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Preface

This volume contains the papers selected among all my articles which have
been published from 1986 to the present. The bibliography at the end of this
volume gives the list of all my publications, including 8 books, 10 proceedings

and other articles which are not reproduced here.

I hope that this volume will be very useful and helpful in the deep research
of future mathematicians of the next generation. Finally I would like to give my
deep and hearty thanks to Kyung Moon Sa for bringing out this publication in

commemoration of my sixtieth birthday.

November, 2013
Jae-Hyun Yang

Vi



=3l e srolsto] 1985W-FE 2013W7bA] A7t EHEFE =5 Tl
A dAdste] 7 do] Mg 2w HAsyth Ad 299 Fot wEdt =
71aEe AgElste] Y 2,000 #ojA7t dlvke AMdE A =AU
As B =wfe d7hsiy 3] Aoz Fuslor gy 12 o
A9l ol ol == 7aEe dAlsl g e Mo iztske Ao FA
© o] qlo] g de| Hom AR SAFUH

TOoE A 300] W Fh FSIA AolA BUL AHTAD BAFHO
B ROlRA RE RSO WAOR YA A nhee Syt

viii



Table of Contents

[ A] Theory of Jacobi Forms

(A—01) Some results on Jacobi forms of higher degree«-«-----rrssrreerrerrreerreeree 8
(A—02) Jacobi T A0 TABFO] rreerrrerrsrerssrrinitinniiinitiiti e 23
(A—O3) The Siegel-Jacobi Operator:+++sseseseeereessseesrumieetiiumiinteiiiiiii.. 50
(A—04) Vanishing theorems on Jacobi forms of higher degree-==--====-s==sssss=+ 62
(A—05) Remarks on Jacobi forms of higher degreg«s-+s+ssseesseereecrenencannniann 81
(A—OG) Singular Jacobi forms:esssseesseeeernrrerereiiinniieiiiiiii i, 107
(A—07) Construction of Vector Valued Modular Forms from Jacobi Forms
...................................................................................... 116

(A—08) Kac-Moody algebras, the Monstrous Moonshine, Jacobi forms

and infinite Products «weeereeesesrsssrmssrnrerrrrnii 127
(A—09) A geometrical theory of Jacobi forms of higher degree«s+-=sssseseeees 205
[ B ] Harmonic Analysis on Siegel-Jacobi Space
(B—01) A note on a fundamental domain for Siegel-Jacobi space:s++++++++=+++- 237
(B—02) Invariant Metrics and Laplacians on Siegel-Jacobi Spacess+==++==++r=++- 249
(B—03) A partial Cayley transform of Siegel-Jacobi disk=erseresererereseeeneeens 269
(B—04) Invariant metrics and Laplacians on Siegel-Jacobi diskess+sseeeeeesseeeee 284
(B—05) (with Young-Hoon Yong, Su-Na Huh, Jung-Hee Shin and Gil-Hong Min)

Sectional Curvatures of the Siegel-Jacobi Space«--=«=seseesesrereeseceecenes 300
(B—06) Invariant differential operators on Siegel-Jacobi space and

MaaSS-JaCObi fOrl'nS ................................................................ 314



[ C ] Theory of the Heisenberg Group H};W

(C—01) Harmonic analysis on the quotient spaces of Heisenberg groups:--- 341

(C—02) Harmonic analysis on the quotient spaces of Heisenberg groups II

............................................................................................ 356
(C—03) A decomposition theorem on differential polynomials

Of theta functions Of hlgh leVel ................................................. 366
(C—04) Fock representations of the Heisenberg group H }f"“ -------------------- 379
(C—05) Lattice representations of Heisenberg groups s=rer=seresereseresereseeaneenns 405
[ D | Theory of Maass-Jacobi Forms
(D—O1) A Note on Maass-Jacobi FOrms e erreerreereeeectecteettcttececececsocncancaes 423
(D—02) vfzr-ofsH] F&lof H3F A5 (On Maass-Jacobi Formsg)-«=s»+=+++=+2+- 443
(D—03) A Note on Maass-Jacobi FOrms I[:esessesesseseseessecseasineriiiariisnsienas 478
[ E | Theory of Vector Bundles
(E—01) A note on holomorphic vector bundles over complex toris=re=++==++: 519
(E_02) Holomorphic vector bundles ....................................................... 525
(E—03) Holomorphic vector bundles over complex torjre====-===srsssssesesseeaases 539
[ F ] Representation Theory of a Lie Group
(F—01) The Method of Orbits for Real Lie Groups:stseesssssreesesssseeneaacaaenes 569
(F—02) The Weil representations of the Jacobi group:rerreessseerreessaerenenianee 644



[ G ] Theory of Elliptic Curves

(G—01) Note on Taniyama-Shimura-Weil conjecturgr--===«===sssssssreesseeeesreee 686
(G-02) epedAdol o3t At 207+ A 53F

(Past twenty years of the theory of elliptic curves):«e-essseereeeereesees 704
(G—03) The Birch-Swinnerton-Dyer Conjecture:---«++==-««+ssssssssseesssssreessueesss 733

[ H ] Theory of Siegel Modular Forms

(H—01) Geometric theory of Siegel modular forms:--s---sssssssssseeeseeeeenen 755
(H—OZ) Theory of the Siegel Modular Variety seeessreesseerresrensseresiaenicnnaen 766

[ I] Topics on the Langlands Program

(|_01) A note on the Artin Conjecture ................................................... 839
(|_02) Langlands Functoriality Conjecture ............................................... 848

[ J ] Harmonic Analysis on the Minkowski-Euclid Space

(J—01) Harmonic Analysis on the Minkowski-Euclid Space 2, x R, 1II :

Unitary Representations of GL(n,R) X 2 PP 883
(J—02) Invariant Differential Operators on the Minkowski-Euclid Space*+**** 919
(J—03) Polarized Real Torjsrrseerererreerererreereertecreeniecioneniecinentecsaencecenes 952

[ K | Papers related to Algebraic Geometry and Other Topics

(K—01) Recent progress on the Schottky problem:=ssssseesseerreeseeesseeeeaeneenne 1013
(K—02) R¥ 3237} A|e}grs> (Automorphic forms and zeta functions) ----- 1022

Xi



(K—03) On theta fUNCHIONS s s =sserreerrsorrtoserssracrsaesssrtisnscssnessarcssassoancses 1031

(K—04) Stable AUtomOrphic forms«streeesrreeserereseneesereniiniiniiiniinei. 1050
(K—05) #4t 7}4doll 3}o] (On the Riemann Hypothesis)sssreerereresreeeseee 1076
(K—06) _/lx__/’\_o o]-%q._% .................................................................... 1091
[ L] Essays

(L—01) F7&==eke] ofmy ofn] e = (Emmy Noether, 1882~1935)¢] AYof

......................................................................................... 1113
(L—02) HFA-Z ol Bl An sererrrerrserenstteniitinsiiiiiiiriiiniii 1116
(L—03) vl Poincaré Conjecture 7} S| E|TH coreeeeresseerieniieniiiniiennie. 1123
(L-04) (84: 71217 Perelman®] ¢=o] Fate] - Poincars 7143}

QEOMELTIZAtION 7] +vrrerrserrnrrerernnttirnnintitiniitttenittt e 1130
(L—05) ¢1x=2] Harish-Chandra ¢ FAx0] T QEA] seeereeereccrrnnieniceiinienn 1138
(L—06) T2 AEIS| A Q] 0]QaF TLGO] Thbereerererenertreesemeseicannensnenns 1144
(L—07) ARzl Ala] A Z3Fe] 71RFT} 4=8F0] Rlg]-eereereeeesserees 1148
(L—08) ZEnts 2=3} AAZ: 7)Y AZWAE gt ZE -

23 ZHOo|SofA B2 O AHAFTE ZrBhRreereeeeereesiseninnens 1151
(L-09) =jut 71z} MiZel2E algk: 1504 BeIshA Zlchele Sofet

....................................................................................... 1154

(L-10) 48Fe] Aelt WARLTL 2 (1) : GAFe )R] 2om

Z) 2= 0] O] T B eereereerracresrutrentiiiiitiitiiiiiiiiiiis e 1156
(L=11) 3t A= EAEE7E 2 (F ) @AY AN/, ZFe] =7

TR AL EL ceereee st 1158
Table Of CONEENES crocreerreerreertertinriiiiiiiirieriireerenerreraeean, 1161
Bib]iography .............................................................................. 1167
Acknow]edgements ................................................................... 1177
INOLE eerrverreenieiiiiiiiiiiiiiiiiiieiiiiiiieiieiisieeiasteesiessiasteesstestisnssessanes 1179

Xii



PERSONAL DATA

Birthday
Birthplace
Citizenship
Military Service

EDUCATIONS

B.A.
MA.
Ph.D.

POSITIONS

Assistant Professor
Associate Professor
Vice Dean
Professor

Director

VISITING POSITIONS

Visiting Professor
Visiting Scholar

Visiting Professor

Visiting Professor
Visiting Professor
Visiting Professor
Visiting Scholar

Visiting Professor
Visiting Professor
Visiting Professor

Curriculum Vitae

Jae-Hyun Yang

December 6, 1953
Busan (or Pusan), Republic of Korea
Republic of Korea
1977-78 (obligation)

Seoul National University, Korea
Seoul National University, Korea
University of California, Berkeley,

Inha University
Inha University
the College of Science, Inha University
Inha University

The Pyungsan Institute for
Mathematical Sciences

Heidlberg University
Harvard University

Heidelberg University

Heidelberg University
Max-Planck Institute in Bonn
Harvard University

Harvard University

RIMS in Kyoto University
Max-Planck Institute in Bonn
University of Tokyo

Xiii

1976
1979
1984

1984-88
1988-93
1991-93
1993-

1999-

July-August, 1988

September, 1988-
August, 1989

Jan.-Feb. and July,
1991

July, 1992
January-February, 1994
January-February, 1995

September-November,
1996

December, 1996
January-April, 1997
July, 2000



Visiting
Visiting
Visiting
Visiting
Visiting
Visiting
Visiting
Visiting
Visiting
Visiting
Visiting

Professor
Professor
Professor

Professor

Professor
Professor
Professor
Professor

Professor
Professor

Professor

Harvard Univeristy

Institute for Advanced Study

The Institute for Mathematical Sciences,
Singapore

the Hong Kong University of Science
and Technology

Seoul National University

Korea Institute for Advanced Study
RIMS in Kyoto University

RIMS in Kyoto University

Kyoto University
Kyushu University

Max-Planck Institute in Bonn

AWARDS and HONOR

- Summa cum laude, Busan High School, 1972
- Summa cum laude (Department of Mathematics), Seoul National University, 1976
- Fellow of the Korean Government, 1979

- Mathematical Society of Japan, Fellow, 1990

- Candidate (runner-up) for the National Science Prize, 1995
- Research Professor at Inha University, 1997-1998

ACTIVITIES

January, 2001
February 2001
August 2002

February 2003

January-August, 2004
July-August, 2005
Jan-Feb, 2007
Jan-Feb, 2007

June-July, 2009
July, 2010
April-May, 2011

1. The principal organizer of International Symposium on Algebraic Geometry and

Related Topics (Invited Speakers :

E. Freitag, S. Mori, S. Mukai,K. Saito, W. Schmid,

Y.-T. Siu, S.-T. Yau), Incheon, Republic of Korea, February 11-13, 1992.

2. The principal organizer of Symposium on Automorphic Forms and Related Topics

(Invited Speakers

Takayuki Oda, Ichiro Satake,

Ilkuo Satake, Jae-Hyun Yang,

Junesang Choi), Seoul, Republic of Korea, September 2-3, 1993.

3. The principal organizer of the 2nd Workshop on Number Theory and Relate
Topics, Kyungju, Republic of Korea, April 1994,

4. The principal organizer of the 3rd Workshop on Number Theory, Algebraic
Geometry and Related Topics, Pusan (or Busan), Republic of Korea, December
20-21, 1994.

5. The principal organizer of the Symposium on Number Theory, Geometry and Related
Topics, lksan, Republic of Korea, September 23-24, 1995.

6. The organizer of International Conference on Number Theory and Related Topics
(Invited Speakers :Y.lhara, C. Deninger, S. Kudla, B. Ramakrishnan, D. Prasad, S.
Mochizuki), Yonsei University, Seoul, Republic of Korea, October 20-22, 1998.

7. The principal organizer of Summer School on Representation Theory of Lie Groups

Xiv



10.

1.

12.

(Invited Speakers : T. Kobayashi, W. Soergel, W. Schmid) Yonsei University, Seoul,
Republic of Korea, July 20-22, 1999.

. The principal organizer of the 2002 Seminar on Representation Theory of Lie

Groups and Automorphic Forms, Incheon, Republic of Korea, February 5-6, 2002.

. The organizer of the 2002 International Conference relating to the Clay Problems

(Invited Speakers : S. M. Gonek, Cem Y. Yildirim, D. Prasad, K. Vilonen, J.-H.Yang)
Chonju, Republic of Korea, July 9-11, 2002.

The principal organizer of the Workshop on Number Theory, Representation Theory
and Geometry, Incheon, Republic of Korea, November 29-30, 2002.

The principal organizer of International Symposium on Representation Theory and
Automorphic Forms (Invited Speakers : J.-S. Huang, T. lkeda, T. Kobayashi, S.
Miller, D. Ramakrishnan, W. Schmid, F. Shahidi, J.-H. Yang, K.-l. Yoshikawa), Seoul
National University, Seoul, Korea, February 14-17, 2005.

The principal organizer of International Symposium on Automorphic Forms,
L-Functions and Shimura Varieties (Invited Speakers : Jan H. Bruinier, Massaki
Furusawa, Haruzo Hida, Takuya Konno, Shun-ichi Kimura, Dong-Uk Lee, V. Kumar
Murty, Sung Myung, Byeong-Kweon Oh, Jae-Hyun Yang, Hiroyuki Yoshida), Inha
University, Incheon, Korea, November 25-27, 2008.

. The principal organizer of Workshop on Invariant Theory and Related Topics

(Invited Speakers : Toru Umeda, Hiroyuki Ochiai, Akihito Wachi, Minoru Itoh,
Jae-Hyun Yang, Young-Hoon Kiem, Donghoon Hyeon, Lin Han), Inha University,
Incheon, Korea, February 17-19, 2010.

. The principal organizer of Workshop on Number Theory and Related Topics,

Inha University,Incheon, Republic of Korea, December 27-28, 2011.

