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1. The Jacobi Group

For a given fixed positive integer n, we let

H, ={QeC™ Q=10 ImQ > 0}

be the Siegel upper half plane of degree n and

Sp(n,R) = {M € R®™»2%) | tA1 7 M = J,)

be the symplectic group of degree n, where

We see that Sp(n.R) acts on H,, transitively by
M-Q=(AQ+ B)(CQ+ D)™,

where M = ("é g) e Sp(n,R) and Q € H,,.



 Jacobi group and Siegel-Jacobi space

fj1 S (ﬂ R) Hnm

Hn m = ]Hn AL clm:n)

(M, (N p:8)) - (U Z) = (M -Q(Z+ X2+ p)(CQ+ D)™

H,,, =G’ /K’, — K’=U(n)xSnR)

The Siegel-Jacobi space i1s not a reductive symmetric space

S(n,R) is the space of all n x n symmetric real matrices



2. Invariant Metrics on
Siegel-Jacobi Space
- Siegel Metric (1943, AJM)

ds? = o(Y1dQY ~'dQ)

- Laplacian of Siegel Metric
Hans Maass (1953, Math. Ann.)

r d N\ o
A, =4 (}’ (}’—_),—)
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- Invariant Metric (J.-H. Yang: 2007, JNT)

ds? o p =Ao(Y 'Y ~'dQ) + B{o(Y ' 'VVY 'Y dQ) + oY 1 (dZ)dZ)
—o(VY MY (dZ)) - o(VYHQY 1 H(dZ)))

- Laplacian (J.-H. Yang: 2007, JNT)

sunss =0 () ol gl o )
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Problem 1. (a) Find an explicit geodesic

(2) Compute the distance between two
points explicitly

(3) Compute the sectional curvature

Problem 2. Develop the spectral theory of
the Laplacian for an arithmetic subgroup of
the Siegel-Jacobi modular group

[ = Sp(n, Z) H’éﬂ’m)



Remark: In the case that n=m=A=B=1, Erik
Balslev developed the spectral theory for

[, and Ti(2) H"  And he also showed
that the set of all eigenvalues of the Laplacian
satisfies the Weyl law for the above special
arithmetic subgroups [2012].



3. Invariant Differential Operators

Let D(H,,) be the algebra of all invariant
differential operators on the S-J space.

Problem 1. Find a list of generators of D(H, )
Is D(H,,,) finitely generators ?

Problem 2. Find all the relations among a
given list of generators of D(H,,,,)

Problem 3. Find the center of D(H,,,,)
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U(n) acts on T, := S(n,C) x C™"

bu2)= (k' 28, e U, (o,2) €T,

Then it induces naturally the action of

on the polynomial algebra Pol(T, )

Let Pol(T,,,,)"™ be the K-invariants of Pol(T} )
Then we have the natural canonical linear
bijection

Opm : Pol(T} )" ™ — D(H,, )

12



Problem 4. Find a list of generators of
Pol(T}, )Y ™

s Pol(T,,,,)"™ finitely generated ?

Problem 5. Find all the relations among a
given list of generators of Pol(T,,,)"™

Problem 6. Are th{g images of a given list of
generators Pol(T, )" under 6,,. a list of
generators of D(H,,,) ?

13



Remarks:
(1) Problem 4 and Problem 5 were solved :

M. Itoh, H. Ochiai and J.-H. Yang
Invariant Differential Operators on
Siegel-Jacobi Space [2013]

(2) In the case that n=m=1, all the above
problems were completely solved by Itoh,
Ochiai and Yang in the same paper

14



4. The Partial Cayley Transform

Let
G, =SU(n,n) N Sp(n,C)

be the symplectic group and
D, ={WeC™ |W="'W, I,-WW > 0}
be the generalized unit disk. Then G, acts on I),, transitively by

b W= (PW+Q)(QW +P)™!
Q P

P . . . :
where (5 %) € G, and W € I,,. Using the Cayley transform of IJ,, onto H,,, we can see that

ds? = do((I, - WW )~*dW(I,, - WW)~1dW) (1.7)
is a G,-invariant Kahler metric on [, (see [6]) and Maass [4] showed that its Laplacian is given
by

