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ABSTRACT. This article is a continuation of the paper [21]. In this paper we deal with
Maass-Jacobi forms on the Siegel-Jacobi space H x C™, where H denotes the Poincaré
upper half plane and m is any positive integer.

1. Introduction

This article is a continuation of the paper [21]. Recently A. Pitale [14], K.
Bringmann and O. Richter [4], and C. Conley and M. Raum [5] defined another
notion of Maass-Jacobi forms and studied some properties of Maass-Jacobi forms.
In [4], [14] and [21], the authors considered the case n = m = 1 and in [5], the
authors dealt with the case n = 1 and m is arbitrary. In this paper, we consider
mainly the case n = 1 and m is an arbitrary positive integer.

This paper is organized as follows. In Section 2, we give some useful geometric
properties of the Siegel-Jacobi space H x C™. We study the invariant metrics, their
Laplacians, a fundamental domain, geodesics, the scalar curvature and invariant
differential forms on H x C™. In Section 3 we describe the center of the universal
enveloping algebra of the complexfied Jacobi Lie algebra. This work is due to Conley
and Raum [5]. In Section 4, we present some interesting and important results on
invariant differential operators on the Siegel-Jacobi space H x C™. In Section 5,
we discuss the notion of Maass-Jacobi forms introduced by J.-H. Yang [21]. Maass-
Jacobi forms play an important role in the spectral theory of the Laplace operator
on a fundamental domain for the Siegel-Jacobi space H x C™. In Section 6, we
discuss the notion of Maass-Jacobi forms introduced by A. Pitale [14], Bringman-
Richter [4] and Conley-Raum [5]. We describe the results obtained in [4] and [5].
More precisely the authors of [4] and [5] obtained an explicit Fourier expansion of
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the Poincaré series that is an example of harmonic Maass-Jacobi form. In Section 7,
we discuss skew-holomorphic Jacobi forms introduced by N.-P. Skoruppa [18]. We
describe the relation between cuspidal harmonic Maass-Jacobi forms and cuspidal
skew-holomorphic Jacobi forms via the lowering operator D (cf. (7.3)) In Section
8, we briefly review some results on covariant differential operators on the Siegel-
Jacobi space Hx C™ obtained by Conley and Raum [5]. In the final section we briefly
mention two notions of Maass-Jacobi forms on the Siegel-Jacobi space H,, x C(™™)
for the general case n > 1 and m > 1. Here H,, denotes the Siegel upper half plane
of degree n. We present some natural problems related to the study of Maass-Jacobi
forms.

Notations: We denote by Q, R and C the field of rational numbers, the field of
real numbers and the field of complex numbers respectively. We denote by Z and
77 the ring of integers and the set of all positive integers respectively. R* denotes
the set of all nonzero real numbers. The symbol “:=” means that the expression
on the right is the definition of that on the left. For two positive integers k and [,
F(D denotes the set of all k x [ matrices with entries in a commutative ring F.
For a square matrix A € F**) of degree k, tr(A) denotes the trace of A. For any
M e F®D M denotes the transpose matrix of M. For A € F*!) and B € F(k:F)|
we set B[A] = 'ABA. For a complex matrix A, A denotes the complex conjugate
of A. For A € C®) and B € C*F we use the abbreviation B{A} = ‘ABA.
For a positive integer n, I,, denotes the identity matrix of degree n. For a positive
integer m and a commutative ring F', we denote by S(m, F') the space of all m x m
symmetric matrices with entries in F. For a complex number z, |z| denotes the
absolute value of z. For a complex number z, Re z and Im z denote the real part of
z and the imaginary part of z respectively.

2. Geometric properties of the Siegel-Jacobi space H x C™

We fix a positive integer m throughout this paper and let
H={7€C|Im7T>0}

be the Poincaré upper half plane. Let G = SLy(R) be the special linear group of
degree 2 and let

Hﬂ({m) = { N r)| M peR™, ke R™™) g+ 1\ symmetric }
be the Heisenberg group endowed with the following multiplication law
(Npir)o (Nopsk') = (N4 N p+p/ 5+ 5+ X0 —ptX)
with (/\, 78 m), ()\', s K’) € Hﬂ({n). We define the semidirect product of SLy(R) and

aim
G7 = SLa(R) x HY™
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endowed with the following multiplication law
(M, (A, 3 :)) - (M, (N, p56")) = (MM, A4+ N, i+ sk +rK + 24— AX))

with M, M’ € SLy(R), (A, p; 5), (N, u's56") € H]ém) and (A, i) = (A, u)M’. Then G
acts on the Siegel-Jacobi space H x C™ of degree 1 and index m transitively by

(2.1) (M, (A, p55)) - (1,2) = ((aT +0)(er+d) 7t (2 AT+ p)(er + d)_l),

a b
where M = (c d

C™ with z; € C(1 <4 < m). We note that the Jacobi group G” is not a reductive
Lie group and that the homogeneous space H x C™ is not a symmetric space.

) € SLa(R), (A, p;k) € Hﬂ({n), TeMand 2z = (21,22, ,2m) €

For a coordinate (7,z) € H x C", we write 7 = x + iy with x real and y > 0,
and

_t _ , .
z="(z1,22,""* ,Zm), %2j =uj+ iv;, wuj,vjreal, i=1,2,--- m.

According to [23], for any two positive real numbers A and B, the following
metric given by

1 m
(22) dstap = 7 Ay + B v} | drdr
j=1
B m - m - -
+—514Y Z dz;dz; — Z vj(drdz; + d7dz;)
y j=1 j=1
1 m
= = Ay—|—BZU12» (dz? + dy?)
y =
B m m
+? Y Z(du? +dv) =2 Z vj(dzdu; + dydv,)
j=1 j=1

is a Kihler metric on H x C™ invariant under the action (2.1) of G.

We put

8 t a m 62
(2.3) My := tr <y82 (82)> = yz 92,07, =

Jj=1

RS
VR
Q
@‘Q“
RN )

+
Sl
()
~
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0? -
P 2 §
(24) M2 . = y 87-87- + P

82
yz ( 8787;])
R A 32 L
- 4{y (axz 7) 2 < )
1 0? 0?
+§ Z Ua b <8ua8ub+8va8vb>'

1<a<b<m

LY 0
ZUJ (5‘z8u ayﬁvj)'

Then M; and M are differential operators on H x C™ invariant under the action
(2.1). The author [23] proved that

4 4
(2.5) Am;A,B =3 M + 1 Mo

is the Laplacian of (HxC™, ds?,. , p). Furthermore the following 2(m+1)-differential
form

(2.6) dv=dx ANdy ANduy A+ Nduy, ANdvy A -+ Adoy,

is a G”/-invariant volume element on the Siegel-Jacobi space H x C™.
Let K7 be the stabilizer of G at (i,0). Then

K’ = {((Z _;’) ,(0,0,R)) ‘ a2+ =1, a,beR, R="'Re R }
Thus G//K7 is diffeomorphic to H x C™ via

ai+b Ni+p
ci+d ci+d

9K’ — g-(i,0) = (

where (Z Z) € SL2(R) and (\, p; k) € Hﬂ({n). The Siegel-Jacobi space H x C™

is a homogeneous space which is not symmetric. Let £/ be the Lie algebra of K.
Then the Lie algebra g’ of G’ has the Cartan decomposition

(2.7) g/ =t/ +p’,

where

RE
er{
pJ:{

g
(2 i)
:

y) PQO) 7,y R, P,QeRm}.

T

y> (PQR)> ’%,y,ZER, P,QeR™, R:tReR(M,m)}’

z€R, R="'ReRM™™ }

(
(
(
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Lemma 2.1. We have the relations

(2.8) ¢/ ¢1ce/ and [¢7,p7] Cp’.

Proof. The Lie bracket operation on g’ is given by

(2.9) (X1, (P, @1, Ry)), (X, (P2, Q2, R2))] = (X7, (P",Q", RY)),
where X1, X5 € sl2(R), P1,Q1, P, Q2 € R™, Ry = 'Ry, Ry = "Ry € R(™™),

X' = [X1,Xo] = X1 Xo — Xo Xy,
(P*,Q") = (P1,Q1)X2 — (P2,Q2)X1,
R* = P1'Qy— P'Qi+Q2'Pr — Q1P
The relations (2.8) follow immediately from Formula (2.9). O

Remark 2.1. The relation
b/, p’] ¥’
does not hold.