. The principal organizer of International Conference on Geometry, Number Theory

and Representation Theory, Inha University, Incheon, Republic of Korea, October
10-12, 2012.

XV






[ A] Theory of Jacobi Forms

(A—01) Some results on Jacobi forms of higher degree==---===rs==ssssesrreeereraenss 8
(A—02) Jacobi FA]0]| TABFO] +rreerrrerrsrrrssrrenitinniinitiit e 23
(A—03) The Siegel—]acobi Operator ......................................................... 50
(A—04) Vanishing theorems on Jacobi forms of higher degree-==--====-s==ssss2=+ 62
(A—05) Remarks on Jacobi forms of higher degree - -ss+ssseesreersesrenncannniann 81
(A—OG) Singular JacObi OIS eeseerreerreerseersteriaetiiatiinttiattecsceiatecansiances 107
(A—07) Construction of Vector Valued Modular Forms from Jacobi Forms
...................................................................................... 116
(A—08) Kac-Moody algebras, the Monstrous Moonshine, Jacobi forms
and inﬁnite prOduCtS ............................................................... 127

(A—09) A geometrical theory of Jacobi forms of higher degree«s++ssssseseeees 205



Tl

SEM(EIA: SO0 Hamamatsu)iel 0= ZHollA (20084 2€)



_'ﬁﬁ%@ﬁﬁ fﬁﬁ #* 805

fr g A& B oE T 2
Y ﬁﬁééﬁ(v)ﬁﬂ%‘%

U N G TR A
19928/



To s 5 A

1568 (A) .
10:00 ~ 12:00 Tsuneo Arakawa (Rikkyo Univ.)
On Jacobi forms ‘
+13:30 ~ 14:30 Atsushi Murase (Kyoto Sangyo Univ.)
Takashi Sugano (Hiroshima Univ.)
Prehomogeneous affine spaces and diniension of Jacobi forms
14:40 ~ 15:30 Winfried Kohnen (Max-Planck-Inst.)
Non-holomorphic Eisenstein seties on Siegel modular group
and on Jacobi group ‘
15:40 ~ 16:30 Akira Hori (RIMS)
L-function of Siegel wave form
16:40 ~ 17:30 Jae-Hyun Yang (Inha Univ.)

Some results on Jacobi forms of higher degree

1A 78 (k)
10:00 ~ 12:00 Stephen Kudla (Univ. of Maryland)
Recent progress on the Siegel-Weil formula and applications
13:30 ~ 14:30 Tomoyoshi Ibukiyama (Osaka Univ.)
Differential operators on automorphic forms and invariant
pluriharmonic polynomials
14:45 ~ 15:35 Takao Watanabe (Tohoku Univ.)
Theta lifting of cusp forms on the unitary group U(d, d)
15:50 ~ 16:40 Toyokazu Hiramatsu (Kobe Univ.), Tatsuo Okumoto (Kobe Univ.)
On zero-manifold of theta function of two variables and its
application to arithmetic

1H 84 (k)
10:00 ~ 12:00 Fumihiro Sato (Rikkyo Univ.)
On zeta functions of prehomogeneous vector spaces
13:30 ~ 14:30 Masakazu Muro (Gifu Univ.)
On residues of local or global zeta functions of prehomogeneous
‘ vector spaées
14:45 ~ 15:35 Yasuhiro Kajima (Nagoya Univ.)
On functional equations of local zeta functions of prehomogeneous
vector spaces
15:50 ~ 16:40 Koichi Takase (Miyagi Univ. of Education)

On trinity of parabolic subgroup



1898 (k)
10:00 ~ 10:50 Shoyu Nagaoka (Kinki Univ.)
Eisenstein series of low weight
11:00 ~ 12:00 Takayuki Oda (RIMS)
. Specialization of Burau representation of Artin braid group
13:30 ~ 14:30 Yoshiyuki Kitaoka (Nagoya Univ.)
On Fourier coefficients of Klingen's Eisenstein series -
14:45 ~ 15:35 Harutaka Koseki (Mie Univ.)
~ On contributions of elliptic elements to trace formula
15:50 ~ 16:40 Pia Bauer (Kyushu Univ.)
Some number theoretic results on ths Selberg trace formula
for PSL,(O) of imaginary quadratic fields

18 10 € (&)
10:00 ~ 10:50 Tetsuya Takahashi (Osaka Furitsu Univ.)
Characters of cuspidal unramified series for central simple algebras
of prime degree '
11;00 ~ 12:00 Kazuya Kato (Tokyo Univ.)
K, of modular curves ; "L(E,1) # 0 = {£(Q) < oo™



REBA L EET 5 ¢ — 2 WO AR
 RRSAHEL

19924 18 6B~ 14108
MR RE #WH# = — (Koichi Takase)

H 17
1. Jacobile AT DN T mmmmmmmmm oo m oo 1
MK ¥l {d % (Tsuneo Arakawa)
2. HE7 74 vBMEVYIERRDOKRTIC DWW T - mmmmmmmmmm oo 19
R EKX-B F# & (Atsushi Murase)
7= K HE # P (Takashi Sugano)
3. On growth estimates for Fourier coefficients

of Jacobi forms and an application-------------------m-momoao oo 29

Max-Planck-Inst. Winfried Kohnen

4. Some Results on Jacobi Forms of Higher Degree---------------==---—----o 36
- Inha Univ. ' Jae-Hyun Yang
5. Some extensions of the Siegel-Weil formula-------------=---c--emu—o-- 51
Univ. of Maryland Stephen S. Kudla .
6. On differential operators on automorphic forms
and invariant pluri-harmonic polynomials=----===-===-==-==——=—ooeom_ 88
. ORBRK-#EE BRI 4N3% (Tomoyoshi Ibukiyama)
7. Theta lifting of cusp forms on the unitary groups U(d,d)----=-=-------- 101
-S| - €3 e P&k (Takao Watanabe)
8. On zero-manifold of theta function of two variables
and its application to arithmetic-=-==-=-==-----c-mmmmmmm 106
HBHK-T Y B -—(Toyokazu Hiramatsu)
) MAXK-8&K #mA AR (Tatsuo Okumoto)
9. BEYE A b VEH ORI — 8 BB oo 119
_‘1%‘7’('@ 8% /& (Fumihiro Sato)
10. On Residues of Zeta Functions Associated
vith Prehomogeneous Vector Spaces—-——-—~-----~-cmmmmmmmo e 132

M RL K - 3% 3 ¥ B (Masakazu Muro)



1.

12.

13.

14.

15.

16.

17.

18.

19.

(On functional equations of local zeta functions

of prehomogeneous vector spaces--—---—=~~==-—-mmmmmm oo

XA 8% W (Yasuhiro Kajima)
On Trinity of Parabolic Subgroups--=======m===m =
rgiﬁﬁﬁﬁ.ﬁ @ £ —(Koichi Takase)
Eisenstein series of lovw weighf-----———=======-—-cm-——mceommmmm—mo
. ﬁ.%&ﬁ'ﬂl M B ¥ (Shoyu Nagaoka)

Braid Bt DBurau R DRI DS HHE I DWW T~

HA-BEN #iH  F % (Takayuki Oda)

Fourier coefficients of Klingen’s Eisenstein series--------------—-

HK-H it B2z (Yoshiyuki Kitaoka)

On contribution of elliptic elements to trace formula--------------

TER-HE B 2B (Harutaka Koseki)
ON A ZETA FUNCTION FOR EQUIVALENCE CLASSES

OF BINARY QUADRATIC FORMS-———==nnmmmmmmmmmmmmmmmm o oo oo

FuR-B Pia Bauer

Characters of cuspidal unramified series for central

simple algebras of prime degree-—---—---—-=-=-————---—--——————————

ARSI K- BEE¥ HHE B (Tetsuya Takahashi)

modular curve®® K, & “L(E,1)#0=2#E(Q)<o0”-—-mommmmmeemo

HILK ik Fids(Kazuya Kato)



36

Some Results on Jacobi Forms of
Higher Degree

JAE-HYUN YANG!

Abstract

In this article, the author gives some of his results on Jacobi
forms of higher degree without proof. The proof can be found in the
references [Y1] and [Y2].

1 Jacobi Forms

First of all, we introduce the notations. We denote by Z, R and C
the ring of integers, the field of real numbers and the field of complex
numbers respectively. We denote by Z* the set of all positive integers.
F®!) denotes the set of all k¥ x I matrices with entries in a commuatative
ring F. For any M € F*)_ tM denotes the transpose matrix of M. For
A € F®) 5(A) denotes the trace of A. For A € F*Y and B € F*#),
we set B[A] = ‘ABA. E, denotes the identity matrix of degree n. For any

positive integer g € Z71, we let
Hy:={Ze€CY¥)|Z2=12Z ImZ>0)}

the Siegel upper half plane of degree g Let Sp(g,R) and Sp(g, Z) be the
real symplectic group of degree g and the Siegel modular group of degree

g respectively.

1This work was supported by KOSEF 901-0107-012-2 and TGRC-KOSEF 1991.



Let
(1.1) Oy (R*) := {M € R®? | "M J,M =vJ, for somev >0}

be the group of similitudes of degree g, where

.— 0 E.q
Jyi= (_Eg 7).

Let M € O, (R*). If MJ,M = vJ,, we write v = v(M). It is easy to see

that O,(R%) acts on H, transitively by

M < Z >:=(AZ + B)(CZ + D)™},

A B
p D) € 0,(R*) and Z € H,.

For | € Z*, we define

where M = (

(1.2) 0,(1):={M e 232 | 'MJ .M =1J, }.

We observe that M = (é, IB;) € O,(1) is equivalent to the conditions
(1.3) ‘AC = 'CA, 'BD = 'DB, 'AD - 'CB =IE,

or

(1.4) A'B=B', C'D=D'C, A'D- B'C=IE,.

For two positive integers g and h, we consider the Heisenberg group
H,(f’h) = {{(A\ ), k] | A\, p€ R®9) ke RWM k4w symmetric}
endowed with the following multiplication law

[y ), &) o (N, 1), &) i= [(A+ N, p+ ),k + &+ X0 = p V]

37
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We define the semidirect product of O,(R*) and H I(Qy k)
(1.5) O™ =: 0,(R*) x HE™
endowed with the following multiplication law

(1.6) (M, [(Ap),&]) - (M, [(N, 1), £1)
= (MM (M) X, oMY ), (MY 4 (M) R = V),
with M, M’ € O,(R*) and (A, i) := (A, p)M’. Clearly the Jacobi group

G%”h) = Sp(g, R) X Hl({g’h) is a normal subgroup of Og’h). It is easy to see
that O,(R*) acts on H, x C"9) transitively by

(L.7) (M,[(A\ 1), &) - (Z,W):= (M < Z > v(W + AZ + u)(CZ + D)),

where M= (¢ 1) €0,(RY), v =u(M), (2,W) € H, x C.

Let p be a rational representation of GL(g,C) on a finite dimensional
complex vector space V,. Let M € R(®") be a symmetric half integral

matrix of degree h. We define

(1.8) (Floml(M, [(A, 1), £DD(Z, W)
= exp{—2rvic(M[W + AZ + p)(CZ + D)~'C)}
x exp{2mvip(M(AZ\ + 20W + (k + p\)))}
xa(CZ + D) 'f(M < Z >,u(W + AZ + pu)(CZ + D)™Y),
where v = v(M).
Lemma 1.1. Let g; = (M;, [(A\i, i), 6i]) € Og'h) (i = 1,2). For any f €
C>(H, x C"9) V,), we have

(1'9) (flp,M[gl])lp,U(Ml)M[g2] = f‘p,M[glgz]'

10
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Definition 1.2. Let p and M be as above. Let
HYY = {[(\ ), s € HYY |\ p € 209, k€ 20},

A Jacobi form of index M with respect to p is a holomorphic function
f € C*(H, x C"9) V) satisfying the following conditions (A) and (B):

(A) flomF) = fforall y € I‘g = Sp(g, Z) X H(Zg,h).

(B) f has a Fourier expansion of the following form :

fZw)= Y Y C(T,R)exp(2rio(TZ + RW))

ReZz(9:h)

T>0
half —integral

with ¢(T, R) # 0 only if (lj;R %ﬁ) > 0.

2
If g < 2, the condition (B) is superfluous by Koecher principle(see [Z]
Lemma 1.6). We denote by J, m(Ty) the vector space of all Jacobi forms of
index M with respect to p. In the special case V, = C, p(A) = (det A)* (k €
Z, A € GL(g,0C)), we write Ji m(Ty) instead of J, m(T'y) and call k the

weight of a Jacobi form f € Jx m(Ty).

Ziegler([Zi] Theorem 1.8 or [E-Z] Theorem 1.1) proves that the vector space
Jp,m(Ty) is finite dimensional.

2 Singular Jacobi Forms

In this section, we define the concept of singular Jacobi forms and char-
acterize singular Jacobi forms.
Let M be a symmetric positive definite, half integral matrix of degree

h. A Jacobi form f € J, m(Ty) admits a Fourier expansion (see Definition

11
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1.2 (B))

(21) f(Z,W) =Y ¢(T,R)e*eT2) . 2mie’W) - 7 c g, W e Ch9.
T,R

A Jacobi form f € J, m(T,) is said to be singular if it admits a Fourier
expansion such that the Fourier coefficient ¢(T, R) is zero unless det (4T —

RM-1R) = 0.

Example 2.1. Let M = ‘M be as above. Let $ € Z(#5?*) be a symmetric
positive definite integral matrix of degree 2k and ¢ € Z***). We consider

the theta series

(2.2) I(Z, W)= T ereGERSNw) g e g W),

: Y A€ Z(2k,9)
We assume that 2k < g + rank(M). Then 95.(Z, W) is a singular Jacobi
form in J m(Ty), where M = %thc. We note that if the Fourier coefficient
(T, R) of 19_(5{1 is nonzero, there exists A € Z(®%9) such that

%‘(A,c)S(A,c) - (;;z %R).

Thus

1
rank (l%;g j\f) <2k < g + rank(M).

2

Therefore det (4T — RM~VR) = 0.
The following natural question arises:
Problem: Characterize the singular Jacobi forms.

The author([Y1]) gives some answers for this problem. He characterizes
singular Jacobi forms by the differential equation and the weight of the rep-

resentation p.