A*:J((In—l’i-’ﬂ-"') ((f W7 )= 0 ) C}i) (1.8)
15



Let

P

AN
o590

be the Jacobi group with the following multiplication:

PQ\ =, Pay g
((@ ﬁ):(gu&lﬁ))((@ F)a(ig ))

B P Q\ (P @ AT T s U Tt
-5 7/lz 7 (E+E 0+ iR+ + 0 - ),

where E = (P +£Q and % = £Q' 4+ £ P'. Then we have the natural action of G? on the
Siegel-Jacobi disk D, x C™™ (see (2.6)) given by

P _ _ — _ —
((@ g) ,(£,£;iﬁ)) (W) =(PW+Q)@QW+P)~ L (n+EW +E)(@W +P)71), (L9)
where W €, and n € clmn),
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Theorem (J.-H. Yang: 2008, JKMS)

The action of G’ on H,, ,», 1s compatible with
the action of G on D, ,,, through
the partial Cayley transform defined by

O, 1) = (i(L + W) (L = W)™ 2y(L, - )7,
The inverse of ¢ is given by

07(0,7) = (- i)+ 2O+,

17



5. Invariant Metrics on
Siegel-Jacobi Disk
[1] Siegel Metric

ds3, = 4 At (1= WD) W (1, — )

[2] Laplacian of Siegel Metric (H. Maass)

A; —ltr (I —WW)f (I, - WW)— 0\ 2
AT o ) oW
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Theorem 1.3 For any two positive real numbers A and B, the following metric ds2 .4 5

defined by

t:l"?1 mAB = 4Ao((I, - WF)‘ldl-'l-"(fn - ) dT) +4B{o((I, - 1-*1-’?)‘1 “(dn)dn)
W 1

'—-‘1 m—— ,-"_"‘-.
.._-—| e
I
[—
—
= )
ep—
—

AW (L, =WW) W) = o((In = WW) "ML - W)L - W) 17
< (I, = W) dW(I, - TWW)~1dIT))

is a Riemannian metric on Dy, ,, which is invariant under the action (1.9) of the Jacobigroup



Theorem 1.4 For any two positive real numbers A and B, the Laplacian Snm AB Of
(D ms dﬁ'ﬁ!m; A g) 18 qiven by

R = %{a(u uﬁ)f(u W7 )df{)d‘;)
+a(f W) ( )I—HU)O?I) ((T;—T;T)t((ln—ﬂﬂ )%);n)
U(:r (L, - W) (;ﬁ)([ T H)ﬁn)
oAV, - T q*(d‘—;)un—w')%)
+a( (1, - W)t *(;ﬁ)un—u 1l )%)
+a(:r V)i t((;—j_})(fn-wr')%)}

+ 20 ((1 _TW )% f(%)) §



Problem 1. Develop the theory of harmonic
analysis on Siegel-Jacobi disk. [Remark :
The theory of harmonic analysis on the unit
disk of complex dimension one explicitly
around the 1970s by S. Helgason]

Problem 2. Develop the theory of harmonic
analysis on the quotient of Siegel-Jacobi disk

by an arithmetic subgroup of the Siegel-
Jacobi modular group.
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6. A Fundamental Domain for
Siegel-Jacobi Space

Let Ey; be the m X n matrix with entry 1 where the k-th
row and the j-th column meet, and all other entries 0.
For an element €) € H,,, we set

Let F, be Siegel’s fundamental domain for I',\ H,.
For each ) € F,,, we define the subset Pq of C™™) by

pﬂ — {Z Z’\kjEkj + Z Z [ijij(Q) ‘ 0 < )\kjj Mo < 1 } .
k=1 j7=1 k=1 j=1



For each ) € F,, we define the subset Dq of H,, ,,, by
Do={(,2) e, | Z € Py} .

Theorem (J.-H. Yang: 2006). The sef

is a fundamental domain for I', ,,\H,, .
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7. The Canonical Automorphic
factor for Jacobi Group

Let p be a rational representation of GL(n,C) on a finite
dimensional complex vector space V,. Let M & R™™) he a
symmetric half-integral semi-positive definite matrix of degree m.