The vector space p’ can be regarded as the tangent space of the Siegel-Jacobi
space H x C™ = G7 /K7 at (i,0). We define a complex structure I7 on the tangent
space p” of H x C™ = G7 /K7 at (i,0) by

(2.10) 1’ ((2 _ﬂ) ,(P,Q,o)) - ((—ysr _z> (@, —P,o)).

Let
p= {(;U ?{z:) ER(Q’Z)‘ x,yeR}

be the real vector space of dimension 2. Identifying p with C via

(m y) —a+iyeC
Yy —x

and identifying R™ x R™ with C™ via

(P,Q)— Q+iP, P,QeR™,
we may regard the complex structure I as a real linear map on C x C™ defined by
(211) I'(z+iy,Q+iP)=(—y+iz,—-P+iQ), z+iyeC, Q+iPcC™

Clearly IV extends complex linearly on the complexification p = p’ @ C of p”.
Then pé has a decomposition

(2.12) e =pi@p’,
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where p7 (resp. p”’) denotes the (+i)-eigenspace (resp. (—i)-eigenspace) of I7.
Precisely, both pi and p? are given by

pi:{(<lf”x iﬁ),(P,iP,O)) zec, Pecm}
p’ ={<(fx _i;>,(P,—iP,O)> (xec, Pe(Cm}.

Proposition 2.1. Fix an element g = (M, (A, 3 n)) € G7 with M = (Z Z) €

and

SLy(R) and (A, p; k) € Hﬂ({n). We let (Tu,2:) =g - (7,2). Let
F,-HxC™ — HxC™
be the biholomorphic mapping defined by the action (2.1) of g. Then the differential

mapping
ng : T("?Z) (H X (Cm) — T(T*,Z*) (H X (Cm)

is given by
(2.13) (w,€) — (w(9).&(g)), weC, £eC™
with
B w RS w(dA—cp—cz)
w(g)fm and &l9) = c7’—|—dJr (cT+d)?

Here we identified p’ with C x C™.

Proof. Let a(t) = (7(t),2(t)) (—e <t < €, € > 0) be a smooth curve in H x C™
passing through a(0) = (7, 2) with o/(0) = (w,€) € T(;,.)(H x C™). Then

x(t): = g-a(t) = (1(g;t),2(g;1))
B (aT(t)-H) z(t)+)\7(t)+u)
— N\er(t)+d> ceT(t)+d

is a smooth curve in H x C™ passing through x(0) = (74, 2«). Then by an easy
computation, we see that

7'(0) w

0
ooy = 2 -
7'(9:0) = ct+d)? (et +4d)?

ot ‘t:oT(g; t = (

and
13 w(dA—cp—cz)

c¢+d+ (et +4d)?

0
! N = — N =
z (970) - 8t‘t=OZ(gvt)
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Let Ty := SLy(Z) be the elliptic modular group. We let
FLm = Fl X Hém)
be the arithmetic subgroup of G, where

Hém) = {()\,,u; K) € Hﬂg{m) | A\, i, k are integml}

is a discrete subgroup of HH(Rm). Let By := *(0,---,1,0,---,0) (1 <k < m) be the
m x 1 matrix with the (k,1)-th entry 1 and other entries 0. For an element 7 € H,

we set for brevity
Fp(r) :=7E,, 1<k<m.

Let
Fi={re€H||r|>1, |Rer|<1/2}

be a fundamental domain for I'y \H. We refer to [16], pp. 78-79 for more detail. For
each 7 € F, we define the subset P, of C™ by

P = {Z)\kEk+Z#ka(7') ‘ 0 < Ag,pp <1 }
k=1 k=1

For each 7 € F, we define the subset D, of H x C™ by
D, :={(r,2) eHxC" | z€ P; }.
Theorem 2.1. The following subset
(2.14) Fmy = |J D~
TeF

is a fundamental domain for T'y ,, \(H x C™) with respect to the action (2.1).

Proof. Let (T4, z) be an arbitrary element of H x C™. We must find an element
(1,2) of Ty and vs = (7, (A, p;K)) € T with v € Ty = SLa(Z) such that
Vs (T, 2) = (7w, 24). Since F is a fundamental domain for I'; \H, there is an element
~v of I'; and an element 7 € F such that 7, = - 7. Here 7 is unique up to the
boundary of F. We write

a b
Y= (C d) € Fl = SLQ(Z)

We can find A\, p € Z™ and z € P; satisfying the equation

ZHAT+p=z(xT+d).
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If we take v, = (v, (A, 11;0)) € 'y, we see that 7, - (7, 2) = (7x, 2« ). Therefore
HXCm: U ")/*Sc[m]

Y« €1, m
Let (7,2) and 7. - (7, 2) be two elements of J,,,) with 7. = (v, (A, u; K)) € T'y pp with
v € T';. Then both 7 and ~ - 7 lie in F. Therefore both of them either lie in the
boundary of F or v = £15. In the case that both 7 and ~ - 7 lie in the boundary of
F, both (7,2) and 7« - (7, 2) lie in the boundary of Fp,). If v = £1, we get

(2.15) z € P, and t(z+ AT+ p) € P

From the definition of P; and (2.16), we see that either A = ;1 = 0, v # —I5 or both
z and £(z + A7 + p) lie on the boundary of the parallelepiped P,. Hence either
both (7, z) and 7, - (7, 2) lie in the boundary of Fp,,; or 7. = (I2,(0,0;%)) € I'y 1.
Consequently J7,,) is a fundamental domain for I'y ,,,\ (H x C™) with respect to the
action (2.1). O

Now we consider the Siegel-Jacobi space H;; := H x C endowed with the
Riemannian metric (cf. (2.2))

y+v?
dS%;l,l = y3

1 2
(dz? + dy?) + " (du® + dv?) — y—g (dzdu + dydv),

where 7 =z + iy with z, y > 0 real and z = u + ¢ v with u, v real are coordinates
in H1,1~ Then
0 0 0 0
Ey:=—, Ey:=—, FE3:=—, Ej:=_—
1 2 3y’ 3= a0 4=

form a local frame field on Hj ;. Let I‘fj (i,7,k = 1,2,3,4) be the Christoffel symbols
for the Riemannian connection V determined uniquely by the Riemannian metric
ds%;1,1- That is,

4
VeEj=Y THE,  i,j=1234
k=1

Lemma 2.2. For all t,5,k = 1,2,3,4, I‘fj = F?i. The Christoffel symbols Ffj s
(1 <i,5,k <4) are given by

2. — 2y +y° L — 12 __2y—|—112
1 = 292 12 = 1Lo2 = 2¢2
3 3
v v

F4 = T F3 :F4 = T35 3
11 243 12 22 243

v
Fh = 1—%3:@4:1—‘%3:*7

2

M., — 13,14 -_ % 4, =YY
13 34 44 2y’ 13 242

2

Yy—v 1

1—‘?4 = ngzrgzx:—TyQ’ F§3:§7 F§4—F4214—_*
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and all other Ffj =0.

Proof. Tt is easy to prove the above lemma. We leave the proof to the reader. O

Proposition 2.2. Let y(t) = (z(t) +iy(t),u(t) +iv(t)) be a smooth curve in Hy ;.
For brevity we write

o PPy o duo o dW
T o Vo YT VT ae
T = dﬁ ‘—@ ﬁ_dﬁ @_@
T aw YTaw “Ta T ar

Then the curve y(t) is a geodesic in Hy 1 with respect to the metric als%m1 if and
only if it satisfies the following four differential equations

2 2
(2.16) i Yy Yo+ Yga—av=0
2y Yy Yy

2y+y* o 2y+y? o, 1., 1.,

v v
917 . T Lo v v
(2.17) i+ 5, T 2, 7 —|—2u 50 yxu—I—yyv
3 2 2

(2.18) u—%iy—nyU M—yyz Y — Sih =0

3 3 2 2

. A} v .9 UV .9 UV .9 y—v" . - L.

(219) ’U+ Ty?)l' _Ty?’y —&—@u —@’U + ) ru B} y’U—O

Proof. Using Lemma 2.2 and the geodesic equations, we obtain the above
equations. O

Remark 2.2. If u = v = 0, the equations (2.16)-(2.19) reduce to the following two
equations

2
2.20 B Zhy=
(2:20) "
and
1 1
(2.21) j-i— =g =
y y

Thus these two equations (2.20) and (2.21) give geodesics in the Poincaré upper half
plane H which are circles perpendicular to the x-axis or straight lines perpendicular
to the z-axis. Therefore the curve v(t) = (z(t) + iy(t),0) (—oo < t < oo) such
that a(t) = z(t) + i y(t) is a geodesic in H is a geodesic in Hy ; with respect to the
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(o J62
metric dsi,q 1.