12



Now we define a very important differential operator characterizing sin-

gular Jacobi forms. We let
(2.3) P:={Y € R Y=Y >0}

be the open convex cone in the Euclidean space R™™ . We define the

differential operator operator M, , o« on P, X R™9) defined by

0 140 (9
(2.4) Myppm:=det(Y) - det (5)7 + & (_G_VT) M (W)) ,

3 __ ((+8u) a

where 53 = ( 2 3!!#!!) and % = (%H) .
Definition 2.2. An irreducible finite dimensional representation p of
GL(g,C) is determined uniquely by its highest weight (A1,---,A,) € Z¢
with A; < -+ < A;. We denote this representation by p = (Aq,---, ;). The
number k(p) := A, is called the weight of p.

Theorem A. Let f € J, m(T,;) be a Jacobi form of index M with respect
to p. Then the following are equivalent:

(1) f is a singular Jacobi forms.

(2) f satisfies the differential equation Myp mf = 0.

Theorem B. Let 2M be a symmetric positive definite, unimodular even

matrix of degree h. Assume that p satisfies the following condition
(2.5) p(A) = p(—A) for all A€ GL(g,C).

Then any nonvanishing Jacobi form in J, m(Ty) is singular if and only if

2k(p) < g + rank (M). Here k(p) denotes the weight of p.

Conjecture. For general p and M without the above assumptions on

them, a nonvanishing Jacobi form f € J, m(T,) is singular if and only if

13
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2k(p) < g + rank (M).

REMARKS. If f € J, m(T,) is a Jacobi form, we may write

*)  f(2Z,W)=Y fuo2) V2man(Z,W), Z € H,, WeCH),
a€N

where { f, : H, — V,|a € N'} are uniquely determined holomorphic func-
tions on H,. A singular modular form of type p may be written as a finite
sum of theta series ¥sp(Z)’s with pluriharmonic coefficients (cf. [F]). The

following problem is quite interesting.

Problem. Describe the functions {f,|a € N } explicitely given by (*)

when f € J, m(T,) is a singular Jacobi form.

3 The Siegel-Jacobi Operators

In this section, we investigate the Siegel-Jacobi operator and the action

of Hecke operator on Jacobi forms. The Siegel-Jacobi operator
Uy 2 Jpm(Tyg) — Ty m(Tr)

is defined by
. Z 0
(Y F)(2Z,W) = lim f : , (W,0) ), f € Jpm(Ty),
t—o00 0 ltEg_r
Z € H,, W € C®™") and J, m(T,) denotes the space of all Jacobi forms of
index M with respect to an irreducible rational finite dimesional represen-
tation p of GL(g,C). We note that the above limit always exists because
a Jacobi form f admits a Fourier expansion converging uniformly on any

set of the form

((Z,W)e H,x C") | ImZ >Y, >0, W e K ¢ C™9 compact}.

14
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Here the representation p(") of GL(r,C) is defined as follows. Let Vp(’) be
the subspace of V, generated by {f(Z, W) | f€ J, m(Ty), (Z,W)€EH,xC*9 },

Then Vp(’) is invariant under

{5 E_?_) 9 € GL(r,0)}.

Then we have a rational representation p(" of GL(r,C) on V") defined by

O(gy=p((9 O )) r)
P (g :=p ((0 E,. v, g €GL(r,C), veV".
In the Siegel case, we have the so-called Siegel ®—operator
®=®5y-1 : [Ty, k] — [[g-1, k]

defined by

@n@=tms( 5 0) rewrah zem,,

where [I'y, k] denotes the vector space of all Siegel modular forms on H, of
weight k.

Here [I'y, k] denotes the vector space of all Siegel modular forms on H, of
weight k.

The following properties of ® are known :
(S1) If k£ > 2¢g and k is even, ® is surjective.
(S2) If 2k < g, then @ is injective.

(S3) If 2k + 1 < g, then @ is bijective.

H. Maass([M1]) proved the statement (1) using Poincaré series. E. Freitag
([F2]) proved the statements (2) and (3) using the theory of singular mod-

ular forms.

15



The author([Y2]) proves the following theorems:

Theorem C. Let 2M € Z(*# be a positive definite, unimodular sym-

metric even matrix of degree h. We assume that p satisfies the condition

(8.1):
(3.1) p(A) = p(—A) for all A€ GL(yg,C).

We also assume that p satisfies the condition 2k(p) < g + rank (M). Then
the Siegel-Jacobi operator

Uyg-1: Jp,M(Fg) - Jp(y—l),M(ry—l)

is injective. Here k(p) denotes the weight of p.

Theorem D. Let 2M € Z(") be as above in Theorem A. Assume that
p satisfies the condition (3.1) and 2k(p) +1 < g 4+ rank (M). Then The

Siegel-Jacobi operator

Vg1 Jpm(Ty) — Jp(s—l),M(Fg—l)

is an isomorphism.

Theorem E. Let 2M € Z(*h) be as above in Theorem A. Assume that
2k > 4g + rank (M) and k = 0(mod 2). Then the Siegel-Jacobi operator

yo-1: Je,m(Ty) — Tem(Tyo1)

is surjecitve.

The proof of the above theorems is based on the important Shimura cor-
respondence, the theory of singular modular forms and the result of H.

Maass.

16
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We recall
0,():={Mez@®¥ |'MJM=1J,}.

Oy(1) is decomposed into finitely many double cosets mod T'y, i.e.,

(3.2) Oy(l) = UlL Tyg;Ty (disjoint union).

We define

(3.3) T(l):=Y_ T,9;T, € HY, the Hecke algebra.
=1

Let M € Oy(1). For a Jacobi form f € J, m(T,), we define

(34)  flom(T,MT,) i= HO=582 37 1], L ((M;,[(0,0),0]))

where I'yMT, = U*T', M; (finite disjoint union) and k(p) denotes the weight
of p. :

Theorem F. Let M € Oy(!) and f € J, m(Ty). Then

flp,M(FyMPg) € JP,IM(F9)~

For a prime p, we define
(3.5) Oy p = U?:oog(pl)'

Let £,, be the C-module generated by all left cosets TyM, M € O,, and
H,, the C-module generated by all double cosets T',MT',, M € O,,. Then
H,, is a commutative associative algebra. Since j(H,,) C L, ,, we have a
monomorphism j : 7:{9,,, — [:gyp.

In aleft coset Ty;M, M € O,,, we can choose a represntative M of the form

(3.6) M= (61 g) , ‘AD = p™E,, ‘BD = ‘DB,

17
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_f(a « (b B _ (d 0 )
(37) A—<0 Ax)a B_(,Bg B*)) -D'— 6 Dx bl
where «, 3, B2, § € Z971. Then we have
* B*
(38) M" = (“(‘) o) € 0ssn
For any integer r € Z, we define

1
(3.9) (T, M) = Ty M.

If T,MT, = UL, T M; (disjoint union), M, M; € Og,, then we define in

a natural way

* 1 i *
(3.10) (T, MT,)" = = > TyoaM;.

=1

We extend the above map (3.9) linearly on H,, and then we obtain an

algebra homomorphism

(3.11) Hy,p — ﬂy—lm

T—T.
It is known that the above map is a surjective map([ZH] Theorem 2).

Theorem G. Suppose we have

(a) a rational finite dimensional representation
(b) a rational finite dimensional representation

Po : GL(g - 1vC) - GL(Vpo)

18



(c) a linear map R : V, — V,, satisfying the following properties (1) and
(2):
(1) Rop ((1) 31) — po(A)o R forall A € GL(g—1,0).

(2 ROP(S E01)=aTR for some a € Z.
9—

Then for any f € J, m(T,) and T € H, p, we have

(Ro¥y4-1)(fIT) = R(¥g,1 )ITT,
where T* is an element in H,_;, defined by (3.11).

Corollary. The Siegel-Jacobi operator is compatible with the action of

T + T*. Precisely, we have the following commutative diagram:

JP.M(Fg) ¢-g—i;1 Jp(g—l)yN(Fg_l)
7 lky
) JPYN(F.?) wg,_g—)l Jp(g—l)N(Fg_l) .

Here N is a certain symmetric half integral semipositive matrix of degree

h.

Definition 3.2. Let f € J, mu(T'y) be a Jacobi form. Then we have a
Fourier expansion given by (B) in Definition 1.2. A Jacobi form f is called
a cusp formif ¢(T, R) # 0 implies (S:R %\f) > 0. We denote by J; 4 (T,)
the vector space of all cusp forms in J, p(Ty).

Theorem H. Let 1 < r < g. Assume k(p) > g +r + rank (M) + 1 and
k(p) even. Then

J;jj\?(rr) - ‘Ilg,r(Jp,M(ry))'

19
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4 Final Remarks

In this section we give some open problems which should be investigated

and give some remarks.

Let .
GE" = Sp(g, R) x HFM

be the Jacobi group of degree g. Let 'Y := Sp(g,Z) K Hég’h) be the dis-
crete subgroup of Gg’h). For the case ¢ = h = 1, the spectral theory for
LATI\G%™") had been investigated almost completely in [B1] and [B-B].
For general g and h, the spectral theory for L2(1“j \Gg’h)) is not known yet.

Problem 1. Decompose the Hilbert space L*(T \Gg’h)) into irreducible
components of the Jacobi group Gg’h) for general g and h. In particular,
classify all the irreducible unitary or admissible representations of the Ja-

cobi group G%’h) and establish the Duality Theorem for the Jacobi group
GEP.

Problem 2. Give the dimension formulae for the vector space J, m(Ty)

of Jacobi forms.

Problem 3. Construct Jacobi forms. Concerning this problem, discuss
the vanishing theorem on the vector space J, pm(T'y) of Jacobi forms.

Problem 4. Develope the theory of L-functions for the Jacobi group Gg’h).

There are several attempts to establish L-functions in the context of the
Jacobi group by Japanese mathematicians A. Murase and T. Sugano using

so-called the Whittaker-Shintani functions.

Problem 5. Give applications of Jacobi forms, for example in algebraic

geometry and physics. In fact, Jacobi forms have found some applications

20



in proving non-vanishing theorems for L-functions of modular forms [BFH],
in the theory of Heeger points [GKS], in the theory of elliptic genera [Za]
and in the string theory [C].

By a certain lifting, we may regard Jacobi forms as smooth functions on
the Jacobi group Gg’h) which are invariant under the action of the discrete
subgroup I‘g and satisfy the differential equations and a certain growth

condition.

Problem 6. Develope the theory of automorphic forms on the Jacobi

group Gg’h) . We observe that the Jacobi group is not reductive.

Finally for historical remarks on Jacobi forms, we refer to [B2].
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&3taat
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Yehdch B 7} A48 PAdd o(B) & B 9 trace® Ul Aer ) perp®h

f

A w), B[A] := ‘ABA oltt. Sym(F) & IxI 3PF ser ") 2o AFS e

o Sym(F)* = IxI positive 13 8BE SeF P29 AgS Yehdg »n o] AFS
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4 , ’ FILPIRE 4214

={zec™ | z =z Imz>0}
27t n Q) Slegel ’&‘*%““’]E} 3
Sp(nR) 1= { gER ™™ | g Lg = T}
A47F n Q) symplectic Zol& &k 9714,

= (0 1), nis ke wswgen:

tifo

it

283, Th:- Sp(n,2) & Siegel REY T °]31:r: ¥#. o GL(n,C) — GL(V,) 7} &
vt ¥ F GL(n,C) ¢ #8499 $23 ¥ (rational representation) )2} & v
[Fa,0] & 0 o] 2% V, o HERE 2= Siegel ZEH B Pe 0L et
A= '

" 1. Jacobi X2 Ao

Jacobi B4¢] 932 Jacobi MEFFF
o(t, z) 1= 2, g ila’ + W2 reHy zE€C

n€z

oIt o] F4E W <« o] B BPYFIL WF 2 o B9 abel oIt 19
A,

Jacobi B4 = R FY + AeFF(ehdFr)

o} o) FY § Qo9 Jacobi AL F WS
3 71 5 Uk o)A,

GSp(n,R)" := { gER @™ | toy o = ], for some v>0 }
olgt ¥A}. g€GSp(n,R)" o W] "gl.g = v]. 4, v = v(g) °|F E/1@TH

_ AB> v o
= (42)ecspn,p £ 19 @z

e

3 F2 HEY

o

AS

i

e

g<Z> := (AZ+B)(CZ+D)™*
g Zo] A4tk F ALS m 3 n o) ghE

™ i= { [0Lw,x] | A ueR ™ keR ™ crph & Bl )
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FUBRE £47] ‘ 5

olg F3 B Aol

Lkl - [V u ), x 7 T=[ (0407 Jutn 7 ), x+x 7 +0%n7 —p'n 7]
g 2ol FoiA= F2 Bsw H{"™ & o] =1 Heisenberg Folg U@}z
. GSp(n,R)* & H&M™ o wraA (semidiréct product) | '

G’ := GSp(n,R)* < H&™

rie

FZ Hpp = H.xC ™" o)
g (Z,W) = ( g<Z>, v(g)(W+\Z+u)(CZ+D) 1)

S 2ol AgRT AN, ¢ = (5,[0,0), D, g=(4 B)easp(n,R) o1z

ZEH,, WeC ™" ot o] Z§o] FolA(transitive)d 44 2 4 ATk Jacobi
Z 6= Sp(n,R)OCHg("'"‘) e G 9 AFEEZ o8 H,n A9 98} Zo] Fo13
oz AL E AdE 4A Rd T A

p : GL(n,€) = GL(V,) & d¥& AFF GL(n,C) o 73 H49) F313 EQ
(rational representation) ©]2} &3 MeR ™™ & mxm semi-positive B34 (half
integral) #Folgdt @A W, Jacobi T G o AQWH BFPRA(the canonical
automorphic factor) Ju, : G'XH,» — GL(V,) &

JM'P(gJ} (Z,W)) = e -2ri o(M[W+)2Z+ul(CZ+D)7'C)
X e -2ni o(MOZX+2V'W+ph+x)) | p(CZ+D)_1

oz Fo Ak AN, £ = (6.[0,0,DeC, g=(4 Elespnr) om

(Z.W)EHnn ok, BHRA Ty, & 228 758482 Adoln ole] 746 B3
[Ya8] & #Fx3}z npdch
¥H, g'€G’ & H,.n» 29 C° AEFSF FECT(Hnm,V,)
(Flup eNZ,W) 1= Tag,o(g' (2, W fg" - (2,W))
g o] Zgd
H™ = {[(X,u),K]EHR("'"') RIS integral}
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6 FUFRE 247

olgk A V, o HERE RE Ham 39 T A Ed » & A F(index) M 9}
= T, @ Bf™ o] B9 Jacobi A okl 24 (), (), () & VH3
4ol '
G) f: Hpm— V, ¥ 444 (holomorphic) g ot}
(ii) §J9494 y'ery ol @8 flu, v’ = f oItk
(iii) £+ o} Y Fourier A7)

RZ,W) = ZI c(T,R) v g ZRIO(TZHRW).