The canonical automorphic factor
T : G x Hyp — GL(V,)

for G’ on H,, ., 1s given as follows:

If g = (é f;) € Sp(n,R), (A k) € HY™ and (Q, Z) € Hym,

24



Toual(9, (0 ), (2, 2))

_ 2w o(M(ZH+XQ+p)(C+D)1C HZHAQ+ 1))

y G—me(M(me 2,\fz+n+m))p(c )+ D)

Let C%(H,,m, V,) be the algebra of all C* functions on H, ,
with values in V,. For f € C*°(H,,,,,V,), we define

(floml(g, (A, 15 6))]) (2, Z)
= Jomllg, (A 15 5)),(2,2)) 7"
fFlg(Z+2Q0+p)(CQ+ D)),

25



Definition. Let p and M be as above. Let
H&%ﬂ’m) ; {()\ 1K) € H | A, i, K integral }

be the discrete subgroup ot H( ™) A Jacobi form of index M
with respect to p on a %ubgroup I of I',, of finite index is a

holomorphic function f € C*(H, ,,,V,) satisfying the following
conditions (A) and (B):

(A) 7] = fforall y € [ :=T x H™™.

(B) For each M €1, f|,.m|M] has a Fourier expansion of
the following form :

(FlomMN,2)= > >«

T=tT>0 Re7Z(n,m)

half-int r:gral

o(T) | 2mio(RZ)

1 1
with Ap(# 0) € Z and ¢(T, R) # 0 only if ()il‘% ﬁ) > 0.
2



8. Singular Jacobi Forms

Definition. A Jacobi form f € J, »(1'),) is said to be cuspidal

o T LR) .
if ( . 2 | >0 forany T, R with ¢(T, R) # 0.
LR M

Definition. A Jacobi form f € J, p(1'),) is said to be singular
if it admits a Fourier expansion such that a Fourier coefficient

¢(T, R) vanishes unless det ( L %R) =0
- ) - v, =L %fR M .

Let &, = P X R he the Minkowski-Euclid space,

where &7, is the open cone consisting of positive symmetric
n X n real matrices.

27



For a variable (Y, V) € 2,,, with Y € &, and V € R™")
we put

Y = (Y) With Y = v, V = (i),

8(1+(5,,w3> i(i)
3}’ B 2 3y;ﬁp j SV B a’ng j

where 1 < py,v, [ <nand 1 <k <m.

We define the following differential operator

o 1'Ya\, 0
oV 87 BVMBV

My g = det(Y) - det

28



Theorem (J.-H. Yang: 1993) Let f € J, y(T,). Then

f 1s singular it and only 1f M, v f = 0.

Theorem (J.-H. Yang: 1995) Let f(#0) € J, ([,
Lhen
f 15 smgular 1t and only 1t 2k(p) < n+m.



9. The Siegel-Jacobi Operator

Let p be a rational representation of GL(n,C) on a finite
dimensional vector space V,. For a positive integer r < n,

we let pl") : GL(r,C) — GL(V,) be a rational representation
of GL(r,C) defined by

0 (a)v:= 8 MU v, a€GLrC), vel,

30



The Siegel-Jacobi operator ¥, , : J, u(I',) — Jp(-r)!M(Fﬂ)
15 defined hy

(o, f) (. 2) = lim | ((g iﬂir) e 0)) |

where f € J, u(F,), Q€ H, and Z € C™7).

Theorem (J.-H. Yang: 1993)

The action of the Siegel-Jacobi operator on Jacobi forms
1s compatible with that of the Hecke operator.

31



Remarks : (a) We can define the concept of
stable Jacobi forms using the Siegel-Jacobi
operator. The stability of Jacobi forms yields
the study of representations of an infinite
dimensional symplectic group, an inf. dim.
unitary group, an inf. dim. Jacobi group and
that of an inf. dim. universal abelian variety.

(b) We may investigate the injectivity and the
surjectivity of the Siegel-Jacobi operator.