Proposition 2.3. Let y(t) be a geodesic in Hy 1 joining two points y(0) = (1,0)
and v(1) = (72,0) such that (t) is contained in the subset {(7,0) € Hy 1| 7 € H}.
Then the length p of the geodesic segment between v(0) = (11,0) and y(1) = (72,0)
is given by

1+ RY?

where R := R(7y,7T2) is the cross-ratio of 71 and 1o defined by

L — T2 T1—T2

R(m,12) = T T

Proof. By remark 2.2, the length p is equal to the length py of the geodesic in H
joining 71 and 79 with respect to the Poincaré metric

dz? + dy?
ds? = LQZJ
Y
It is well known that pgy is given by the formula (2.22). We refer to [17] for the
general case. O

Proposition 2.4. Let (11,21) and (T2, z2) be two points in the Siegel-Jacobi space

H x C™. Then there exists an element g = ( © Z) s (A “)) € G7 such that
A
R R B e G

with § > 0. Therefore the length of the geodesic joining (71,21) to (72, 22) with
respect to the Riemannian metric dsfn;A,B is equal to that of the geodesic joining

(¢,0) to (z J, %) with respect to the metric ds?, 4 p-

Proof. We see that there is an element h = (Z Z) € SLy(R) such that
ati+b | ate+b .
T py—— i an To p—— i
with § > 0. We take
I R -1
N _mA and  p=—Rez + — 1 A
Im T1 Im 1

We easily see that the element

o= ((2 ) ) e
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satisfies the condition
A
g (11,21) = (4,0) and g (12,22) = <z 0, W)
with § > 0.

For each fixed element g € G, according to the GY-invariance of the metric
dsfn;A’B, the map F, of H x C™ defined by the action (2.1) of g is an isometry of

H x C™ with respect to the metric ds?n; a.p- Consequently we obtain the second
statement. O

Proposition 2.5. The scalar curvature r(p) of the Siegel-Jacobi space (Hl,l, dsim)
is —3 for each point p of Hj ;.

Proof. Using Lemma 2.2, we obtain the scalar curvature r(p) = —3 for each point
p of H; 1 by a tedious computation. O

Now we study differential forms on H x C™ invariant under the action (2.1) of
| S

Proposition 2.6. (a) Assume that

a= f(r,z)dr + Z¢k(772) dzy,

k=1

is a differential 1-form on H x C™ invariant under the action (2.1) of I'y . Then
the functions f and ¢r, (k=1,2,---,m) satisfy the following conditions

(223) f(y-(1,2)) = (cT+d)*f(1,2) + (cT+d) Y (czr +cup —dN) op(T, 2)
k=1

and

(2.24) or(v- (1,2)) = (e7 +d) ¢r (T, 2), k=1,2,---,m

for all v = <(Z Z) ,()\,M;Ii)) € Lim with A = YAy, , \p) € Z™ and p =
t(,ula"' 7,um) ez".

(b) Let
n=dr Ndzy ANdza A+ - Ndzp,

be a differential (m + 1)-form on H x C™. Assume that
029(7_72)77@)@, £:1a2737"'a

is a differential £(m + 1)-form on H x C™ invariant under the action (2.1) of T'1 m.
Then the function g satisfies the following condition

(2.25) 9(v- (1.2)) = (eT + )" g(r,2)
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fO’/” all’y = ((CCL Z) 7()‘7/”'; H)) € I‘ll,rn-

(c) For k=1,2,--- ,m, we let
= (=)™ dr Adey A+ Adzp_1 Adzg Adzggpr A+ A dzm
be a differential m-form on H x C™. Assume that
B = Z ar(1,2) 0, + (=)™ b(1,2)dz1 A+ Ndzpy,
k=1

is a differential m-form on H x C™ invariant under the action (2.1) of ' . Then
the functions a(t,z) and by, (k=1,2,--- ,m) satisfy the following conditions

(2.26) ap(v-(1,2)) = (c7+d)" ap(r,2) — (cT +d)™(cz, + cup — d M) b(, 2)
fork—1,2,---  m and

(2.27) b(y-(1,2)) = (cT7+d)" b(r, 2)

for all v = ((Z z> ,(A,u;m)) €Tim with A = "N, ,\p) € Z™ and p =
Fluns - s pm)

Proof. For v = (( ) A\ 5 K )> € Iy with A = *(A,-- ,\p) € Z™ and

p= (1, ) € Z™ and (1,2) € Hx C™ with 2 = (21, -+, 2,n) € C™, we set
(1*,2*) = v (7, 2). In other words,

b A
T*:ﬂ7 Z;::w7 k=1,2-,m
cT+d ct+d
Then we have
dr
2.28 dr* = ———
( ) T (cT+d)?

and

A A d
(2.29) dzf = { k clzp+ A7+ ,uk)} L =

ct+d (cT+d)? et +d’

Using the formulas (2.28) and (2.29), we obtain the desired results (a), (b) and
(c). O
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3. The center of the universal enveloping algebra of g’

In this section we describe the center of the universal enveloping algebra of the
complexication of the Jacobi Lie algebra g’ explicitly.

Let gé be the complexification of the Jacobi Lie algebra g”. We put the 2 x 2

matrices
1 0 0 1 0 0
ie(t9) m=(0) wa k(0 0).

Then {H, E, F} is a basis of the Lie algebra sly(C). Let €;; (1 <i <m, j=1,2)
be the m x 2 matrices whose (4, j)-th entry is 1 and whose other entries are zero,
and let Ey; be the m x m elementary matrix whose (k,[)-th entry is 1 and whose
other entries are zero. We set e; := €;1, fi := €2 (1 <i<m) and

1
Ry = 3 (Exi + Eji), Rp= Ry, 1<k 1<m.

Then {H,E,F,e;, fi,Rii] 1 <i<m, 1<k<I[I<m}isa basis for gé. It is easily
seen that
Z = {(0,(0,0,R)) € g¥| R='ReC™™ }

is the center of gf.

Lemma 3.1. We have the following.

(1) [H,E]=2E, [H,F|=-2F, |[E,F]=H.
(2) [H,e]]|=—e;, [H,fi]=Ffi, 1<i<m.
(3) [E.e]=fi, [E fi]=0, 1<i<m.
(4) [Fieil =0, [F fi]=-e, 1<i<m.

(5) lei, fi] =2Riy;, 1<i,j<m.

Proof. The proof follows immediately from the fact that
(3.1)  [(X1,(P1,Q1, B)), (X2, (P2, Q2, R2))]

= ([X1;X2]a ((P1, Q1) X2 — (P2, Q2) X1, PL'Q2 — P,'Q1 + Q2 'PL — Q1 tP2)>,

where X1,X, € slk(C), [X1,X2] = X1Xo — XoXy, P,Q; € C™Y (i =
1,2), Ry, Ry € C™™) with Ry = 'Ry and Ry = 'R,. O
Formally we put
€1 f1
€2 f2

€m fm
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and
Rii Riz2 -+ Rim
Ry Ry -+ Rom
R:= . ) . ) , Ru=~Ry, 1<EI<m.
le RmQ Tt Rmm

Theorem 3.1. The center Z,, (gé) of the universal enveloping algebra U(gé) of gé
is given by
Zin (08) = C[Qn, R | 1<k <1< m].

That is, Zp, (gé) is a polynomial algebra on 1+ W generators Q,, Ry (1 <
k<l<m). Here

Qn: = detR{H>—(m+2)H + 4EF}

+ det R {EteR_le YRR - (H - mf’) tfR—le}

+ det R {i tf(tfR_le)R_le — i (teR_lf) (teR_le) }

is a Casimir operator of U(g”’C) of degree m + 2.