>0 >
20 R€Z

e

R

2 2T @, T20 & wgSolw >0 ot

L\DI»—- ~
x o

22 ¢ Ao Kocher 99 (cf. [Z], lemma 1.6)9] 98 27 (i) & 2@asd.
Ed p 5} AE M 9 T, o] 3% Jacobi FAE wiz}é Tou(Ts) o3 ¥

ARV, = € p = det’ (k€2) A EFF AHE JeulTs) 02 EAIFH k&

=

E T35 (weight) &3 B2t} Ziegler (cf. [Zi] Theorem 1.8 E& [EZ], n=m=19
Bl 8 Jom(T,) & FEAEL] HEFRA] FFEHAT

Jacobi B¢ JAte) w3 rFakA AT o)v], FohA AFAE0] Jacobi
PAL CGJ. Jacobi ¢ ‘"Fundamenta nove theoriae functionum ellipticum"
( Konigsberg, 1829 ) o)A AME Jacobi MEIFFoNA LFL S & 9,13} a ¥,

B FEAEY g5 & ojF22 AFH vt 196934 Piatetski—Sharpiro (cf.
[PS]) = (Siegel) EE# B9 Fourier-Jacobi A At BEEH abel T2 A (feld)
o] &3 =93 o] A A4E ANsz Yt L Satake (cf. [Sall, [Sa2]) = A&}
o A3 oA okmn] T o]ArE Y (discrete series) of #3 o d: U
197633} 1978¢) G. Shimura (cf. [Shl), [Sh2]) & Jacobi MEIF5E o] &3ta of

Wgso] B4AF (complex multiplication) ¢ o]&& AAsta ¢} 198294 Y.-S.
Tai (cf. [Tal) £ Jacobi P49 ojd W Fzre] XAFA e ZALAE AA5tS ppav
(principally polarized abelian Vanetles) 9] gETo] FF A, ©o] n29 9 AL=

26



FIBRG 24A 7

general type 94& FH 3k 1983d¢) Feingold ¢} Frenkel (cf. [FF]) 9 =& Oﬂkl
Jacobi ¥4 % Kac-Moody disste) 2HE BAS nolm itk oo 28, V. Kac
¢} A4 [Kac] & #=Z34 ulat. 7181849 &d)q = Mumford 83} (cf. [Mull,
- [Mu2]) ¢ J-H. Yang (cf. [Ya9l-[Yall]) & <23 dig7lsietatged o3 d759
gk} 19859 Eichler ¢ Zagier 9 AA [EZ] ¢} &3 ¥ Jacobi ¥4¢e F2Ao|
g 145 FEASA dFH 23 Y. 48 49, R Berndt, W. Kohnen, J.
Kramer, N.-P. Skoruppa, D. Zagier 5°] 98] n=m=1 ¢ A$o] AFHoz QF
Hol 23 gtk n, m o] Y9 AS$E T. Yamazaki (cf. [Y], n : g9, m=1),
H. Klingen (cf. [Ki1], [KI2], n : 99, m=1), A. Murase (cf. [Murl]l-[Mur3],
[MS)), C. Zlegler (cf. [Z]) & J.-H. Yang (cf. [Yall-[Ya8], [Yalll-[Yal5]) 4] =
¥ e B2 FHAE (cf. kDol 98 dFHx Yok A, Murase ¢ T. Sugano
W}uttaker Shmtam F4E AMEEe Jacobi T EFHE L-TFE AT Q
o} Jacobi & G’ ¢ ¥ EAAA AFIM AT & R Berndt, K. Takase ¢} J.-H.
Yang 59 998 F&AE] o8 dFH vt [BFH] o)X HAE-L Jacobi B2 <
o) g3ted BEH FF L-Fsl B ¥]423A 7 (nonvanishing theorem) & 4
IReH, Heegner point ©]& (cf. [GKS]), elliptic genera & ©]2 (cf. [Zall) &} &
o] 2 (cf. [Cal) T A Jacobi A& o]&o] F83A AHE&H Yot

2. Jacobi Aol A (construction)
o] Ad)E Jacobi AL FASE WHYHE 2 JHA 2
(i) Siegel ¥ 8349 Fourier—Jacobi @79 AF

A57F n+m o) FA k ¢ Siegel BB BY FE[T nim, k] & ol Zo] FoIX

= TFourier—Jacobi A7}

Z1 tZg) _ 7 7z 2nio(TZz)
= e
f(23 Zy rzo,z;ézgﬁ*-(br( 1, 23)

it

=y, J7\AN, Z1€H,, Z:€H, o1tk 2#W, ¢1(Z1,Z3)ETr(T,) 4 4
g & Aok

27



8 FUBRE 247

(i) Eisenstein ¥

T)i=T, « H"™ o] BRZ T, . & olgs} go] Rt}

Mo:={vemh | Uxsv = 1

}.
Q.Q]g] nxm R4 PPBQ §20 o) ois) Eisenstein 34 EINZ,W) & ot}
EER EEFEEEL |

> ,( s YHZ,W)
7€ p N\ s

> JJS,k('Y, (z,wW)) .
\r

TE N

ESNzZ, W) :

i

¥ 7} AFolm k>n+rank(S)+1 ©)F $9 Eisenstein F4E AW $dEIY
E{NZ,W)eT1s(T,) oIt nth 994 Kiingen A€ Eisenstein 4% TAY 4
Qv olo] BANE Ziegler (cf. [Zil, pp 201-207) E: Yang (cf. [Yalg]) & %=
342 s, ’

(iii) "iﬂ%‘-’?’ (theta series)

AA, mxm WAL YL 5>0 F H3A

t

M L .

Q= 2 |, half-integral, @>0
g S
2

(Meq ™™ M>0 ojz wgE, gez ™) of di§ AeFF {7 (z, W) 2

BQ(")(Z W) = Z e 2rio(Q[GIZ+2'WgSG)
Geg Tt

g Zo)] AT, 94714, (Z,W)EH ,,; °olth.

] W, 20 7} even unimodular o|d 85(Z, W)EJ nu §(Ts) otk
. ot
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Problem : %5 A5¥ Jacobi 3 ’—*]£ TS AR G Bge] ATt ?

3. Shimura ©}$
mxm integral AP YL >0 st a,b€0 ™7 o 3] AFF

(3.1) 9 S,a,b(Z,W) - Z )eniu(S((l+a)Z'()~+a)+2()~+a)'(W+b))) ‘
rez '™

g Rog. ,

Q€H, & IATIL mxm WAFF dIPE M>0 E HIAA. a1, AR
Loi= 2™ g 4 20mm = ¢ 0mm gy

| (AQ+n) - W = W+rQ+y, K, pez ™" weg ™

$} 2ro] properly discontinuously &%t}
(W,0)eC ™" & (Wera+u,e HWONAM . ¢) o gasA goza ohdTe
A d Xoi=¢™V/ Lo o 4 H% e & e £ £ ample oz

dime H(Xo, £0) = { det(2M) }" 92 47 29 & 0. AA =,

{6 2u,0,0(2, W) | a€ (2b1)712 ™7z ()

£ B'Xo, £) 9 AAE 8T IHEE, 0€H, B 23922 H 999 Jacobi &
§ f €l,u(ty) A a9
(3.2) FZ,W) = T ful2) - 0,002, W), (Z,W)EH . n |
22 ®7 ¥ F 8¢ 44 2Y & A 97N, ac(2m) 2207 o)z
fo(2) ¥ §43A Z2AHE H, 49 #HA4F g F4old. Poisson summation

formula & ©]£3t Jacobi HA3} WAL B2 Alo)e] Shimura correspondence
g 398 F Ik

X2 3.1 (Shimura 9<) HHIZ J,u(T,) & oJ8 B82S Siegel PPN S o)
e e Bdolth
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' o] B¢ AMF FHL Yang (cf. [Yal8]) T Ziegler (cf. [Zi}) & =384 wy
at},

tlo

A7 2M o] unimodular 33 p 7} p(4)=p(-A) ( TAEGL(s,C)) A FA
DEFT I A 29,

m

Jp,M(Tn) = [rn, p . ® det_—?].

Shimura -8 9-3@oAN 82 Rolth

4. HFF BYPZFAH g A&

o] Ad)x= Kohnen space ¢ MaaB space (== MaaB's Spezialschar) & 27|
33 Jacobi W F3te] WSRAAE BFIA A&snA Ak

38X 71 HEe ox HEo) AT B s Eo REES J)&dA
mXm WAL AqYPF M>0 & Z€H, ¢ o3|

6(W+)~Z+u) - e—zn:a(M[A]z+2’st>’ )\"uez(m,n)
g W VEAE BE ¥4 0:¢™0 o ¢ 59 AHTAE 0 oREAH
A B, Li= 2™ o)t ¥R vEL/ (2L, (Z,WEH,» o B3l AR+
8,(z,w) =

. -1 1 —l‘
GY(Z, W) = ELe 2rio(MIN+(2M)"Y)Z + 2°WM(M+(2M)7YY))

olg} ARt 2y,
() {6,(z,w) | veL/ 2M)L} = 2 HEIZ 8, ¢ 71AE o2}

() o(Z,W)ETu(T,) o1’ W 9] Fo] w3l o(z, - )e8 s otk
(i) o(Z,WETeu(Ty) = ABFSE 6,(2,W) o AR Yehd 4 g} =,

o(Z,W) = 2 ¢,(2) 8,(Z,W), ¢,(2) €c
YEL / (2M)L : .

A71M, ¢ = (¢4(2)) ver/ (. & theta multiplier system o #&g ifﬂ%ﬂﬂ% V
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(1) Kohnen ¥2F (cf. [Ib], [Koll)

1=1, =1, L=2 1" Q1 H%o) #3] AZGstd B HEIFF

8 M(z).:= gbez"‘°‘“'x) = 60(z,0), Z€H,

g Rgun. =

ré™(4) := [(A Bler,|c =0 mod 4}

olgt AYsd TV(4) = T, o REZOLG RY-A j(M,Z) (MeTM(4))S

j,2) 1= AESEEL e
s 2ol ek o W, Aoie) m=(4 B)erf(a) o) os

(4.1) j(M,Z)% = (M) - det(CZ+D), e(M)% =1
?) AL A 1980Wo] Kohnen & k 7} &3 Q4 o 424 9="o]x = Kohnen
i M;__é,(ro‘"’m)) g A8

5 fiH, o€ 7h M (167 (4) o @ (element) °)# SH= Re f =AY
B goln ohdlel B 27 (42) o (43) & RFHE Byl

42) fM<z>) = j(M, 221 [2), "MeTi(4).

(43) f(2) & ol=l9] Fourier A7\
ﬂz) - Z a(T)eZ;u'u(Iz)

T20, 485
2 zt=th @ Fourier A% a(T) &
“a(7)=0 unless T = -u'wmod 45:(2) for *uez2™?~
9 23¢ BEV. A,
S3(2) i= (TeSyma(R) | o(TS)E€Z "SESyma(2) }.
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Qe8] ¢€pi(ry) (I=1, S=1) o =%
o(ZW = 3 A2 0,2, W)

s 2] EAY & Atk o) o,
@) £ = Z £(42)
A% Fow feM, ) (17 (4) A& T ¢ ek

A7) 4.1 (Kohnen—Zagier (n=1), Ibukiyama (n>1))

Tia(Ty) = M;;_é_(ro‘"’(zx)).

A71A, 19 FPAEAA Y dSBAE ¢ P fi L2 FAIA AL 99 FIA

& Hecke #&49 Z8&3 ¥9 (compatible) 3t

(Il) Maap F7+3} Saito—Kurokawa o}°¢

Maap 78] 712 Saito—Kurckawa 44 (cf. . [Ku]) & 31237 9983 A7)

HA

FE[T2,k] ¢ Siegel ¥ F o] Maap FZF [F2,k]” o Holg 8= AL F 9

Fourier A1 ar(7T) ( T€S3(2),T20 ) < A3 otP =1 (458 AFd= 3¢

o]},
I mn
(4.5) ar|l ™ 27| = K1l g T2
r dl(n,r,m),d>0
7 m ¥
2d
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Jacobi 2] ¢€Jy1(T1) o) W43} F, : H — € &

(Z V) c= . A n "';— .eZni(nz+rw+mv)
vV w n,mE2Z 50,r€2,4mn-r’*20 T
2 m
olg} At} 714,
¢(Z’WI) = z . 'C(n,r) . eZnic(nz+rw) ,
n,r€2,4n-r"20

- ' k-1, mn 1
) - dI(n,rz,:m),zbod_ c( az d)

NIH =]
3 NlH

o).

A2 4.2 (Maas [Mall, Eichler—Zagier [EZ, Th. 6.3])

Jia(T1) = [T, kM.

G714, 99 FPAFY S BAE ¢ b F, 22 FojAT. AYr) 9 FHAES
Hecke #82~9 #4435 %9 (compatible) T}

Saito-Kurokawa <42 Maap (cf. [Mall-[Ma3]), Andrianov (cf. [An])$}
Eichler-Zagier (cf. [EZ]) ©] 98 sid= it AF7AA Y HL&& QoFsA

[To, k¥ = Jxa(ry) = M:_%(Tom(‘l)) ~, [T1,2k-2]
Fo < ¢ = fi

o2 A ¥NE 4 Yk 9714, « £ Shimura ti-golth. 9 FHAFELS
Hecke #8249 283 FH@T
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5. 9] Jacobi 32

M>0 & mxm WAG ALolZ} 3. Jacobi A fEI, (1) £ BS99
Fourier A7)
| z,w) = TZR C(T,R).ezzia(n+xw).

Z ztet}. Fourier Al ¢(T,R) ©] otde =4
‘ “ ¢(T,R)#0 =>det(4T—RM'V“R) =0 "
2 BEY W f E o] (singular) Jacobi @ olg} wr}.