10. Construction of Modular
forms from Jacobi Forms

For any polynomial P € C|zy1,-+ , Zyn| with
7 = () € Cmm), we put

0 0
P = P ‘o .
(aZ) (agll | | aﬁmn )




Theorem (J.-H. Yang: 1995)

Let P be a homogeneous pluriharmonic polynomial

in Clzy1,- -, 2mn). Let f € J, m([y). Then

P(0z)f (8, Z)|z=0

1s a vector valued modular form with respect to
a new rational representation of GL(n,C).

34



Remarks : (a) D. Mumford, M. Nori and

P Norman (1991: Tata Lecture Ill) proved
the similar result for theta functions. The
above theorem is a generalization of their
result because theta functions are special
Examples of Jacobi forms.

(b) Applying the ideas of the proof of the
Above theorem to Eisenstein series and
theta functions, | obtained interesting
identities.



11. Maass-Jacobi Forms

Definition. Let
Lo = Sp(n, Z) x H"™
be the discrete subgroup of G, where
Hé”’m) = {()\, I K) € H:gl’m) | A, i1, k are integral } .
A smooth function f : H, ,, — C is called a Maass-Jacobi form

on H, ,, if f satisfies the following conditions (MJ1)-(MJ3):

(MJ1) f is invariant under I, ,,.
(MJ2) f is an eigenfunction of the Laplacian A, ;.4 p-
(MJ3) f has a polynomial growth, that is, there exist

a constant C' > 0 and a positive integer /N such that

(X +4iY, 2)| < Cp(Y)N as detY — oo,

where p(Y') is a polynomial in Y = (y;,).
36



Remark: Let D, be a commutative subalgebra of D(H,, ,,)
containing the Laplacian A, ,,.4 5. We say that a smooth
function f : H,,, — C i1s a Maass-Jacobi form w.r.t D,

if f satisfies the conditions (M J1), (MJ2), and (M J3):

the condition (M .J2), is given by

(M.J2), f is an eigenfunction of any operator in D,.

It 1s natural to propose the following problems.

Problem A : Find all the eigenfunctions of A, ;.45

Problem B : Construct Maass-Jacobi forms.

37



It we find a nice eigenfunction ¢ of A, .45,
we can construct a Maass-Jacobi form fy on H, ,,
in the usual way defined by

f5(0,2) = > (v (22)),

Y ET iﬁ T \F T,

where

. A B
[ = {((c D) ,()\,;L;ﬁ:)) erﬂ,m‘ c_o}

1S a subgroup ot 1', ,,.

38



We give some examples of eigenfunctions of Aj ;. ;.

(1) h(z, y) = y2 K, 1(2x]aly) ™ (s € C, a # 0)

with eigenvalue s(s — 1). Here

1 o0
K (2) := 5/ exp {—g(tnL t_l)} t5~Ldt,
0

where Rez > 0.
(2) v*, v’z, y’u (s € C) with eigenvalue s(s — 1).
(3) y°v, Y'uv, y’zv with eigenvalue s(s + 1).
(4) x, y, u, v, Tv, uv with eigenvalue 0.
(5) All Maass wave forms.

39



We define D, v to be the algebra of all differential
operators D on H,, ,, satistying the following condition

(Df)lpmlyl = D(flpmlg])
for all f € C*(H,,,,V,) and for all g € G”.

We denote by 2, the center of D, .

We define another notion of Maass-Jacobi forms as follows.

40



Definition. A vector-valued smooth function ¢ : H,, ,, — V,
Is called a Maass-Jacobi form on H, ,, of type p and index M

if it satisfies the following conditions (MJ1), a1, (M J2),01
and(MJ3), m:

M)yt dlyu] =6 forall y€ Ty
(MJ2), [ is an eigenfunction of all operators in Z,

(MJ3), 0 [ hasa growth condition
ﬁb(ﬂj Z) — () (eadet}’ ' BQ?T’EI(M[V]Y‘I))

as det Y — oo for some a > 0.

41



Remarks: The case whenn=1, m =1 and p = det"

(k=0,1,2,-+) was studied by R. Berndt and -

A. Pitale and K. Bringmann and O. Richter. T

R. Schmidt,

hey proved

that the center Zy, , of Djr o 1 the polynomial algebra

with one generator C** of degree three.

42



12. The Schrodinger-Welil
Representation

Let M be a positive symmetric real m X m matrix.
We can construct the so-called Schrodinger-Weil
representation w ., of the Jacobi group G”.