Proof. Using the method computing the center of the universal enveloping algebra
of a certain class of semidirect sum Lie algebras invented by Campoamer-Stursburg
and Low [6] (cf. [2], [15]), Conley and Raum [5] proved the above theorem. We refer
o [5] for the detail. O

Let v : G7 x (]HI X (Cm) — C* be a scalar cocycle with respect to the action
(2.1). This means that «y is a smooth function satisfying the cocycle condition

(3.2) v(9192,

(1,2)) = (91,92 - (7,2)) ¥(g2, (7, 2))
for all g1,92 € G’ and (7, 2) € H x C™. Then we get the map

A(g) : G7 — C=(H x C™)
defined by
A(9)(r,2) = (g,(1,2)), g€G’, (1,2) eHx C™.
Then we obtain the right action |, of GY on C*°(H x C™) defined by

(3-3) (9- )(r,2) = (fllo™]) (r,2) = 2(g™", (1, 2) f g7 - (7, 2)),

where g € G/, f € C®°(H x C™) and (7,z) € H x C™.
We note that the differential dy of 7 at the identity is given by

A (rz) = L

g y(exp(tY), (7, 2))-

t=0
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Therefore we have the differential right action |, of g on C°°(H x C™) defined by

d

34)  @LID(r2): = |  (v(exp(tY), (1,2))¢(exp(tY) - (,2)))

(35) = A (Do) + G| o), (r2))

where Y € g and ¢ € C*°(H x C™). The action (3.4) extends to U(g{) as usual,
and elements of U(g) of order 7 act by differential operators of order < 7.

Let D, be the algebra of all differential operators D on H x C™ satisfying the
following condition

(3.6) (D9)ly1g] = D(¢l19])

for all g € G and for all ¢ € C*>°(H x C™). Since G’ is connected, D., is the algebra
of all differential operators D on H x C™ commuting with the |,-action of gf. In
particular, the action |, maps the center Z,,(g) of U(gf) into the center Z,,(D-)
of D,.

Throughout this section we let M be a positive definite half-integral symmetric
matrix of degree m and let k € ZT. We let vg o : G/ x (H x C™) — C* be the
canonical automorphic factor for G7 on H x C™ defined by

'Yk,M((Mv (>\ﬂ 3 R))7 (T7 Z)) :

(37) — (CT + d)k 627ri3\/[[z+)\'r+u]c(c7'+d)71 e—2‘n’it1r(3\/[(7')\t)\+2)\tz—i-.t-€+,u°)\))7
where (M, (\, ;) € G7 with M = (Z Z) € SLy(R), (\,u;k) € HD(Qm) and
(r,2) e Hx C™.
For brevity we write
0 1 /0 .0 0 1 /0 .0
o= =3 (moim) *mmEmlm i)
0 1 /0 0
i o= = (e i), 1<j<m,
Oz, 0z; 2 <8uj Zavj) J=m
— 87 = 1 67 + 167 1<i<m
i - 8@- - 2 an ij ’ J ’
az L= t(azlagzga"' 78,2,”)7 &z:: t(aglv&zza"' 7&zm)-

Lemma 3.2. Let M and k be as above. We set M := 2mwiM. Then we have the
following:

(3.8) i, e ] 2Re (9r),

(3.9) e [F] = —2Re(r(19, + %28.)) — kT — M[2],
(3.10) e w[H] = 2Re(270; + 20.) + k,

(3.11) |1+ [(0,(P,Q,R))] = 2Re(Y(Pr+Q)3d.) + 2PMz + tr(RM).
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Proof. We observe that if (X, (P,Q, R)) € g with X € sl5(C), P,Q € cmD and
R = 'R e C™™) then

(312) exp (X, (P,Q, R)) = (exp(X), ((P.Q) 9(X), R~ (P,Q) h(X) (~Q. P)) ),

where
=t et —1 et —1—t
t) = — t) = d h(t) = ——.
)= D gl = S e n0)=
Using the formula (3.12) we easily obtain the formulas (3.8)-(3.11). O.

Theorem 3.2.

(3.13) o (] = det (M) {k(k —m —2) — 2821
where

EM . _ _g,2 L

eeAM . — 8y87&+4z(k 2);,5%

+2y2(&f{_1[8]+8M [a;}) 88, v ds
5o (R N 0]~ (@009.)°) + 2y (war) 19505,

—% (2k —m + 1)yt853\/[_18u + 2% (tv )Bg +i(2k—m — 1) 05
The operator C&M generates the image of the |ys..ac -action of the center Zm(a).

In particular, C%™M s an element of the center of D

Proof. We write M = (J\N/qu). According to (3.11), we have the relation |, , [Rpq] =

JVqu for all 1 < p < g < m. The proof follows from Theorem 3.1. and Lemma
3.2. O

Ve, M *

4. Invariant differential operators on H x C™

For brevity we put
Tim:=CxC™.

We define the real linear map ®,, : p — Ty, by
(11) o (5 1) PQO) =@t inPriQ)

where ((;C —a:) (P,Q, 0)) € p’. Obviously @,, is a real linear isomorphism of

p‘] onto T .
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Let S(m,R) denote the additive group consisting of all m x m real symmetric
matrices. We define the group isomorphism 6,, : K7 — U(1) x S(m,R) by

(4.2) 0, ((Z ‘f) ,(070;@) — (a+ib k),

a —b ) J
where ((b a) ,(0,0; Ii)) e K”.

Theorem 4.1. The adjoint representation Ad of K7 on p”’ is compatible with the
natural action of U(1) x S(m,R) on T, = C x C™ defined by

(4.3) (h, k) - (w, &) := (hPw,h€), heU(), ke Sm,R), weC, £EcC™

through the map ®,, and 0,,. Precisely if k/ € K/ and o € p’, then we have the
following equality

(4.4) D, (Ad (k7 )a) = 0, (k) - @1 ().
We recall that we identified p” with C x C™.
Proof. We refer to [26] for the proof. O

The action (4.3) induces the action of U(1) on the polynomial algebra Polj,,,) :=
Pol(T1,,). We denote by Polﬁé]l ) the subalgebra of Polj,,; consisting of U(1)-

invariants. We let ]D)(H X (Cm) be the algebra of all differential operators invariant
under the action (2.1) of G7. According to [7], one gets a canonical linear bijection

(4.5) Oy : Poll’ ) —s D(H x C™)

[m]

of Pol’M onto ID)(]HI X Cm). But Oy, is not multiplicative. The map O, is

[m]

described explicitly as follows. Let {n,| 1 < a < 2(m+ 1) } be a basis of p’. If
Pe PolU(l)7 then

]
5 2(m+1)
@) (e)f)ar”) = [P (5 ) 1 [gew | X tana | K7 ,
i o=t (ta)=0
where g € G/ and f € C°(H x C™).

U(1)

[m]

Theorem 4.2. Pol s generated by

(4.7) q(w, &) = tr(wﬁ),

(4.8) arp(w,§) = Re (€7€), , 1<k<p<m,
(4.9) Big(w, &) = Im (£7€),,, 1<I<qg<m,
(4.10) Srp(w, &) = Re (WEE)rp, 1<k <p<m,
(4.11) grp(w,€) = I (WE€)wp, 1<k <p<m,
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where w € C and £ € C™.
Proof. We refer to [9] or [26] for the general case. O

We let
w=r+is€C and &= "(&, - ,&n) € C™ with & =G +ime, 1 <k <m,

where 7,5,(1,71, -+, (m, m are real. The invariants q, ogp, Big, frp and gi, are
expressed in terms of r, s, (x,m (1 < k,1 < m) as follows:

- 2482

kp = Cké-p + NETp 1<k < p<m,

q(w, &)
(w,€)

Big(w, &) = Cem—Cng, 1<1<qg<m,
(w,€)
(w,€)

Q

= r(GCp — menp) + 5(Cenp +m0Cp), 1<k <p<m,
= T(<k77p + 77ka) - 3(<k§p - nknp)a 1<k<p<m.

Theorem 4.3. The m(mTH) relations
(4.12) fio+ Gty =00k app, 1<k<p<m

exhaust all the relations among a complete set of generators q, ip, Big, frp and gip
ofPolﬁr(b]l) withl<k<p<mandl <Il<qg<m.

Theorem 4.4. The action of U(1) on Poly y, is not multiplicity-free. In fact, if
Poly,,) = Z My O,
oelU(1)
then my = oo.

For the proofs of the above theorems we refer to [26].
We consider the case m = 1. For a coordinate (w,&) in T3, we write w =

r4+is, £€=(+1in, r,s,(,n real. The author [21] proved that the algebra Polﬁ](l)
is generated by

dw.€) = ww= (7 + ),

a(w,§) = €€=C 4,

b(w,€) = 3 Re () = 3 r(¢ — 1) +5Cm.
U(w,€) = %Im (£*w) = %S(nz’ = ¢ +rin.