Example : c€z %™ olg 82 =, $>0 = ZkXZk-integrél g3 P Polzt 3HA}.
2k <ntm o]® ojeft Zo] FAHE ARFF

08Uz, W) 1= T erecIEn
£ 5o] Jacobi F2 o)t} @3}7‘51,, egﬁ'?,(Z,W)EJk,é(l‘,,). <, M= _%" ‘eSc.
°olAl, $e¥= °}iﬁ9} 2L A28 FAE ANE & A
Problem : Characterize the singular Jacobi forms.

B4 [Ya5) o)A o) FAC) @ AFe F31 ok BAE oj| APE R4
I BE p 9 FA (weight) A 5o] Jacobi 34& EAAT
P,i= {yer®” | y="v>0}
n{n+l)
¢ f2A= T R ® gkl AW convex cone °|F FHA}

F P.xR™M o] mBALE M,y 2

o2 @ 947)A,

3 . 1+5 3 3 3 '
oy T = ) 2 - (=5 ) =00, v=0

3y - 2 Y
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A# A (cf. Yang [Ya5]). Jacobi ¥4 fEJ,u(T,) o] Wal otele & =7 (1)
I (2)= Exolth S

(1) f & 5| Jacobi #3o|t}.

(2 Mummf = 0.

A B (cf. Yang [Ya5]). 2M>0 & mXm even unimodular tj3&Bolg} 713
A E, 8 o =

p(A) = p(-4) TAEGL(n,¢)
9 A< BEIT A 289, Jacobi B2 0AfE€T, u(T,n) o did] ofde %
z3 (@9 (b FAolt. '
(@) f & 5o] Jacobi F4e]t}.
(b) 2k(p)<n+m.
A7NA, k(p) & EE p o FA (weight) E “ebdT.

Conjecture : For general p and M without the above assumptions on them,

a nonvanishing Jacobi form f€J , u(Tn) is singular if and only if 2k(p)<n+m.

Problem : Describe the functions {f. | a€(2M)7*2 ™" /2 ™™} explicitly given

by (3.2) when f€J, u(T,) is a singular Jacobi form.

gate o] A dis £EAA A7S F AT (cf. [Yab)).
6. Siegel—Jacobi &4

M = 533} 2t} Jacobi B2 fE€J, u(T,) o) dis)

() (2,W) = ims{ (20 ) o0

ojg Rt o, 'ZeH, o]z wec ™7 ot}
agd, A1 F8/Fe $E88d. GL(n,C) 9 rational £8 (p,V,) o s

35



16 FUBIRE A2A]

(¥ IZ,W) | FET o ul(T0),(Z,W)EH ;. m}
o) o8 AYHE V, o BEFRL V) oz ®r)F) o] W), GL(r,C) ¢ rational

®d o :6L(r,0) » GL(V") &

p D)y = p((g 10 ))v gE€GL(r,C), vev

o} go) Ao}, aPW, $FPE o NPAY
Vo, Jou(Ta) = T, 0 4(T,)

& Qxy, o] APAAE Siegel-Jacobi &4 #m AAET. [Ya3] & [Ya7] o1
AAE o] FAF8429 QA (injectivity) =X HAMY (surjectivity) o] @8] =93tz
Siegel-Jacobi X449 Z&o] Jacobi Be] WEF Ao BYHE Hecke &4
o] 243 FPFL FPsiATh. 283, [Yal8] ol "AE= Siegel-Jacobi 2§49
g8 AFL FAEY Jacobi 49 HABA (stability) o) &3 =9stzm Aok AT
&< A0 [Ya3), [Ya7) % [Yal8] & 237 wach

7. Siegel &4

o] ML o)APA el Siegel FE Jacobi P A= FFstzmA ot
sesi(2)* := {Tesi(2) | T>0) & 2R %

Sym'nua(832) i= {0=| M | Mesn(2), ge2 O
4 .
2 S
o)z} Fab =,

Symmir(S;2)" 1= { Q€SymMY.(5;2) | 0>0)

olZt ¥A F BB 0, 0 €Symnu(S,2) 7k & S—class o) F@u QAE A
& ojm

_{u O (1,m)

Y—(y Iz) (S, u€eSL(m,2), ye? )

b EBAS Q' =gy A FA AP dolg. Tdm, T B
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0, 0 ESym’n.(S;Z) 7t & S-genus o F@Gn YAE R P 2% p
EERE!

Yp=(“’_’ ? ) (<}, u, €GL(m,2,), y,,ez:,,“v_"‘?)
Yp- L :

7} EA89 Q0 =",07, ol signQ= sign0 & FAI FFY wo|o}.
a9y,

(%) F4A Q0 9 93 BAHE S-genus = FHAFY S-classes 2
o] Fo]A gt}

o] S—classes 2] AFE H(Q) 2 ®7|182 Q ¢ S—class number @3 Bt 3
id G E

oee (2 Q) toesmer sec=, off¢ ¢)]-o]

X
ozl g G = 0 Qo) FYHE tl$F (an algebraic group) o]tk

G(2) := [(g 21\) €G(Q) | aeSL(m,2), x€2 ""’"}

olzt & G(Z,) = 919 FAISHA Bt adele & G(A) ¢ S FET U &
n = EG(Z,,) x G(R).
P ©

oz ¥AY & 9,1.0_#], H(Q) & 29 G(A) 9 double coset decomposition (7.1)
o) o3 23 €t

(7.1) G(R) =

u jen B

G(0)gym, hi=H(0).

371, g (1<j<h) & G(A) ¢ 9 (element) o|t}.
X389 A3 local density

AA%  mn o) FA AL m2n olF A QESMN(S;D),

T€ Sym’si(S;2)* o W3t
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AQ;T) := #((’;‘)EZ‘“*""’ l'Q[(; ‘}’)]=T],
A (O5T) := #[(;‘)e(Z/p“z)(””""’ | QH; %)]=T mod p"s*,.+z(2)}
olg} ¥2}. 283, local density o,(0;T) &

n(n+l

7 A,Q5T)

e

ap(Q;7T) = E{gl’

ol Aeojgttt. @ -place o] #F local density a=(Q;7) & H33) BT &+ Aok

E(Q) := #{( ) | a€SL(m,2), xez "™, Q[(a 0 )”

a
x x I

olgt ¥ LAAA A¢ (cf. [Si]) & ¥I=3HA ot <] Siegel F4& =

3e] 7.1 (Arakawa [Ar4]). m2n, 0, T = 915} 2oha &4, 0 o) 99
AAHE S-genus o) &3= S—classes o @A F}]ﬁﬁ]% 01, ~ , O
(h:= H(Q)) °lg 3tx}. a3,

[ & _AlQiT)
T a,(Q:T) = i (’:1:1“?@&)
| (;§1 E(Qj) )

d BAHE E=H. A71A,

il if m>n+1 or m=n=1,
g =

2 if m=n+1 or m=n>1.

A F29 FA FRFL 3 A
- Arakawa & T. Ono (cf. [Ono]) ¢ F. Sato (cf. [Sat]) ¢} homogeneous F3+ A+2]
Siegel 42 AH83t 4719 BHE FH3 Yok

TAHY F$o] Siegel o] AN A} wl%EA HEFFS 9 Eisenstein F4-5
o] Siegel T4 & A& % Atk |
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A2 7.2 (Analytic Siegel's formula [Ard]). 71Z& FH& 7.1 3} FY3t}. a7
3, m>2n+1+2, det(2Q)=1 o)z 7/}F 3} AL a2,

Example : I=1, S=1 ¢ A$ol &3 Bzste] u7}

t
g
o= M 37|, det(20)=1
a4
2

olg} H m=7 (mod 8) ©] @t} 0 o "Wl Q = M'_Tlft‘lq o2} w3 AE
F 6(052) &
6(0iz) 1= X ™I seq,
Gi1€2 m, 1)
9F AeA. Y, 6(Q; DEM 5 (To(4) ] A ¢ o g3 2AHAE 5

—genus °) &£3& S—classeé o] SAYRAE 01, ~,0r (k=H(Q)) °l& 3}A.
m>5 4 o

~

(5205

1 +
1 L] tz-m O g2

(7.2) ( g

)

Q #AAME gt {(w) £ Riemann AEHg<o)d G;_%( z) £ Cohen &% (cf.
[Col, [EZ] p. 65) &z EIS$E F+E Kohnen 33 M:__;_(ro(z;)) 9 9

(clement) olc}. ZelA, 4719 (7% WS YY) 2 Siegel 302 B
g 4 o - '
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8. G' 49 HYYNFA G’ o 2 FHE

WA, cuspidal Jacobi BN de] ®a) MEHAT. Jacobi B FE T, u(Th)
= Fourier—Jacobi A7) section 1. (ili) & zEt}. o] o, dtee] =A

1
o(r,Ry £0=| T -“'z'R >0
' —%~’R M

& WEY W f & cuspidal Jacobi FNoF YAET. o)A, FEAL W) A

m=n=1 ¢ A$Y G2A}. 2Y¥H, H;XC = G’/ K’ & homogeneous FIto|BE

HixC 22 &5 f —‘i—’Jacobi T G’ }oz lifing ¥ 4 Utk F, o) WE f o &
8/g”) 1= f(g’ + (i,0)) Tup(g’, (i,0))

o2 FoAt o, g’eG’ o]z K = S0(2) « R o)t} HJA,

G'=SL(2,R)= (R?*- §Y), K'=50(2)=S" (&, s := { zeCc | |z=1}) 22 H&

F Ak ot ¥ (D-(AE 2Fe G B4 C° &5 ¢9: 6 > ¢ 59 Wy

FE An(r?) o)g BAEAL

(1) #(rg) = #(g) “rer’:= 5L(2,2) « 2*

@ a(g-r(0,0) = a(g) Le'ko  'r(0, )€K’

B X% =Y8=0 . .

(4) 49 g€SL(2,2) o dis o9 &5

_k
g P alg-gly ?

© 99 { z=x+iy€H: | y>y0} AH %7 (bounded) otk @71, X_ § Y.
G’ 49 A mBEAEL0T (cf. [Be2]). 22,
(10.1) JiaT) = A, (1), T := 5L(2,2).
#7414 (10.)= Berndt (cf. [Bell-[Bed], [B-B]) o <5} Zo)Ath
LE(r'\G’) := {seL¥(r’\ G’) : & cuspidal}

e

o]zt ¥ lowest weight (k,m) & X3 G’ 9 o)A%@ (discrete series) Ti; =
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cuspidal Jacobi 43 BHY @A Yok Belol o)
Tear(6,0))v = 'e™y, vev

2398, 2894 A9l Gelfand 3o} 9js] AR Duality Theorem & Jacobi
g AT YPRE= Aldo] Berndt (cf. [B-B]) °) 93 =55

Duality Theorem ( Berndt—Bocherer [B-B] ). m>0 o] 93] Jacobi & G’ 9
right regular representation ( on L3(r\G’) ) 0}01]/11.4 Ty © %‘» “(multiplicity)
< my,; olF AL 289,

myp = dime JEP(T)

A7t ARV JEF(r) & HEITZ J,,(r) %ol A= cuspidal Jacobi BT
o)%old FEFNS vehutt

LUy
Lo

)
o

4 m, n & 3$9 Duality Theorem £ A} (cf. [Yald]) o <&} FZIAT.
LA(1'\G’) ¢ A%%2 % (continuous part) & [Be5] & F3:3lr) wiad ( &
m=n=1). Q9= A%, Takase (cf. [Tall, [Ta2]) = spherical T4+ Ar43}a)

Jacobi & G’ ¢} XA o) AE Pl B3| TSR

9. Whittaker 225 L85

BEF AN L-g< o)X Jacobi FANAE L-gF o2& AME & A
t}. 713, Jacobi B B4HE L-#<etE7} Jacobi 9 adelization G'(A) o %
4%+ automorphic representation °] &3] B¥ P22 A9 FAEA o)EL A
& 4 9t} o]9] dFE A. Murase, T. Sugano 59 92 $8x9 V. A. Gritsenko
(cf. Introduction in the Theory of Zeta Functions, preprint) ¢ 2] Ao} F38tA}E 0
s 732 U

72, Murase (cf. [Murl], [Mur2]) ¥ Hecke ring & =39 Satake ZEYALS
AL F Satake “Hﬂ] A4~ (parameters) & ©]-83t9 Jacobi FAd] FFHE 429,
Shintani AEFFE B €3, 2e o AHFSFIE HHH %‘3—’—‘7—"3 (analytic
continuation) & X]‘El’% Holx Rankm ~Selberg WEE o] &3I}H FFH F4
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(functional equation) & FAFAT. n=1 o2 A m A B$elE Sugano (cf.
[Sul) & Jacob1 o] REHE L-B4E A® F o] L-849 953 qE54E
Rolx 4&A S SAAT) Murase ¢} Sugano (cf. [MS]) & Shintani ¢ &%
g7 e Aol 26 7]€5o] & Shintani ¢} olo]t}}E AL&3te] Shintani & oF
=2 Z93GY. AT RS 9N AT FREAL Fxed nrArh

10. & &
e] AolXE Jacobi A &L ZA F JIAE AAFAC
@ Non-surjectiveness A

Siegel 258 §4) f€[Tn1, k] = ol2}8} 2-& Fourier—Jacobi A7

A ’W) _ @ 2 Z W) - 2rimze
(*) f(W Z2 m=0 £m(Z1, W) - e o

2 2=tk @ Z,€H, o)1 z,€H; ot} o] 0,

(10.1) @ [Tren, Kl = Txa(Tn), a(f) = @44

©E AHE AYAE ng}?‘ﬂ'q Bz 9714, f€[Th,klE Fourer-Jacobi A7)
(*) & 2t opul, 28NN @,,€7,1(T,) VS AFHRLH 48NN n=1 9 u
(T2, k1" = Jxa(r1) 92 HFssch [T2,k]% £ Maap o Spezialschar I 27)
%}Oﬂi}. agdeg n=1 %.ﬁ!-‘a AZAME a & AAAE (surjectiv map) otk 18
U, Q99 n o e dugos A7)0 NEAY o = A ofygE A}
A o) Ziegler o) 93 FHHUL.

A 10.1 (Ziegler [Zi], Theorem 4.2) 17232 o uj NFPAA
» o - [1“,.+1,16] — JIS,I(rn)
& WAl otk (B, k=16 2 H$).

