Construction of conformal mappings by generalized polarization tensors, Math. Method Appl. Sci., 38 (2015), 1847-1854.



[31] H. Kang and H. Lee, Coated inclusions of finite conductivity neutral to multiple fields in two dimensional conductivity or anti-plane elasticity, Euro. J. Appl. Math., 25 (3) (2014), 329--338.



[30] D. Chung, H. Kang, K. Kim and H. Lee, Cloaking due to anomalous localized resonance in plasmonic structures of confocal ellipses, SIAM J. Appl. Math. 74 (2014), 1691--1707. 



[29] H. Kang, K. Kim, H. Lee, X. Li and G.W. Milton, Bounds on the size of an inclusion using the translation method for two-dimensional complex conductivity, SIAM J. Appl. Math. 74 (2014), 939--958.



[28] H. Ammari, Y. Deng, H. Kang and H. Lee, Reconstruction of Inhomogeneous Conductivities via Generalized Polarization Tensors, Ann. I. H. Poincare-AN, 31(2014), 877-897.



[27] H. Ammari, G. Ciraolo, H. Kang, H. Lee, and G.W. Milton, Spectral theory of a Neumann-Poincar\'e-type operator and analysis of anomalous localized resonance II, Contemporary Math., 615(2014), 1-14.



[26] H. Ammari, H. Kang, H. Lee, M. Lim, and S. Yu, Enhancement of near cloaking for the full Maxwell equations, SIAM J. Appl. Math., 73 (2013), 2055-2076.



[25] H. Ammari, H. Kang, H. Lee, and J. Lim, Boundary perturbations due to the presence of small linear cracks in an elastic body, J. Elasticity 113(1)(2013), 75-91.



[24] H. Ammari, H. Kang, K. Kim and H. Lee, Strong convergence of the solutions of the linear elasticity and uniformity of asymptotic expansions in the presence of small inclusions, Jour. Diff. Eq., 254 (12) (2013), 4446-4464.

[23] H. Ammari, G. Ciraolo, H. Kang, H. Lee, and G.W. Milton, Anomalous localized resonance using a folded geometry in three dimensions, Proc. R. Soc. A, 469 (2013), 20130048. 



[22] H. Ammari, G. Ciraolo, H. Kang, H. Lee and G.W. Milton, Spectral theory of a Neumann-Poincar\'e-type operator and analysis of cloaking due to anomalous localized resonance, Arch. Rational Mech. Anal., 208 (2013), 667-692. 



[21] H. Ammari, G. Ciraolo, H. Kang, H. Lee, and K. Yun, Spectral analysis of the Neumann-Poincar\'e operator and characterization of the gradient blow-up, Arch. Rational Mech. Anal. 208(1) (2013) 275-304.



[20] H. Ammari, H. Kang, H. Lee, and M. Lim, Enhancement of near-cloaking. Part II: the Helmholtz equation, Comm. Math. Phys., 317(2013), 485-502. 



[19] H. Ammari, H. Kang, H. Lee, and M. Lim, Enhancement of Near Cloaking Using Generalized Polarization Tensors Vanishing Structures. Part I: The Conductivity Problem, Comm. Math. Phys., 317(2013), 253-266. 



[18] H. Ammari, P. Garapon, H. Kang, and H. Lee, Effective Viscosity Properties of Dilute Suspensions of Arbitrarily Shaped Particles, Asymptotic Analysis 80(2012), 189-211. 



[17] H. Ammari, J. Garnier, V. Jugnon, H. Kang, H. Lee, and M. Lim, Enhancement of near-cloaking. Part III: Numerical simulations, statistical stability, and related questions, Contemporary Math. 577, 1-24. 



[16] H. Ammari, K. Kalimeris, H. Kang, and H. Lee, Layer Potential Techniques for the Narrow Escape Problem, Journal de Mathematiques Pures et Appliquees,97 (2012), 66-84 .



[15] H. Ammari, L. Guadarrama Bustos, H. Kang, and H. Lee, Transient Elasticity Imaging and Time Reversal, Royal Soc. Edin. Proc. A, 141 (2011), 1121-1140. 



[14] H. Ammari, J. Garnier, H. Kang, H. Lee, and K. Solna, The mean escape time for a narrow escape problem with multiple switching gates, SIAM Multi. Model. Simul. 9 (2011), 817-833. 



[13] H. Ammari, Y. Capdeboscq, H. Kang, H. Lee, G. W. Milton, and H. Zribi, Progress on the strong Eshelby's Conjecture and Extremal Structures for the Elastic Moment Tensor, J. Math. Pures Appl. 94(2010) 93-106



[12] H. Ammari, H. Kang, H. Lee, and W.-K. Park, Asymptotic Imaging of Perfectly Conducting Cracks, SIAM J. Sci. Comput., 32(2), 894-922. 



[11] H. Ammari, H. Kang, H. Lee, M. Lim, and H. Zribi, Decomposition Theorems and Fine Estimates for Electrical Fields in the Presence of Closely Located Circular Inclusions, J. Diff. Equat. 247 (2009) 2897-2912.



[10] H. Ammari, H. Kang, and H. Lee, Asymptotic Analysis of High-Contrast Phononic Crystals and a Criterion for the Band-Gap Opening, Arch. Rational Mech. Anal. 193 (2009), 679-714.



[9] H. Lee and W.-K. Park, Location search algorithm of thin conductivity inclusion via boundary measurements, Mathematical Methods for Imaging and Inverse Problems, ESAIM:Proceedings, Vol. 26(2009), 217-229.



[8] H. Ammari, H. Kang, E. Kim, and H. Lee, Vibration testing for anomaly detection, Math. Meth. Appl. Sci. 32(2009), 863-874.



[7] H. Ammari, H. Kang, E. Kim, H. Lee, and K. Louati, Vibration analysis for detecting internal corrosion, Stud. Appl. Math., 122(1) (2009), 85-104. 



[6] H. Ammari, P. Garapon, H. Kang, and H. Lee, A Method of Biological Tissues Elasticity Reconstruction Using Magnetic Resonance Elastography Measurements, Quarterly of Applied Mathematics 66 (2008), 139-175.



[5] H. Ammari, H. Kang, and H. Lee, Asymptotic Expansions for Eigenvalues of the Lam\'{e} System in the Presence of Small Inclusions, Comm. Part. Diff. Eq. 32(2007), 1715-1736. 



[4] H. Ammari, H. Kang, H. Lee, J. Lee, and M. Lim, Optimal Estimates for the Electrical Field in Two Dimensions, J. Math. Pures Appl. 88(2007), 307-324



[3] H. Ammari, H. Kang, and H. Lee, A Boundary Integral Method for Computing Elastic Moment Tensors for Ellipses and Ellipsoids, J. Comp. Math. 25-1(2007), 2-12. 



[2] H. Kang and H. Lee, Simple Poles via Boundary Measurements and an Application to EIT, Inverse Problems, 20(2004), 1853-1863. 



[1] H. Lee, Two spectral problems arising from the linear elasticity, Thesis, Seoul National University, August 2006.