In [21], using Formula (3.6) the author calculated explicitly the images
Dy =0pi(q), D2=0pj(a), Ds=0Opu(¢) and Dy=0p(y)



A Note on Maass-Jacobi Forms 11 67

of ¢, @, ¢ and ¢ under the Halgason map ©Op;. We can show that the algebra
D(H x C) is generated by the following differential operators

0? 0? 0? 0?
.2 2 4 7 2 2 —
Di=y (8x2+8y2>+v <8u2+8v2)
0? 0?
+2yv <8x8u * 8y8v>’
0? 0?
D%?/(auz*avz)’

o (9% 9 ok
—.2 | 2 _ = — 2
Ds =y Ay ( ou?  Ov? ) 2y dxOudv

0
—<U8’U+1)D2

o ( 02 0? o3
—a.2 _ — 2
Da=y Oz ( o2 Ou? > 2y Ayoudv
9]
“ Vo

and

where 7 = x + 1y and z = u + ¢v with real variables x, y, u, v. Moreover, we have

0 0? 0?
2
Piba=Deby =2y, (au - a)

ok 0
— 2 — JR—
4 0rdudv 2 (UavD2+D2>'

In particular, the algebra D(H x C) is not commutative. We refer to [1, 21] for more
detail.

Recently Hiroyuki Ochiai [13] (see also [1]) proved the following result.

Theorem 4.5. We have the following relations

(

(b) [D1, D3] =2D1Dy —2D;
(¢) [D2,Ds] = —Dj3

(d) [Da, D1]=0

(e) [D4,D2] =0

(f) [Ds,Ds] =0
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(9) D3+ D3 = DyDy D

These seven relations exhaust all the relations among the generators Dy, Do, D3
and Dy of D(H x C).

Remark 4.1. According to Theorem 4.5, we see that D, is a generator of the

center of D(H x C). We observe that the Lapalcian

4 4
Al;A,B = Z Dl + E .D2 (see (25))

of (H x C,ds?, 4 g) does not belong to the center of D(H x C).

5. Maass-Jacobi Forms due to Yang

Using GY-invariant differential operators on the Siegel-Jacobi space, we intro-
duce a notion of Maass-Jacobi forms.

Definition 5.1. Let
Ty o= SLy(Z) x H{™

be the discrete subgroup of G, where
Hém) = {()\, Wi K) € Hﬂ({m) | A\, i, k are integral } .

A smooth function f: H x C™ — C is called a Maass-Jacobi form on H x C™ if f
satisfies the following conditions (MJ1)-(MJ3):

(MJ1) f is invariant under I'y ,,.

(MJ2) f is an eigenfunction of the Laplacian A,,.4 g (cf. Formula (2.5)).

(MJ3) f has a polynomial growth, that is, there exist a constant C' > 0 and a
positive integer N such that

(@ +iy,2)| < Clp(y)|Y asy — oo,

where p(y) is a polynomial in y.

Remark 5.1. Let D, be a commutative subalgebra of D(H x C™) containing the
Laplacian Ap,.4.5. We say that a smooth function f : H x C™ — C is a Maass-
Jacobi form with respect to D, if f satisfies the conditions (M J1), (MJ2). and
(M J3): the condition (M J2), is given by

(MJ2), f is an eigenfunction of any invariant differential operator in D).
It is natural to propose the following problems.
Problem A : Find all the eigenfunctions of A, 4 5.

Problem B : Construct Maass-Jacobi forms.
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Problem C: Develop the spectral theory of the Laplacian A, 4 g on a fundamen-
tal domain for the Siegel-Jacobi space H x C™ with respect to I'y .

If we find a nice eigenfunction ¢ of the Laplacian A,,.4 g, we can construct a
Maass-Jacobi form fs on H x C™ in the usual way defined by

(5.1) forz):= > oy (r.2),

YELY, \I'1,m

rffm—{«‘é Z),(A,u;n)) erl,m’ c—()}

is a subgroup of I'; ,,.

where

We consider the simple case m = 1 and A = B = 1. We take a coordinate
(r,2) e Hx C with r =2 +1iy, € R, y >0 and z = u + v, u,v real. A metric
ds?., ; on H x C given by

+ v? 1
sty =Y " (da® + dy?) + g(du2 + dv?)

2
- y—g(dxdu + dydv)

is a G’-invariant Kéahler metric on H x C. Its Laplacian Aq;1,1 is given by

o? 0?
_ .2
A1 =y <8x2 + 3y2>

o? 02

2 [ R
+ (y +v°) <au2 +8v2)

0? 0?

T2y <8m8u * ayav)'

We provide some examples of eigenfunctions of Aq;j ;.

(1) h(z,y) = y%Ks_%(Qﬂa\y) e?maz (s € C, a # 0) with eigenvalue s(s — 1).
Here

(5.2) Ki(2) = 5 /0oo exp {—g(t n t—l)} ==L at,

where Re z > 0.
(2) v*, y°z, y*u (s € C) with eigenvalue s(s — 1).
(3) y®v, y*uv, y*zv with eigenvalue s(s + 1).
(4) z, y, u, v, v, uv with eigenvalue 0.
(5)

5) All Maass wave forms.
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We let f;H x C — C be a Maass-Jacobi form with Ay;;1f = Af. Then f
satisfies the following invariance relations

fir+n,2)=f(1,2) forall n € Z
and
flrz+n71+n2) = f(1,2) for all ny,no € Z.

Therefore f is a smooth function on H x C which is periodic in « and u with period
1. So f has the following Fourier series

(53) f(f;-’ Z) = Z Z Cn,r(ya U) 2 (nac+ru)'

neELZrel

For two fixed integers m and r, for brevity, we set ¢(y,v) = ¢pr(y,v). Then ¢
satisfies the following differential equation

2 2 2

0 0 0
207 2, 9"
(5.4) |y 5 + (y+v )8v2 + 2yv D900

— {(Ay—|—Bv)2—|—Bzy+A} =0,

where A = 27n and B = 27 r are constants. We note that the function ¢(y) =
Yz K,_1(2m|n|y) satisfies the the differential equation (5.4) with A = s(s—1). Here
K,(z) is the K-Bessel function defined by (5.2) (cf. [10], [19]).

6. Maass-Jacobi forms due to Pitale, Bringmann et al

We fix a positive integer m. Let M be a symmetric half-integral semi-positive
definite matrix of degree m. Let C°°(H x C™) be the algebra of all C*°-functions
on H x C™. For any nonnegative integer k € Z, we define the | -slash action of
G7 on C°°(H x C™) as follows: If f € C®(H x C™), and (M, (\, ;%)) € G with

(2‘ Z) € SLy(R) and (A, p; k) € H{™,

(f|k,M[(M7 ()\ﬂ 3 H))]) (T7 Z) :

(61) = (CT + d)_k e_QWiM[Z-"-)\T-Ht] c(er+d)~!

Xezm‘tr(M(r,\‘A+2A‘z+n+ut>\))f (GT+b z+)\7+u> 7

cr+d  er+d

where 7 € H and 2 € C™. We recall the Siegel’s notation «[f] = *Ba/ for suitable
matrices o and §. Let Dy, 5 be the algebra of all differential operators D on H x C™
satisfying the following condition

(6.2) (Df)lrvlgl = D(flr,mlg])

for all f € C*°(H x C™) and for all g € G7. We recall the arithmetic subgroup I'y
of G’ defined by
Ty o= SLy(Z) x HY™.
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Definition 6.1. Let €*M be the Casimir operator defined in Theorem 3.2. A
smooth function ¢ : H x C™ — C is called a Maass-Jacobi form of weight k and
index M if it satisfies the following conditions:

(MJ1*)  @lem[y] = ¢ for all v € T'y .
(MJ2*) ¢ is an eigenfunction of the Casimir operator €%,

(MJ3*) For some a > 0,
o(r,2) = O(e“y ezmMM/y) as y — 00.

Furthermore if €*M¢ = 0, it is said to be a harmonic Maass-Jacobi form of weight
k and index M. We denote by Ji n the space of all harmonic Maass-Jacobi forms
of weight k& and index M.

For the present being we let M be a positive definite integral even lattice of
rank m and k an integer. We identify M with its Gram matrix with respect to
a fixed basis, that is, a positive definite half-integral symmetric matrix of degree
m. We write | M| for the determinant of the Gram matrix of M. Throughout this

section n will be an integer and r will be in Z™. For r = *(r1, -+ , 1) € Z™ and
2=z, ,zm) € C™, we put
m
CT — HeZﬂ'irj j’
j=1
where ¢ = (Ci,-++,(n) with ¢ = €*™% (1 < j < m). For a € C, we write
e(a) := €2™, For two vectors & = (&, ,&n) and n = ‘(n1, -+ , M) in C™, we

let

Em = &mn
j=1

be the standard scalar product.
We set

(6.3) D = Dy(n,r) := |M|(4n — M*I[r]) and  h = hy(r) := | M| Mﬁl[r].