Problem : For any n with 1<n<32, is the above liner mapping « surjective ?
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() Jacobi FH o2 Ree] REAFYS T4

F AA9%5 m,on & 2ARA. ¢ Fo) AP EXY4A (a homogeneous
" polynomial) P o] s}

a a m,n
P(3w) = P(—y—, =, 5y —) W=(Wyeec™”

olg B2t M=(my) & mxm positive 8% R PDo)e} sz

olg} A} o] w, ¢ ™" Ao thgy P 7} glo)
_ ' A;P=0, 1<ij<n
o] 2A¢ BEY w G4 P T P (2M)' o) B38| pluriharmonic o)} ek,
Jacobi @2 fe€J, u(T,) & pluriharmonic FX}thata] P o] s}
fe(2) := P(3w)f(Z, W) w-0. Z€H,, wec ™n
olg} ¥}, 28X, AV fu: H, — V20V, &
(7:(2)) (P) := fp(Z), ZEH., PEV.
olek BTk d7M, « : GL(n,C) = GL(V:) £ GL(n,€) ¢ 719 (irreducible) ¥
@olW Vi & 0|9 contragradient E@IT. $A® Ae FNEY [Yad, section 3]
& FaEe7) vianh 3AE oY AtE FIIAAT

Q2] 10.2 (Yang [Yadl).  Jacobi B4 fE€J,x(T,) o i3
f-€lTa,p®x]

oltt. &, 1t & oA dFFT EF 1 9 contragradient 8L YeEldd,

11. € 459

2oz o] AAE Jacobi o] #d Foz AF=Hojo} & FASES EATA
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o}

Problem 1. Decompose the Hilbert space L%(T”\ G’ ) into irreducible components
for general m and n. Classify the irreducible unitary or admissible representations

of the Jacobi group G’

Problem 2. Give the dimension formula for the vector space J, x(T.) of Jacobi

forms and the vector space J%%(T,) of cuspidal Jacobi forms. -
Problem 3. Construct Jacobi forms (cf. section 2).

Problem 4. Develope the theory of L-functions for the Jacobi group G’ (cf.

section 9).

Problem 5. Give the applications of Jacobi forms in algebraic geometry, number
theory and physics ete, (cf. [BFH], [Cal, [GKS], [Yall], [Yal9], [Zal]).

Kramer (cf. [Krl], [Kr2]) & Jacobi @49 AFE 713183 SN ATage
‘ﬂ_lkuo Satake (cf. [Sal]) & 5o]& o]&¢] Jacobi F2Je] o]&L o]&3tx th.
Heisenberg & Hi™™ o ZEHE = 718153 ZoNE U o8 A7

At (cf. [Yall, [Ya2), [Yal7]). E. Freitag 3 RAt:= Jacobi 49 7S Qurzel
#2499 (tube domain) 22 B3} (cf. [Yalb)). Jacobi B4 9 A7+ opadck
FAFe) AES o) YHY WA AL S ¢ & AT (cf. [Ya9)], [Yall)). =,
Jacobi @22 Jones-Witten o] &0) $&571% ¥} (cf. [At], G. Segal ; pp 17-35).

12.

u}l_:,

e
r

aL

[An] A. N. Andrianov, Modular descent and the Saito-Kurokawa conjecture,
Invent. Math. 53 (1979), 267-280.

[Arl] T. Arakawa, Real Analytic Eisenstein Series for the Jacobi Group,
Abh. Math. Sem. Univ. Hamburg 60 (1990), 131-148.
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The Siegel-Jacobi Operator

By J.-H. YanG

1 Introduction

For any positive integer g € Z*, we let H, the Siegel upper half plane of
degree g and let I'y; := Sp(g,Z) the Siegel modular group of degree g. Let
p be a rational finite dimensional representation of the general linear group
GL(g,C) on V, and let .# be a symmetric half-integral semipositive matrix
of degree h. Let J, 4(I',) be the vector space of all Jacobi forms on I'y of
index .# with respect to p (see Definition 2.1). For a positive integer r with
r < g, we let p@: GL(r,C) — GL(V,) be a rational representation of GL(r, T)
defined by

p(r)(a)v =p ((8 EO )) v, aeGLFrC,veV,.
g—r

The Siegel-Jacobi operator Wy, :J, 4(I'y) = J,0_4(I';) is defined by

e w =lims ((§ 0 ).r0).,

where f € J, #(Ty), Z € H, and W € €. We observe that the above limit
always exists and the Siegel-Jacobi operator is a linear mapping (cf. [14]).

The aim of this paper is to investigate some properties of the Siegel-Jacobi
operator. This article is organized as follows. In section 2, we establish the
notations and give a definition of Jacobi forms. In section 3, we obtain the
Shimura isomorphism based on ZIEGLER’s work [14]. Using this isomorphism
and the theory of singular modular forms, we obtain an injectivity or a
surjectivity of the Siegel-Jacobi operator under certain conditions. In the
final section, we define an action of the Hecke operator of I'; on J, 4(T';)
and prove that the action of the Siegel-Jacobi operator on Jacobi forms is
compatible with that of the Hecke algebra.

Notations. We denote by Z, @, R and € the ring of integers, the field
of rational numbers, the field of real numbers, and the field of complex
numbers respectively. For M = (4 D) € Sp(g,R) and Z € H,, we set
M(Z) = (AZ + B)(CZ + D)™'. [[',, k] (resp. [T, p]) denotes the vector space
of all Siegel modular forms of weight k (resp. of type p). We denote by

This work was supported by KOSEF 901-0107-012-2 and TGRC-KOSEF 91
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136 J-H. Yang

Z* the set of all positive integers. F®) denotes the set of all k x | matrices
with entries in a commutative ring F. For 4 € F®) and B € F*%  we set
B[A] ='ABA. For any M € F®) M denotes the transpose matrix of M. E,
denotes the identity matrix of degree n.

2 Jacobi Forms

In this section, we establish the notations and define the concept of Jacobi
forms.
Let

GSp(g, R)* = {M € R | 'MJ,M =vJ, for some v >0}

be the group of similitudes of degree g, where

— 0 Eg
(2 5)

Let M € GSp(g,R)*. If ‘MJ,M = vJ,, we write v = v(M). It is easy to see
that GSp(g,IR)* acts on H, transitively by

M(Z) .= (AZ + B)(CZ + D),

where M = (2 }) € GSp(g, R)* and Z € H,.
For two positive integers g and h, we consider the Heisenberg group

HEY = {[(4, ), k] | 4 u e R, k e R® s 4 2 symmetric)
endowed with the following multiplication law
(2, m), ] o [(A, 1), k] = [(A + X+ )+ & + Xy — 2]
We define the semidirect product of GSp(g,R)" and Hﬁf’h)
G’ := GSp(g, R)* < HE"
endowed with the following multiplication law

(M’ [(}“5 /“t)’ K]) ’ (M” [(’l/’ l"/)’ K,])
= (MM, [(v(M) A+ 2, v(M) " it i), v(M) e+ +v (M)A = )],

with M, M’ € GSp (g, R)* and (4, 1) := (4, )M’ Clearly the Jacobi group
G’ :=Sp(g,R) x HE" is a normal subgroup of G’. It is easy to see that G’
acts on H, x C* transitively by

(2.1) (M, [, ), x]) - (Z,W) = (M{(Z),v(W + AZ + u)(CZ + D)7},

where M = (2 }) € GSp(g, R)*, v = v(M), (Z, W) € Hy x T").
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The Siegel-Jacobi Operator 137

Let p be a rational representation of GL(g,C) on a finite dimensional
complex vector space V,. Let # € R™P be a symmetric half integral semi-
positive matrix of degree h. Let C*(H, x C*#,V,) be the algebra of all C*
functions on H, x €*# with values in V,. For f € C®(H, x C"®,V,), we
define

(2.2) (loa [(M, [(4, w), kDINZ, W)
e-—21tvia(‘//{[W+AZ+H](CZ+D)_l C) e2nvi6(u/l(lZ‘i+21‘ W(x+p'2)))

x p(CZ + D) f(M(Z),v(W + AZ + w)(CZ + D)7V,
where v = v(M).

Definition 2.1. Let p and .4 be as above. Let
HEY = {[(Lp),x] € HEY | 4 p € 29,1 € Z0}.

A Jacobi form of index .# with respect to p on a subgroup I' = Iy of
finite index is a holomorphic function f € C®(H, x C™*®,V,) satisfying the
following conditions (A) and (B):

(A) floulf] = f for all § € IV := [ x HE".

(B) f has a Fourier expansion of the following form:

fZ,w)= Z Z o(T,R) - e Ha(T2Z) | nio(RW)

T=>0 ReZigh
half —integral

with some Ar € Z and ¢(T, R) # 0 only if

1 1
(TF,T 5R)zo.
YR

If g = 2, the condition (B) is superfluous by Koecher principle (see [14]
Lemma 1.6). We denote by J, 4(I') the vector space of all Jacobi forms of
index .# with respect to p on I'. In the special case ¥V, = C, p(4) = (det A)
(k € Z, A € GL(g,C)), we write Ji 4(I') instead of J, 4(I') and call k the
weight of a Jacobi form f € Jy_4(T).

ZIEGLER ([14] Theorem 1.8 or [2] Theorem 1.1) proves that the vector
space J, (I') is finite dimensional.

3 The Siegel-Jacobi Operator

Let (p, V,) be a finite dimensional representation of GL(g, €). For any positive
integer r with r < g, we denote by Vl§’) the subspace of V, generated by the

values {¥,,f(Z, W) | f € J, «([y), (Z,W) € Hy x C"®}. According to [10],

V() is invariant under
a 0 .
{(0 Eg_,) ae GL(r,(E)} .
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138 J-H. Yang

Then we have a rational representation p of GL(r,C) on VIS’) defined by

() = a 0 )
p"(a) .—p<<0 Eg_r))v, a € GL(r,C),veV,”.
Following the argument of [10], we obtain

Lemma 3.1. If (p, V,) is irreducible, then (p®,V\") is also irreducible.

Now we assume that .# is a symmetric positive half-integral matrix of
degree h. For any a, b € Q"8), we consider the theta series

92/” a b(Z W Z ema(2.//l((l+a)2‘(l+a)+2 (A+a)' (W +b)))
reZte)

with characteristic (a,b) converging uniformly on any compact subset of
H, x qChe)

We fix an element Z, € H,. Let 4" be a complete system of representatives
of the cosets (2.4)~'Z"%) /Z(ig) We denote by T 4(Zo) the vector space of all
holomorphic functions ¢:C*8 — € satisfying the condition

(31) (P(W +AZO _+_'u) — e—-Znio‘(J{(/lZo‘l+2,l'W))(p(W)

for every A, u € Z"®. The functions {92.440(Z0o, W) | a € A} form a basis
of T 4(Zo) and its dimension is clearly {det(2.#)}8. If f is a Jacobi form in
Jou(Ty), it is easy to see that each component of ¢(W) := f(Zo, W) satisfies
the relation (3.1). So we may write

(3.2) f(z,w)= Z faZ) Rpa0Z, W), Ze€ H,, W e q:(h,g)’
acN

where {f,:H; — V, | a € A"} are uniquely determined holomorphic functions
on H,.

According to [14], we have
63 fuezh = {det (%) }_7 A{p(=2)} - {det(2.4)}

> z e21tia(2.//{a‘b) fb(Z)

beN
and
(3_4) fa(Z + S) — e—2ni0(./{aS'a) ‘fa(Z) , S= = Z(g,g)'

By an easy argument, we see that the functions {f, | ¢ € #"} must have the
Fourier expansion of the form

(3.5) f@= 3, oT)- &

T='T>0
half—integral
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The Siegel-Jacobi Operator 139

Conversely, suppose there is given a family {f, | @ € 4} of holomorphic
functions f,:Hy — V, satisfying the transformation laws (3.3), (3.4) and the
cusp condition (3.5). Then we obtain a Jacobi form in J, 4(I'y) by defining
f(Z, W) via the equation (3.2).

So we obtain the Shimura isomorphism:

Theorem. (SHIMURA) The equation (3.2) gives an isomorphism between J, 4(I'g)
and the vector space of V,-valued Siegel modular forms of half integral weight
satisfying the transformation laws (3.3), (3.4) and the cusp condition (3.5).

Corollary 3.2. Let 2.4 be unimodular. We assume that p satisfies the following
condition:

(3.6) p(A) = p(—A4) forall Ae GL(gC).
Then we have

(3.7) Jou(Tg) = [Tg, p] - S2.400(Z, W) = [Ty, P,

where p=p ® det™%. In particular, if k- g is even,

68 (T = Tk~ 21 8r00(Z, W) = Ty k— 1.

Proof. The proof of (3.7) follows from (3.3), (3.4) and (3.5). The repre-

sentation det":GL(g, C) — C* defined by det“(4) = (det(4))* satisfies the
condition (3.6). Hence (3.8) follows from (3.7). a

Notations 3.3. In corollary 3.2, we denote the isomorphism of J, 4(I';) (resp.
Jk,.ll(rg)) onto [ng 7)] (resp. [Fg»k - 'g]) by

Sp:Jp,ﬁ(rg) - [rga Pl (resp. Sg,k:Jk,.ll(rg) - [rg>k - %])
We denote the Siegel operator by @,,:[[';,p] = [T, p"], 0<r < g.

Definition 3.4. An irreducible finite dimensional representation p of GL(g, C)
is determined by its highest weight (A1,42,---,4,) € Z8 with 4; > --- > 4,.

We denote this representation by p = (41, -+, 4;). The number k(p) := A, is
called the weight of p.

Theorem 3.5. Let 2.4 be a positive unimodular symmetric even matrix of degree
h. We assume that p is irreducible and satisfies the condition (3.6). If 2k(p) <
g +rank(#), then the Siegel-Jacobi operator W, ,_, is injective.

Proof. By corollary 3.2, we have

(3.9) Jou(Tg) = [Ty p ® det 31+ 95 400(Z, W).
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By an easy computation, we have
(310) Sp(g—l) [¢] ‘Pg,g_l = (Dg,g—-l [e] Sp .

According to the assumption, the irreducible representation p ® det™? of
GL(g, ©) is singular, that is, 2k(p ® det_%) < g. According to the well-known
theory of singular modular forms ({10] Satz 4), every f € [I,,p ® det‘g] isa
singular modular form. Thus the Siegel operator ®;,_; is injective (see [11]
for the proof of the injectivity of ®,,_1). Since S, and S,¢-n are isomorphisms,
the Siegel-Jacobi operator W,,_; is injective by (3.10). This completes the
proof of Theorem 3.5. a

Theorem 3.6. Let 2.4 be as above in Theorem 3.5. Assume that p is irreducible
and satisfies the condition (3.6). If 2k(p) + 1 < g + rank(.#), then the Siegel-
Jacobi operator W, ,_1 is an isomorphism.