There are some applications of the Schrodinger-Weil
representation wpy:

(1) Construction of Jacobi forms
(2) Theta Sums
(3) Unitary Representations of G or G

4) Maass-Jacobi Forms .



The details can be found in the following references:

1] K. Takase, On Unitary Representations of the Jacobi
Group, J. reine angew. Math. 430 (1992), 130-149.

2] J.-H. Yang, The Weil representations of the Jacobi
egroup, Proceedings of the international conference on
Geometry, Number Theory and Representation,

Kyung Moon Sa (2013), 169-204.

3] J.-H. Yang, A Note on Maass-Jacobi forms II,
Kyungpook Math. J. (2013), 49-86.

4] J.-H. Yang, The Schrodinger-Weil Representation
and Theta Sums, submitted (2013).
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13. Open Problems



(1] Analogue of Hirzebruch-Mumford Proportionality Th:

[Hirzebruch-Mumford]| Assume

-Ey=GxgC', G=5pnR), K=U(n), 7: K— GL(r,C)
- [' is an arithmetic subgroup of Sp(n, Z)
- Eisahol VB on A,r :=T'\G/K

- By carries a G-equivariant Hernetian metric Ay which induces
a Hermitian metric h on E.

Then there exists a hol VB E on a toroidal compactification VELHI
of A,r and a natural metric on H,, = G/ K such that

¢*(E) = (=1)2"+ D vol (T\H,,) ¢*(E).

Here a = (ay, -+ ,a,) € Z%, and F is a Ge-equivariant hol VB
on the compact dual of H,,.

TV



[2] Compute the cohomology H*(A, ,»r,®) of A,..r.
Investigate the intersection cohomology of A, ,,r.

[3] Generalize the trace formula of Sophie Moreal on the
Siegel modular variety to the universal abelian variety.

Let S* be the Siegel modular variety associated to GSp,, and

let X' C G(As) be an compact open subgroup. Let V' be an alge-
braic repn of G. Let p be a prime such that K = G(Z,) K”?
with K7 C G(A%). Then for all f € CP°(K\G(Ay)/K) such that

] = [*Plgz,) and for any suff large integer j, we have

Te(Frobd x f,TH*(S¥,V)) = > «G,H) ST ().
(Hssaﬂﬂ)
Here (H, s, 19) is the equivalence class of triples of elliptic endos-

copies of G such that Hr admits an elliptic maximal torus, fI(_Ij)
is a function on H(A) and ST is the geometric side of the
stable trace formula on H. 47



[4] Develop the theory of the stability of Jacobi forms.

5] Compute geodesics, distances, scalar curvatures,
Ricci curvatures, Chern classes and so on.
Express the center of % (g/) explicitly.

Compute the center of D(H,, ,,).

6] Develop the spectral theory of A, ;.45 on I'\H,, ,,
for an arithmetic subgroup I' of [, ,,,.

[7] Develop the theory of harmonic analysis on the
Siegel-Jacobi disk D, ,,.

[8] Study unitary representations of G/, equivalently,
Sp(n,R) (orbit method for G7).
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9] Attach Galois representations to cuspidal Jacobi
forms.

[10] Automorphic L-functions for G”.

[11] Trace formula for G”’.

[12] Decompose L*(G7(Q\G”(A)) into irreducibles
explicitly.

[13] Analogue of Langlands program
(Differences : non-symmetric space, non-commutative
Hecke algebra, no root systems, no multiplicity one
theorem,- - - ).
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[14] Construct Maass-Jacobi forms. Express the Fourier
expansion of a Maass-Jacobi form explicitly.

[15] Investigate the relations among Jacobi forms,
hyperbolic Kac-Moody algebras, infinite products,

the Moonshine and the monster group.

[16] Study complete mixed mock Jacobi forms and
skew-holomorphic Jacobi forms relating to mock
theta functions, Appell functions (S. Zwegers),
mixed mock modular forms (Don Zagier).

[17] Applications to physics (quantum mechanics,
quantum optics, coherent states,:-- ), elliptic genera,

singularity theory of K. Saito,---.
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Many Thanks !!!