Let M, ,(w) be the usual M-Whittaker function, which is a solution to the following
differential equation
82 2

1_
(6.4) Wf(w) + (—i + g + 4 s

w2

) st =o.
For s € C, k € 3Z and t € R*, we define the function

(6.5) M () o= |75 Mgnay 55— 3 (I2)
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and

(6.6) &ﬁ@(ﬂz)::wuig‘<iﬁf> 27 ({re) + 4 M rly 4 ).

We define the Poincaré series

(6.7) P,ES\’,}”L(T, 2=y (¢g(g;;3s

V€L, \T'1,m

1) ()

Obviously P,gnj\’g)s is holomorphic in C™. It is easily seen that P,Enjvg )S is an eigen-
function of the Casimir operator C*™ with eigenvalue
1

—2s(1—s) 5

{k2—k(m+2)+im(m+4)}.

For s € C, me%ZanthRx,weset
(68) Wsﬂ‘i(t) = |t|_gngn(t)%,s—% (|t‘)7
where W, ,, denotes the usual W-Whittaker function which is also a solution to the
differential equation (6.4).
For r € Z™, we define the theta series

(69) 9127:;\/[(7_7 Z) — Z 627riM[)\] <2MA {627”’ (r,A)Cr + (71)k e 2mi (r,)\)cr} )
xezm

Theorem 6.1(Bringmann-Richter [4] and Conley-Raum [5]). The Poincaré series

Ps(%)s(T, 2) has the Fourier expansion

n,r mDy —iDy r rinT
©10) PRl = 2y (Tt ) e (Gt oiaetm =
+ Z Cy,s(n/a ’I‘/) 627rin"r CT/'

n' €z, r’'ezm

Here the coefficients ¢, s(n',r") are
cys(n' ") = by (01" + (=1)F b, (0, —1)

with by, s depending on D and D' = |M| (4n' — M~[r']) and b, s(n',7") is given as
follows:

(1) If D' =0, there is a constant as(n’,r") such that

bys(n',r") = as(n,r")
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(2) If DD’ > 0,

m

T(2
byo(n/,7) = 2% ik M]3 (29)

I‘(sfsgnD’ (gf%)
k_ m+2 .
" Dz . _iD'y W 7Dy
D M) TR v

DD’
XZC E (n,r,n' r)J25_1<7TC|M|>,

ceZt

where T' is the usual Gamma function, Js is the usual J-Bessel function and
K. n(n,r,n',r") is the Kloosterman sum defined by

. —1 -1,/
(6.11) K (nyryn/,r'") = e mie (M)
« § /‘ 6271'1'(6_1&3\/[[)\]+n'd7(r',/\>+dn+ti(r,)\>)
)
de(Z/cZ) >,
XEZ™ [ cZ™

where d is an integer inverse of d modulo c.

(3) If DD’ < 0,

bys(n';r') = 207wtk M|

k_m42 )
" D'\2 1 . 1 D'y mD
D 4\M|

><Z_Wr2 cMnrnr)Igs1< i ),
cEZT | |

where I is the usual I-Bessel function.

Proof. We refer to [4] for the proof in the case n = m = 1 and to [5] in the case
n = 1, m is arbitrary. O

Remark 6.1. If s = % — 4 (vesp. s =14+ 3 — 7) then the Poincaré series

P,gnjvz)s (1,2) converges for k > m + 2 (resp. k < O). In both cases Poincaré series

P,SLJ\’Z’)S(T,Z) is a harmonic Maass-Jacobi form of weight k and index M which is
holomorphic in C™.

Remark 6.2. The Fourier coefficients c&};r) = c,gnjft)s of the Poincaré series

P,gnjvg )S(T, z) satisfy the the so-called Zagier-type duality with dual weights k& and
m + 2 — k. More precisely, if D < 0 and D’ < 0, there is a constant hy s depending
only on k and s such that

(6.12) cénj\:[)s(n ') =hgsc mé )k M, <(n,7)
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while if D < 0 and D’ > 0, there is a constant iALkVS depending only on k£ and s such
that

(6.13) AR (1) = s €50 (7).

7. Skew-Holomorphic Jacobi Forms
We define the skew-slash action of G7 on C*®(H x C™) as follows: If f €

C®(HxC™), and (M, (\, p; 5)) € G with (‘c‘ Z) € SLy(R) and (\, s k) € H{™,

(f|ZIfM[(M7 (A7 3 KV))]) (T? Z) :
(71) — (C?—‘rd)l_k |CT +d|—1 e—27riM[Z+)\T+[L]C(CT+d)71

Xe27ritr(M(T)\t)\+2)\tz+m+utx))f <a7'+b Z—|—)\T—|—,U,>7

cr+d er+d
where 7 € H and z € C™.

Definition 7.1. A smooth f : H x C™ — C is said to be a skew-holomorphic
Jacobi form of weight k£ and index M if it is real analytic in 7 and is holomorphic
in z € C™ and satisfies the following conditions:

(SK1) f|1€<k3v[[’7] = fforalyel’.
(SK2) The Fourier expansion of f is of the form
f(TaZ): Z C(?’l,’r’)eﬂ'Dy/‘M‘ 627Tin7<7«.

nez, rezm
D>»—oco

We denote by J sz the space of all skew-holomorphic Jacobi forms of weight &
and index M.

Remark 7.1. The notion of skew-holomorphic Jacobi forms was introduced by
N.-P. Skoruppa [18].

Let
en,r,M(Ta Z) — 8271'1'(717'—0— (r,z)) eﬂDy/\M\.
We define the Poincaré series
n,r),sk s
(7.2) POz = Y (enmnl i) (7 2)-
YE§, \l'1,m

Theorem 7.1. The Poincaré series P,Snj\’/g)’Sk(T, z) defined in (7.2) is a cuspidal
skew-holomorphic Jacobi form of weight k and index M. And it has the Fourier
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expansion

P]ETLJ\)/?’SIC(T; Z) _ eﬂDy/\M\ 9](:_)1 M(T7 Z) eQTrinT

o D'y/|M| 2min’ !
+ 2 c(n,r)e“ y/| |€7'rzn7'<r,
n! €z, v ezm
D’>0

where 0,(:,3\/((7, z) is defined in Formula (6.9) and the coefficients c(n’,r") are

c(n', 7"y = b, ") + (=1)*b(n’, —1").

Here
1 1 (D S
bn',r): = 2\"F gk [ =
(n',r") T < D )
m+2 ™V DD’
X 2 Kew(nyron/,—r") Jy_mas | ——— | .
% = o
Proof. The proof is analogous to that of Theorem 6.1. O

We define the following lowering operator

-7

(7.3) DD — <T2_;> {—(T—r)c’#— “z—2)0= + 787”.

_ _Qiy(y&r + s - %M_l[&z})'

™

o}

We note that D™ satisfies the following relation

(7.4) (p29%) |, ,, b1 =D (6l

for all ¢ € C°(H x C™) and for all v € I'y .
Now we define the differential operator

_ =\ k3
(7.5) et = <72 .T> DY — k=3 pOu,
7

It is easily seen that if f is a harmonic Maass-Jacobi form of weight k& and index
M which is holomorphic in C™, then the image & i f of f under & n¢ is a skew-
holomorphic Jacobi form of weight 3 — k and index M.

Theorem 7.2. The Poincaré series P,gnj\’g)’Sk(T, 2) span the space Jzkj‘f[“‘qp of all

cuspidal skew-holomorphic Jacobi forms éf weight k and index M.
Proof. The proof can be found in [18]. O
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Now we consider the special case s = g —TFands=1+F — g
Proposition 7.1. The Poincaré series Pén;[)@,m with k > 2+m is meromorphic.
sV g
Ifk <0,
(n,r) o (n,r),sk
IR (Pk,M,l-i-%—%) = e P35
where ci v s a constant depending on k and M.

Proof. We refer to [5], p. 18 for the proof. O

Proposition 7.2. Let J;'30" be the space of all cuspidal harmonic Maass-Jacobi
forms of weight k and index M which are holomorphic in C™. Then we have the

relation
& (JE507) = T,
Proof. We refer to [5], p. 18 for the proof. O

8. Covariant differential operators on H x C™

Let G be a real Lie group, H a closed subgroup and V a finite dimensional
complex vector space. For an element x € G we denote the coset tH by T. A 1-
cocycle of G on G/H with values in V' is a smooth function o : GxG/H — GL(V)
satisfying the following condition

04(9192a E) = a(gQa E) Oé(gl,g2f)

for all g1, g2, € G. The associated right action of G on C'* (G/H) ®@Vis

flalgl(®) := alg,2)f(97),  gx€C
and the associated representation of H on V is
7o (h) := a(h,T),
where h € H and e is the identity element of G.