Proof. By corollary 3.2, we have the relation (3.9). Similarly, we have the
commutation relation (3.10). Since 2k(p ® det‘%) + 1 < g by the assumption,
according to the theory of singular modular forms (cf. [3] and {11]), the
Siegel operator ®,,_; is an isomorphism. Since S,, S,¢-» and ®,,_; are all
isomorphisms, W, ,_; is an isomorphism. |

Theorem 3.7. Let 2.4 be as above in Theorem 3.5. Assume that 2k(p) >
4¢ + rank(.#) and k = 0 (mod 2). Then the Siegel-Jacobi operator
Wy oo1:Jiw(Tg) = Jia(Tg—1) is surjective.

Proof. By corollary 3.2, we have

h h
Jk,ﬂ(rg) = [Fgak - 5] ’ ‘92‘/1,0,0(27 W) = [Fgak - 5] .

By the assumption, 2(k— g) >gandk—2=0 (mod 2). According to Maass

2=
[6], the Siegel operator

h h

Qgg1:[Tg,k— E] = [Tg—1,k — 5]

is surjective. Consequently the surjectivity of the Siegel-Jacobi operator W,
follows immediately from the commutation relation

Sg—1jc 0 Weg—1 = Pge10Sg. O

4 Hecke Operator

In this section, we give the action of Hecke operators on Jacobi forms and
prove that this action is compatible with that of the Siegel-Jacobi operator.
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For a positive integer I, we define

0,() :={M € Z%%) | 'MJ,M = 1J,},

— 0 Eg
(3, %)

0, () is decomposed into finitely many double cosets mod I', ie.,

where

m
0,(1) = | T,g;T; (disjoint union).
j=1
We define

m
T = z T,giT, € #®, the Hecke algebra.
j=1

Let M € Og(l). For a Jacobi form f € J, 4(I'), we define

floa(TgMTy) = 052 3" g1 4 [(M;, [(0,0),0])],

i=1
where I',MT, = |J{' T, M; (finite disjoint union) and k(p) denotes the weight
of p. See (2.2) in section 2 for the definition of f|,_«[(M;, [(0,0),0])].

Proposition 4.1. Let | be a positive integer. Let M c O (l) and f € J, 4(Ty).
Then

flo.a(TgMTg) € Jp1u(Tg) .
Proof. 1t is easy to compute it and so we omit the proof. O

For a prime p, we define
Ogp = U Og(pl).
1=0

Let ,é’g,p be the C-module generated by all left cosets I';M, M € O, and

v

# ¢p the €C-module generated by all double cosets [, MI';, M € O,,. Then
Hgp 1S @ commutative associative algebra. We associate to a double coset

m
eMTI, = Ul"gMi, M,M; € O,, (disjoint union)

i=1
the element n
JTgMT ) = z T M€ Z,,.

i=]
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We extend j linearly to the Hecke algebra # ¢p and then we have a monomor-
phism j: Jfg,p — ,Svfg,p. We now define a bilinear mapping

Hgp X Lop = Lgp
by

m m
([eMT,) - (TeMo) = > TeMiMo, where T,MTy =|JT, M.

i=1 i=1

This mapping is well defined because the definition does not depend on the
choice of representatives.

Let f € J,«(I'y) be a Jacobi form. For a left coset L := I'y,N with
N € Og)p, we put

(4.1) fIL = fl,.#[(N,[(0,0),0])].
We extend this operator (4.1) linearly to Svfg,p. IfT e ]Vfg,p, we write

fIT = fli(T).

Obviously we have

FIDIL = fITL), f€Jpuly).

In a left coset I';M, M € O,,, we can choose a representative M of the form

—_ A B t — nko t _t
4.2) M—(O D), AD = phE,,'BD ='DB,

(i B ol ) 0= 2)
where «, B1, B2, 6 € Z87!. Then we have

4.4 M = ("(1; g:) € Og_1p.

For an integer r € Z, we define

4.5) T M) = %Fg_lM'.

If [,MT, = U;-"=1 I, M; (disjoint union), M, M; € O,,, then we define in a
natural way

._ 1< .
(4.6) (TgMTg)" = - > TeiM;.
j=1

57



The Siegel-Jacobi Operator 143

We extend the above map (4.6) linearly on # ¢p and then we obtain an algebra
homomorphism

jf . — ,}vf -1,
(47) 8P g—Lp
T — T".

It is known that the above map is a surjective map ([13] Theorem 2).
Let ‘I’g,r:Jp, wTg) — Jp{{’, _«([y) be the modified Siegel-Jacobi operator de-
fined by

@, 0z w) =tmf (e D) ow), @wyen xam,
& t—»00 0 Z

where pg):GL(r,(E) — GL(V,) is a finite dimensional representation of
GL(r,C) defined by

Mgy = Ee—r O

The following theorem is a variant of the Siegel version [4].

Theorem 4.2. Suppose we have
(a) a rational finite dimensional representation
p:GL(g,€) — GL(V,),
(b) a rational finite dimensional representation
p0:GL(g — 1,€) > GL(V,,),
(¢) a linear map R:V, - V,,
satisfying the following properties (1) and (2):
(1) Rop (3 g) = po(A) o R for all A€ GL(g — 1,@).
(2) Rop (8 Ef_}) = a'R for some r € Z.
Then for any f € J, 4(T'y) and T € jfg,p, we have
(Ro ¥y, )(fIT) = R(¥,,f)IT".
Proof. Let f € J, 4(I'y) be a Jacobi form. Then we have the Fourier expansion

f(Z, W) — Z C(T, R)eZnia(TZ) . eZnia(RW) .
T.R
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By an easy computation, we have
0 _ 0 0 0 . p2nic(TZ+RW)
(ng,g—lf)(Z,W)—§C<(0 T>’(R)) e’ s

where (Z, W) € Hy_y x €*s~Y, T € Q¥~'5~Y runs over the set of all half
integral matrices of degree g — 1 and R runs over the set of all (g —1) x h
integral matrices.

Lemma 4.3. Let f € J, 4(T',) be a Jacobi form. Then for any ¢ € €3,

1 0
(! 2)0)

Proof. Since p is rational, it suffices to show the above formula for integral
& € Z#7!. For convenience, we put

(1 0 1
U4_<€ Eg—l)’ cer

Then My = (:Ué-l E?‘I) is an element in I';. Since f € J, (), we have

flp.«[My] = f and hence

fZWM,wU™) =pU)f(Z,W).

g (I 757 cwem)

= (lyg,g—lf)(z’ W) .

Thus we have

(P2, (pUNNZ, W)

Hence this completes the proof of the above lemma. g

Let L . =I'yM € ,i”g,p (M € 0,,) be fixed, where M is of the form (4.2).
We write v := v(M) = p*. Then we have

(12, W) = D) (2L A+ A'B), W' 4),

where (Z, W) € H, x C*®).
Therefore we have
(Wogi (FIL)EZ, W)
i 1 fita> + Z[o] ‘aZ'A" _ .
1 - 1 t
p(D)! lim (v ( A | W)

p(D)™ (¥ i NN ZLA] + BA) WA,
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The Siegel-Jacobi Operator 145

And we have

&' (P g1 NIT M) NZ, W)

1 * LI t oA
N p((l) D()*)(‘Pg,g—lf)(;(Z[‘AHB ), WA,

According to Lemma 4.3, we may take

d 0
o= (4 2).

Thus we have

(¥,

@ =o(§ 5 ) ey pr ) (EanimenriEm.

Finally according to the assumption (c) in Theorem 4.2, we obtain

RO, (f(TeM))) = R(¥S,_)I(TeM)".

Hence for any T € # 2.p» WE have

R, 1(fIT) = R¥,_NIT".

This completes the proof of Theorem 4.2. a
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VANISHING THEOREMS ON JACOBI
FORMS OF HIGHER DEGREE

JAE-HYUN YANG

1. Introduction

For any positive integer g € Z1, we let
Hy:={2eCY¥9|'2=2 ImZ>0}

be the Siegel upper half plane of degree g and I'y := Sp(g,Z) be the
Siegel modular group of degree g. Let p be an irreducible finite dimen-
sional representation of GL(g,C) and M be a symmetric half integral
positive definite matrix of degree h. It is known ([Z] Theorem 1.8)
that the vector space J, p(I'y) of all Jacobi forms of index M with
respect to p on I'y is finite dimensional. For the precise definition of
Jo,m(Tg), we refer to Definition 2.2. It is a natural question to ask
under which conditions the vector space J, a4(I'g) vanishes. In this
paper, the author gives a vanishing theorem on J, p(Ty).

In section 2, we establish the notations and review some properties
of Jacobi forms. In section 3, we define the Siegel-Jacobi operator and
give the relation between the corank of a Jacobi form and the corank
of p. In the final section, we establish the Shimura isomorphism and
give a vanishing theorem on Jacobi forms using this isomorphism and
the vanishing theorem on Siegel modular forms ((W] Satz 2).

Notations:. We denote by Z, R and C the ring of integers, the field
of real numbers, and the field of complex numbers respectively. For

M = (g g) € Sp(g,R) and Z € Hy, we set M < Z >:= (AZ +

B)(CZ + D)~'. T, := Sp(g,Z) denotes the Siegel modular group of

Received April 2, 1992. Revised June 26, 1992.
This work was supported by the Institute for Basic Science, Inha University
1991 .
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186 Jae-Hyun Yang

degree g. {I'y,k](resp. [T'y,p]) denotes the vector space of all Siegel
modular forms of weight k (resp. of type p). The symbol “:=” means
that the expression on the right is the definition of that on the left. We
denotes by Z* the set of all positive integers. F(¥) denotes the set of
all k x [ matrices with entries in a commutative ring F. For A € F(5D
and B € F(%) | we set B[A] = "ABA. For any M € F(59 M denotes
the transpose matrix of M. E, denotes the identity matrix of degree
n.

2. Jacobi Forms

In this section, we establish the notations and review some proper-
ties of Jacobi forms.
For two positive integers ¢ and h, we consider the Heisenberg group

Hl(f‘h) = {[(A\u),&] | A, p€ R®) ke R®M x4+ u*\ symmetric)
endowed with the following multiplication law

[N 1), 6] o [(N, 1), 6] = [(A+ N+ )0 4 6"+ X7 — N
We define the semidirect product of Sp(g,R) and Hf{ o)
(2.1) Gg’h) := Sp(g9,R) x Hg’h)
endowed with the following multiplication law

(Ms [(Aa l‘): K]) : (M” [()‘" I")’ Kl])

= (MM A+ XN, fi+ ),k + &'+ (Al = BA)),

with M, M' € Sp(g,R) and (}, ) := (A, p)M'. The group Gg’h) =

Sp(g,R) Hg'h) is called the Jacobi group. It is easy to see that
Gg’h) acts on Hy x C®9) transitively by
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Vanishing theorems on Jacobi forms of higher degree 187

(23) (M, [(A, ), K])-(Z,W) := (M < Z >,(WH+AZ+)(CZ+D)™),

where M = (é g) € Sp(g,R), (Z,W) € Hy x C::9),

Let p be arational representation of GL(g, C) on a finite dimensional
complex vector space V,. Let M € R™®" be a symmetric half integral
matrix of degree h. The canonical automorphy factor I, pq for the

action of Gg’h) on Hy x ch9) g given by
Ip M(M, (Z, W)) t= e—2wria(M[W+AZ+y](cz+D)-xc)

 e2TIT(MAZAF2XW+(x+4'N)) p(CZ + D)t

where M = (M, [()\, p), k]) with M = (é g) € Sp(g,R).

We denote by C®°(H, x C(*9) V,) the space of all smooth functions
with values in V, defined on Hy x C%9)_ Then we obtain an action of
G(Rg’h) on the space C®°(H, x ch9) V,) by putting

(25)  (flomIM)(Z, W) = I, m(M,(2,W)) (M - (2, W),

where f € C®(H, x C*9),
A straightforward calculation yields the following.

LEMMA 2.1. Let g; = (M;, [(Ai, i), 5:]) € G¥'™ (i = 1,2). For any
feC®(Hy, x C*9 V,), we have

(2.6) (flo,mlg1D)]p,ml92] = flp,mlg192]-

DEFINITION 2.2. Let p and M be as above. Let
Hég!h) = { [(A’I‘)) K] e H}({’h) |A,# e Z(hvg)’ K e Z(h)h) }.
A Jacobi form of index M with respect to p on I' is a holomorphic

function f € C®(H, x C*9 V,) satisfying the following conditions
(A) and (B):
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188 Jae-Hyun Yang

(A) flpm[3] = fforall 7 € ' =T« Hfzg,h).
(B) f has a Fourier expansion of the following form :

fEwy= Y Y dT,R)IF T i)
T>0 Rez(g,h)

half-integral

ith ¢(T, R) # 0 only if T‘I_ET 1R >0
with ¢(T, R) # 0 only (%‘R M)— .

If ¢ > 2, the condition (B) is superfluous by Koecher principle(see
[Z] Lemma 1.6). We denote by J, am(T") the vector space of all Jacobi
forms of index M with respect to p on I'. In the special case V, =
C, p(A) = (det A)* (k € Z, A € GL(g,C)), we write Ji,sm(T') instead
of Jp,m(T') and call k the weight of a Jacobi form f € Ji, m(T).

Ziegler([Z] Theorem 1.8 or [E-Z] Theorem 1.1) proves that the vector
space Jp, am(Tg) is finite dimensional.

From now on, we assume that I' is a normal subgroup of I'y of
finite index. f M € Iy, then T'™ := M~IT'M is a subgroup of Ty of
finite index. It is easy to show that if f € J, m(T"), then f|, m[M] €
Jp, m(TM). Thus f|,,m[M] has the Fourier expansion of the form

@7)  (flomM(Z,W) =Y cu(T,R) X' 7(T2) . e2mic(RW),
T,R

where T runs over the set of all semipositive half integral matrices of
degree g, R runs over the set of ¢ xh integral matricesand A = Apn € Z
is a suitable integer.