Definition 8.1. Let V and V' be two finite dimensional complex vector spaces.
Let o and o' be two 1-cocycles of G on G/H with values in V and V"’ respectively.
A differential operator D : C*°(G/H)®@V — C*(G/H)® V"' is covariant from |,
to |o if for all g € G and f € C*°(G/H) ® V, we have

D(flalg]) = (Df)|arlg]-

Let Dy, (G/H) be the space of all covariant differential operators from |, to |
and DY ,(G/H) be the space of those of order < g. When a = ', we refer to such
operators as |,-invariant, and we write simply D, (G/H) and D%(G/H)
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We consider our case
G’ = SLyR) x H{™ and K7 = S0(2) x S(m,R).

We observe that K7 is an abelian closed subgroup of G”. We define the linear map
€9l — g by £(X) = X with X € gf, where

b: = i(F-B), E::%{HJri(EJrF)}, ﬁ::%{H—i(E—i—F)},

~ 1 =R 1 . -~ 1 .
Ry : = §Rkl, € 1= 5 (ej —ij), fj = 5 (ej +ij).

It is easy to see that there is a unique K”-splitting
(8.1) gt =t/ @y,

where
¢/ =span{H, Ry | 1 <k<1<m}

and
p*J:Span{Ea Faé\jafj‘ 1§]§m}

We note that ¢ is an automorphism of Lie algebras and so the given basis of p/ is a
K7-eigenbasis : the H=weights of E, I, €; and f; are 1, —2, —1 and 1 respectively.
We take the scalar valued 1-cocycle o := 7y, defined by (3.7). We set M = (My;).
We let mp, v : K7 — GL;(C) be the one-dimensional representation of K’ defined
by
e (h) = ve (b, @),

where h € K7 and € = (i,0) = eK” with the identity element e in G’. We remark
that £ maps the Casimir operator {2, to (%)m Q.

Definition 8.2. Let £k € Z and M € S(m,C). We define the raising operators
X.+,Y, and the lowering operators X_ and Y_:

XEM = 208, 4y, + y T M), XFM= 20y (y o+ ),

Yf’M: = 10, + Ziyflf\?fv, yRM = —iy0s, M :=2miM.

We write Y. for the j-th entry of Y (1< j < m).

For brevity, we write

D(k, M; k', M) 1= Do, 1 v o (G7/K7)
and
DY (k, M; k', M) := DY (G7/K7),

Vi, M V! !
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where k, k' € Z, M,M’' € S(m,C), ¢ € ZU {0} and G'//K’7 = H x C™. We also

write
Dy e := D(k, M; k, M) and and DZ,M =Dk, M; k, M).
Conley and Raum [5] obtained the following three results.

Proposition 8.1. (1) The spaces D' (k,M; k £ 2, M) are one-dimensional. In fact
D (k, M; k £ 2,M) = CX5™M.

(2) DY (k,M; k +1,M) = Span{Yik”]M | 1 <j<m} are m-dimensional.
(3) Dg,m = Dllc,M =C
(4) All other D' (k, M; k', M) are zero.
(5) We have the following commutation relations

(X, X4] = —k, [Y*,JWYJF,]"] =i My, [(X_,Yi]=-Y_,

[Y—aX-‘r] :Y—H [X+7Y+] = [X_,Y_} =0.

Proposition 8.2. Any covariant differential operator of order ¢ may be expressed
as a linear combination of products up to q raising and lowering operators. There

is a unique such expression in which the raising operators are all to the left of the
lowering operators. The expression of this form for the Casimir operator C#M s

(8.2) €M = 2X, X 4+ i (X MUY - MUUYL]X])
1 (~ ~ ~ ~
-2 (MM N ] - Y (Y MUY )Y
f% 2k —m—3) Y, M 1Y_.
Proposition 8.3. The algebra Dy o is generated by D%M. Bases for Din and
Di,m are given by

Din = Span{l, Xy X, YV ;Y ;|1<ij<m},
Dfy = Span{XyY ;Y Yy, Vi ;X [1<i<j<m}eD]y

Therefore we have

dim¢ Di,m =m?+2 and dimc¢ D%M =2m?+m+2.
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9. Final remarks

In this final section we briefly remark the general case n > 1 and m > 1.

We let
H,={QeC™ | Q=10 ImQ>0}

be the Siegel upper half plane of degree n and let
Sp(n,R) = {M € R®™2) | ‘M J, M = J,, }

be the symplectic group of degree n, where

0 I,
n=(5 %)

Sp(n,R) acts on H,, transitively by
(9.1) M-Q=(AQ+ B)(CQ+ D)1,

A B
Cc D

For brevity, we write G,, = Sp(n,R). The isotropy subgroup K,, at i¢I,, for the
action (9.1) is a maximal compact subgroup given by

where M = ( ) € Sp(n,R) and Q € H,.

K, = {(g AB> ‘ A'A+B'B=1,, A'B =B, A,BeR<"»”>}.

Let ¢, be the Lie algebra of K,. Then the Lie algebra g, of G, has a Cartan
decomposition g,, = &, & p,,, where

X3 —1Xy

_ X =Y (2n,2n)
W {(F L)en

pn:{(X Y)’X:tX, Y =1, X,YGR(’“”)}.

o= { (3 %) [ xeXa e RO, X = e o= .

PX +X =0, YtY},

Y -X
The subspace p,, of g, may be regarded as the tangent space of H,, at il,.
We consider the Heisenberg group

Hﬂgn’m) = { Mwr)| \pe R™™ ke RO™ g+ A symmetric }

endowed with the following multiplication law

(Nwsr) o (N, psk') = N+ XN p+p/sk+ 6+ X0 — ')
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with ()\,,U,;I{), ()\’,u’; Ii/) € Hﬂén’m). We define the semidirect product of Sp(n,R)
(n,m)
and Hy
G = Sp(n,R) x HY"™
endowed with the following multiplication law

(M, (X s ) - (M, (N 56" )) = (MM (A+ N i+ s 54+ 5+ X/ — @)

with M, M’ € Sp(n,R), (X, u; ), (N, p1';6") € H]é"’m) and (X, i) = (A, u)M’. Then
Gim acts on H,, x C(™™) transitively by

(92) (M, (k) - (2,2) = (M- Q. (Z+ 72+ 0) (€2 + D)),
A B (n,m) ( )
where M = c p)€ Sp(n,R), (A, k) € Hy and (Q,Z) € H,, x Ct™™),

The stabilizer K;{,m of Gim at (il,,0) for the action (9.2) is given by
Ky = {(/ﬁ (0,0;k)) | k € Ky, k= 'k € R™™ }

Therefore H,, x C("") = G /K, is a homogeneous space of non-reductive type.
The Lie algebra g; ,, of G ,, has a decomposition

J _pJ J
gn,m - En,m + pn,m’
where

ol = {(Z, (P,Q,R))| Z € gn, P,Q €R(™™ R= 'R eR™™ }

= {(X.0.0.R)| X et,, R= ReRrmm ),

P = { (Y, (P,Q,0)) | Y € pn, P,Q R |,
Thus the tangent space of the homogeneous space H,, ,,, at (i, 0) is identified with
p; - We note that the Jacobi group Gj ,, is not a reductive Lie group and that

the homogeneous space H,, x C("™™ is not a symmetric space. From now on, for
brevity we write H, ,, = H, x Cmn) | called the Siegel-Jacobi space of degree n
and index m.

For a coordinate (2, Z) € H,, ,,, with Q = (wp,) € H,, and Z = (2) € C(mn)
we put
Q X + 1Y, X = (zw), Y = (yu) real,
Z U+iV, U = (ug), V = (vg) real,
Q@ = (dwuw), dQ = (d,w),

dz (dew),  dZ = (dzZ),
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9 (148, D 9 (146, 0
69_ 2 8Wuy ’ aﬁ_ 2 8wul/ ’

0 0 o o
) 82.11 T Ozma P 9z11 7T 0Zma
a7 — N B . ’ o : . N ’
0z o o 9z 9 9
Oz1n T Ozmn 0Z1n e OZmn

where §;; denotes the Kronecker delta symbol.

C. L. Siegel [17] introduced the symplectic metric ds? on H,, invariant under
the action (9.1) of Sp(n,R) given by

(9.3) ds? = a(Y—ldQ Y—ldﬁ)

and H. Maass [11] proved that the differential operator

0.4 s (v (v ) )

is the Laplacian of H,, for the symplectic metric ds?. Here o(A) denotes the trace
of a square matrix A. In [23], the author proved that for any two positive real

numbers A and B, the following metric
A5 nn = Ac(YlaQy~ldQ)
(9.5) +B {U(Y“vvyldg Y*ldﬁ) + a(Y*“(dZ) dZ)
—a(VY*ldQY*”(d?)) - a(vylcmy“(dZ))}

is a Riemannian metric on H, ,, which is invariant under the action (9.2) of the
Jacobi group G ..

The author [23] proved that for any two positive real numbers A and B, the
Laplacian Ay ;4,5 of (Hym,ds, .4 p) is given by

_ 4 (y 22 AN
An,m;A,B = Z {0' (Y (Ym) m) + o (VY Vv (YaZ) 87
t t
o\ 0 . o\ o
9.6) ”(V <Y39) az) *“( v (Yaz)a(z>}
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Using Gi,m—invariant differential operators on the Siegel-Jacobi space H, ,,,, we
introduce a notion of Maass-Jacobi forms.

Definition 9.1. Let
Ly = Sp(n,Z) x Hén’m)

be the discrete subgroup of G7, where
Hén’m) = {()\, Wi K) € Hﬂgn’m) | A\, p, K are integral } .

A smooth function f : H,, — C is called a Maass-Jacobi form on H,, ., if f
satisfies the following conditions (MJ1)-(MJ3):
(MJ1) f is invariant under T'y, ,,.
(MJ2) f is an eigenfunction of the Laplacian A,, ;.4 5 (cf. (9.6)).
(MJ3) f has a polynomial growth, that is, there exist a constant C' > 0 and a
positive integer N such that

(X +4Y,Z)| < Clp(Y)|V as detY — oo,
where p(Y') is a polynomial in Y = (y;;).

Remark 9.1. Let D, be a commutative subalgebra of D(H,, ,,) containing the
Laplacian A, pm.4,5. We say that a smooth function f : H,, ,, — C is a Maass-
Jacobi form with respect to D, if f satisfies the conditions (M J1), (MJ2). and
(MJ3): the condition (M J2), is given by

(M J2), f is an eigenfunction of any invariant differential operator in D,.

Let p be a rational representation of GL(n,C) on a finite dimensional complex
vector space V,. Let M € R(™™) he a symmetric half-integral semi-positive definite
matrix of degree m. Let C°°(H,, ., V,) be the algebra of all C*° functions on H,, ,,
with valuesin V,,. Let J, a : G;{)m xH,, r, — GL(V,) be the canonical automorphic
factor for G;’;’m on H, ,, given by

(9.7) Jp,Jvt(g, Q,2)) = eQm‘tr(M[Z+AQ+y](CQ+D)*1c)

x e~ 2O A+2XZ + x4+ 1N) 500 4 D),

A B
¢ D

H]én’m). We recall the Siegel’s notation a[3] = !Baf for suitable matrices o and 3.

where g = (M, (\, u;5)) € G

oo With M = ( ) € Sp(n,R) and (A, u;K) €

We define the |, y-slash action of G, on C*(H, ., V,) as follows: If f €
C>®(H,,m,V,) and g € G}

n,m?

(9.8) (F1o2091) (€, 2) 1= Tpine(9, (2, 2)) " (g (2. 2)).
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We define D, 5 to be the algebra of all differential operators D on H, ,, satisfying
the following condition

(9.9) (D)lplgl = D(flpnelg))

for all f € C°(Hy,m,V,) and for all g € G}/ ,,. We denote by Z, n the center of
Dy .
We define an another notion of Maass-Jacobi forms as follows.

Definition 9.2. A vector-valued smooth function ¢ : H, ,, — V, is called a
Maass-Jacobi form on H, ., of type p and index M if it satisfies the following
conditions (M J1),nm, (MJ2),m and (MJ3),m :

(MJ]')p,M ¢|p,M[W] = ¢ for all v E Fn,m~

(MJ2),n fis an eigenfunction of all differential operators in the center Z,
of DpJVD

(MJ3),m f has a growth condition

o(Q,7) = O(eadctY .eZWtr(M[V]Y*1)>

as det Y — oo for some a > 0.

The casen=1, m =1 and p = detk(k =0,1,2,---) was studied by R. Bendt
and R. Schmidt [1], A. Pitale [14] and K. Bringmann and O. Richter [4]. The case
n = 1, m =arbitrary and p = det*(k = 1,2,---) was dealt with by C. Conley
and M. Raum [5]. In [5] the authors proved that the center Zguir ¢ Of Dyeyr o 15
the polynomial algebra with one generator €™M (cf. Theorem 3.2), the so-called
Casimir operator which is a [jer p-slash invariant differential operator of degree
three for the case n = m = 1 or of degree four for the case n = 1, m > 2. As
described in Section 6, Bringmann and Richter [4] considered the Poincaré series
ﬂ’,(cn;[)é (the case n = m = 1) (cf. (6.7)) that is a harmonic Maass-Jacobi form in
the sense of Definition 9.2 and investigated its Fourier expansion and its Fourier
coefficients. Here the harmonicity of (P,E:"JVT[)S means that Gk*Mﬂ),(:J’VT[)’S =0,ie., ?,(an\j[)s
is an eigenfunction of C*M with zero eigenvalue. Conley and Raum [5] generalized
the results in [14] and [4] to the case n =1 and m is an arbitrary positive integer.

Remark 9.2. In [3], Bringmann, Conley and Richter proved that the center of the
algebra of differential operators invariant under the action of the Jacobi group over
a complex quadratic field is generated by two Casimir operators of degree three.
They also introduce an analogue of Kohnen’s plus space for modular forms of half-
integral weight over K = Q(i), and provide a lift from it to the space of Jacobi
forms over K.

Definition 9.3. Let p and p’ be two rational representations of GL(n,C) on finite
dimensional complex vector spaces V, and Vp' respectively. Let M and M’ be two
symmetric half-integral semi-positive matrices of degree m. A differential operator
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T:C®(MH,,m)®V, — C®(H, n)®V, is covariant from |, n to |/, v if T satisfies
the following condition

(9.10) T(flpale)) = (TF)lywlg))

for all f € C*(H,,,) ® V,, and for all g € G| ..

Let D(p, M; p', M) be the space of all covariant differential operators on H,, ,,
from |, v to |, v, and let D9(p, M; p’, M) be the space of all covariant differential
operators of order < g on H, ,, from |, » to |, a. When p = p’ and M = M/,
we refer to such differential operators as |, y-invariant, and we write simply D,
and DZ,M instead of D(p, M; p, M) and D9(p, M; p, M) respectively.

We present the natural problems.
Problem 1. Find the generators of the algebra D, .
Problem 2. Find all the relations among a complete list of generators of D, .

Finally we consider the special case that p = 1 is a trivial representation of
GL(n,C) and M = 0. Let

Ty = S(m,C) x C™™)

s

be the complex vector space of dimension w +mmn. We obtain the natural action
of U(n) on T, ,,, given by

(9.11) h-(w,¢) = (hw'h,Cth), heU(n), we S(m,C), ¢eCmm,

We refer to [26] for a precise detail. Then the action (9.11) induces the action 7, ,
of U(n) on the polynomial algebra Pol(T), ,,,) consisting of all polynomial functions
on Ty, . We denote by Pol(Tn,m)U(”) the subalgebra of Pol(T}, ,,) invariant under
the action 7, of U(n). The we have the so-called Helgason map

On.m : Pol(T} )V ™ — Dy o = D(1,0;1,0)

d ok
P (i)t (oo (S )]

a=1

defined by

912)  (Oum(P)f)(9K") =

where N, = n(n + 1) + 2mn, {n.| 1 < a < N, } is a basis of p;,, and P €
Pol(Tmm)U(”). The map ©,, ,, is a linear bijection but is not multiplicative.

The following natural problems arise.

Problem 3. Find a complete list of explicit generators of Pol(T;, ,,, )V (™).
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Problem 4. Find all the relations among a complete list of generators of Pol(Tmm)U(”).

Problem 5. Find an easy or effective way to express the images of the above in-
variant polynomials or generators of Pol(7, mm)U(") under the Helgason map ©,, ,,
explicitly.

Recently Problem 3 was solved completely in [9].
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