DEFINITION 2.3. Let p be an irreducible finite dimensional repre-
sentation of GL(g, C). Then p is determined uniquely by its highest
weight (Ay,--+,Ay) € Z9 with A; > --- > A,;. We denote this represen-
tation by p = (A1,+++, ;). The number k(p) := A, is called the weight
of p. The number of A}s such that A\; = k(p) = A\; (1 < i < g) is called
the corank of p, denoted by corank (p).
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Vanishing theorems on Jacobi forms of higher degree 189

DEFINITION 2.4. Let f € J, am(T) be a nonvanishing Jacobi form of
index M with respect to p on I'. We define the corank of f as follows:

corank (f) := g — mint (rank(T)),

where T' runs over the set of all semipositive half integral matrices of
degree g such that cp (T, R) # O for at least one M € T'y.

Let T = (t;;) be a semipositive symmetric matrix of degree g. We
write 7(T) = d if ty_4,4-—q is the last diagonal element distinct from
zero. Since T' > 0, T must be of the form

(2.8) T = (:’(;‘ g) , Tt >0, T e R#-4979),

We note that T3 is not invertible in general.

LEMMA 2.5. Let 0 # f € Jp,m(T). Then for all T with cm(T, R) #
0, we have r(T) < corank(f). There exists M € T’y and T with
cm (T, R) # 0 such that

r(T) = corank (p).

The proof of the above lemma is obvious.

3. The Siegel-Jacobi Operator

In this section, we define the Siegel-Jacobi operator and give the
relation between the corank of a Jacobi form in J, a¢(I') and that of p
using the Siegel-Jacobi operator.

Let p : GL(g,C) — GL(V,) be an irreducible rational represen-
tation of GL(g,C) on a finite dimensional complex vector space V.
Let 0 < r < g — 1. Now for a Jacobi form f € J, pm(I') defined on

Hy x C*9) we define ¥, . f € O(H, x C*",V,) by
60 @@ =i ((5 4p).0),
t—o0 0 itE,_,
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where Z € H, and W € C*". We note that the above limit (3.1)
always exists because a Jacobi form f admits a Fourier expansion con-
verging uniformly on any set of the form

{(Z,W)e Hy x C™9 | ImZ > Y, >0, W e K c C™ compact}.

The operator ¥, . is called the Siegel-Jacobs operator. -

As before, we assume that I is a normal subgroup of 'y of finite
index. For M € Ty, I'M .= M~ITM is a subgroup of Ty of finite
index. If f € J,m(T), then f|, m[M] has a Fourier expansion of
the form (2.7). Let c¢cm(T,R) be a Fourier coefficient of f|, sm[M]
with r(T) = g — r. Let U be the subgroup of GL(g,Z) consisting of
U € GL(g,Z) such that

trr—-1
MU=(UO ((j’.)eI‘MCI‘,.

Since (fl|pm[M))lo,m[Mu) = flp,m[M], applying the Fourier expan-
sion (2.7), we have

(3.2) em(UTU, UR) = p(U) e (T, R).

For k=1,---,g, we let

Gk = {(E‘g" :) € GL(3,C) }

Then Gy = GL(k,C) x N, where N is a unipotent radical of the
group Gy k. Then for any U € G4 49—, we have

(3.3) UT'U=T, UR=R

Indeed, T is of the form (2.8). Since [ %,
» R M
Ara, R is of the form

R = (Rl ),RIGZ("").

)ZOWith;\:

0
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According to (3.3), we obtain
(3.4) em(T,R) = p(U) em(T,R),U e U NGy g—r.
We observe that the Zariski closure of Y N G4 4, in G4 4—, contains
the subgroup G(¢—r) := SL(g—r,C) « N. Thus cp(T, R) is invariant
under all U € G(g — r) in the sense of (3.4). For k=1,---,g, we put
(3.5) VE® .= {,v € V,,|p(g)v = v for all g € G(k),}

Here G(k) := SL(k,C)  N. Then according to [W], we have

Y6k ~ { (A1, ,Ag—k) ifcorank,(p) >k,
PbiE=

3.6
(3.6) 0 otherw:se.

That is, if V, G(k) # 0, VG( ) is an 1rreduc1b1e finite dimensional repre-
sentatlon of GL(g—-k C)

Let V,, be the subspace of V, generated by the values { ¥, . f(Z, W) |
feJomT), (2,W)e Hy xCh9}. K V{7 % 0, according to (3.1),
(3.4) and (3.6),

(3.7) Yo — v,

Thus Vp(r) is invariant under

(6 5)) ecomro}.

Then we have a rational representation p(") of GL(r, C) on V,f') defined
by

68 Mp=o((§ 5 ))” 9€GURO), veV,".
g—r

So far we have proved
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LEMMA 3.1. Let p be irreducible. Then (o, V") is an irreducible
finite dimensional representation of GL(r, C).

For all 0 # cMm(T,R) € V,,G(g—r), we have r(T) < corank(p) by
(3.6). By Lemma 2.5, we have corank (f) < corank (p).
Thus we have

THEOREM 3.2. Let 0 # f € J, sm(T") be a nonvanishing Jacobi form
of index M with respect to p on I'. Then we have

corank (f) < corank (p).

For more results on the Siegel-Jacobi operators, we refer to [Y1] or
[Y2].

4. Vanishing Theorems

In this section, we establish the Shimura isomorphism and using this
isomorphism we prove a vanishing theorem.

Let S be a symmetric, positive definite integral matrix of degree h
and let a,b € Q™9 We consider

(41)  Is43(Z2,W):= Z X0 (S((A+a)Z (A+a)+2(A+a) (W+D)))
AEZ(“-.)

with characteristic (a, ) converging uniformly on any compact subset
of Hy x C(h9),

Let M be a symmetric, positive definite and half-integral matrix
of degree h and let /' be a complete system of representatives of the
cosets (2M)71Z(4:9) /Z(%9) We observe that #(N) = {det(2M)}’.

An easy application of the Poisson summation formula gives
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LEMMA 4.1. For a € N, we have

(4.2)
om,ao(—2" 1, WZ™1)
A

= {dgt(zM)}‘* {det (%)} 2mie(MWZ=HW)

% Z e—2tl‘0(2Mb‘a) 192M,b,0(z, W)'
beN

Here we denote by

?

h(Z) := 4| det (Z )

the unique holomorphic function on Hy satisfying the following prop-
erties

(a) h(Z)? = det (-f-)
(b) h(iE;) = +1

and for any integer r € Z, we put

o ) = )

COROLLARY 4.2. Let 2M be unimodular. Then Y¥34,0,0(Z2, W) is
a Jacobi form of weight 12'- and index M.

We fix an element Zy € H;. We denote by Taq(Zy) the vector space
of all holomorphic functions ¢ : C*9) —, C satisfying the condition

(4.3) ‘P(W+ Zo +l‘) = e—27io(M(AZ, ‘A+24\‘W))‘P(W)
for every A, € Z(™"9_ Then it is easy to show that the functions
(4.4) {ﬂgM,a,o(Zo, W) ’a € N} :
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form a basis of Tat(Zo) and its dimension is clearly {det (2M)}9 (cf. J.
Igusa [I]). Let p : GL(g,C) — GL(V,) be an irreducible rational rep-
resentation of GL(g,C) on a finite dimensional complex vector space
V,. If f is a Jacobi form in J, sm(T), it is easy to see that each com-
ponent of ¢(W) := f(Zo, W) satisfies the relation (4.3). So we may

write

(45) F(Z,W)=_ fu(Z) P2pma0(Z, W), Z€Hy, WeCH,
aEN

where A is a complete system of representatives of the cosets (2M)~!
Z(9) |Z("9) and {f, : Hp — V,|a € N'} are uniquely determined
holomorphic functions on H,.

LEMMA 4.3. Each f,(Z)(a € N) is holomorphic.

Proof. Since f and Y9u4,4,0(Z, W) (a € N') are holomorphic,

9f(Z)

L) Iopmao(Z,W) =0, Z=(Zi;)="Z.
9z, UM o(Z,W)=0 (Zi;)

aEN

Since Y2p4,4,0(Z, W)(a € N) form a basis of Ty((Z) as functions on
Cc(h9), 3_‘;«%‘? =0for all Z € Hy and a € N. Hence each f4(Z)(a € N)

is holomorphic.

According to Lemma 4.1, we have
(4.6)

fo(=271) = {det, (5) }_% A{p(~2)} - {det, 2M)}
x Z e2mio(2Ma'd) £1(2)

beN

and

(A7) fu(Z+8)=etIMS 1 (7) 5 =15 € 2@,
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We note that the Fourier coefficients ¢(T, R) of 92 44,4,0(Z, W) are given
by

1 if e zBh9st,

t T %R
o(T,R) = A +a,E)MA+a,Ep) = { R M
2

0 otherwise

We observe that ¢(T, R) # 0 implies 4T — RM~1'R = 0. By an easy
argument, we see that the functions {f,|a € N} must have the Fourier
expansions of the form

(48) fa(z) — E C(T) . e2ria(TZ)
T='T>0
half integral

Conversely, suppose there is given a family {f.|a € A’} of holomorphic
functions f; : Hy — V, satisfying the transformation laws (4.6),
(4.7) and the cusp condition (4.8). Then we obtain a Jacobi form in
Jo,m(T'g) by defining f(Z, W) via the equation (4.5). So far we have
proved the Shimura isomorphism:

THEOREM 1 (SHIMURA). The equation (4.5) gives an isomorphism
between J, pm(T'y) and the vector space of V,-valued Siegel modular
forms of half integral weight satisfying the transformation laws (4.6),
(4.7) and the cusp condition (4.8).

REMARK 4.4. Theorem 1 may be also formulated for Jacobi forms
on a subgroup I' C T’y of finite index.

COROLLARY 4.5.. If 2k < rank (M), then we have Ji m(T') = 0.

Proof. The proof follows from the fact that the irreducible represen-

tation (det)"‘é"'""(M) of GL(g, C) is not a polynomial representation.
g.e.d.
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COROLLARY 4.6. Let 2M be unimodular and k - ¢ be odd. Then
Je,m(Lg) =0.

Proof. Tt follows immediately from (4.6) and the fact that h =
0(mod8). gq.e.d.

COROLLARY 4.7. Let 2M be unimodular. We assume that p satis-
fies the following condition (4.9):

(4.9) p(A) = p(—A) for all A € GL(g,C).
Then we have
(4.10) Jom(T) = [T, 5) - Y2m,0,0(2, W) 2 [T, 5,

where p=p® det=%. In particular, if k - g is even,

(4.11) Jepm(T) = [T,k — 12‘-] Vam00(Z, W) 2 [T, k — g].

Proof. The proof of (4.10) follows from (4.6), (4.7) and (4.8). The
representation det* : GL(g, C) — C* defined by det*(4) = (det (A))*
satisfies the condition (4.9). Hence (4.11) follows from (4.12). g.e.d.

EXAMPLE 4.8. We give several examples of the irreducible repre-
sentations which satisfies the condition (4.9).

(a) If k-g is even, tken the polynomial representation p : GL(g,C) —
CX defined by p(A) := (det A)* (4 € GL(g, C)) satisfies the condition
(4.9).

(b) The polynomial representation p of GL(g,C) on the symmetric
product Symm?(C?) of C? defined by

p(A)Z := AZ'A, A€ GL(g,C), Z € Symm?(C?)

satisfies the condition (4.9). It is obvious that p is irreducible. This
representation is important geometrically because it is related with
holomorphic 1-forms on H, invariant under T'y.
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(c) The polynomial representation p of GL(g,C) on Symm?2(C?)
defined by

p(A)Z = (det A)**1 A7 Z°47!, A€ GL(9,C), Z € Symm*(C?)

satisfies the condition (4.9). It is easy to see that p is irreducible.
This representation is also important geometrically because it is con-
nected with holomorphlc (N — 1)-forms on Hg invariant under T,

where N = M

Now we prove a vanishing theorem on Jacobi forms.

THEOREM 2. Let 2M be an even unimodular positive definite ma-
trix of degree h. Let p = (A1, , ;) be an irreducible finite dimen-
sional representation of GL(g,C). Let A(p) be the number of X}s such
that A; = k(p) +1 = A; +1, 1 <i < g. Assume that p satisfies the
following conditions:

(a) p satisfies the condition (4.9);
(b) A(p) < 2(g — k(p) — corank (p)) + rank (M).

Then J, m(Tg) = 0.

Proof. 1t is easily seen that corank(p ® det~%) = corank (p) and
A(p®det=%) = A(p). According to [W] Satz 2, we have [Ty, p@det=%] =
0. By corollary 4.7, we have J, m(T'y) =0. g.e.d.

COROLLARY 4.9. Let 2M be as above in Theorem 2. Assume that
2k(p) < g + rank (M) — 2 corank (p). Then J, m(Ty) = 0.

Proof. It follows immediately from Theorem 2 and the fact that A(p)
is less than g. g¢.e.d.
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REMARKS ON JACOBI FORMS OF HIGHER DEGREE
JAE-HYUN YANG

1. INTRODUCTION:

A Jacobi form is an automorphic form on the Jacobi group, which is the semidirect
product of the symplectic group Sp(n,R) and the Heisenberg group H](Bn’m) (¢f. see section
2). Jacobi forms are useful because they are closely related to modular forms of half integral
weight. The simplest case is when the symplectic group is SL(2,R) and the Heisenberg
group is three dimensional, that is, when n = m = 1. This case had been treated more
or less systematically in [E-Z] and many papers of Zagier's school. But it seems to us
that there is no systematic investigation of Jacobi forms of higher degree when n > 1 and
m > 1. Some results could be found in [Y3]-[Y9] and [Zi].

The purpose of this paper, which is more or less of expository nature, is to provide
some recent results of the author on Jacobi forms of higher degree when n > 1 and
m > 1. Jacobi forms of higher degree have some nice properties which are not enjoyed
by Jacobi forms of degree 1, e.g., the singularity of Jacobi forms. Here we talk about
some results on singular Jacobi forms, the Siegel-Jacobi operator, construction of modular
forms from Jacobi forms and the duality theorem for the Jacobi group. This paper is
organized as follows. In section 2, we describe the geometric construction of the canonical
automorphic factor for the Jacobi group which is needed in order to define the concept
of Jacobi forms. In section 3, we define the concept of Jacobi forms and give some basic
properties. In section 4, we investigate theta series and obtain the Shimura isomorphism
based on Ziegler’s work (cf. [Zi]). In section 5, we define the concept of singular Jacobi
forms and introduce an important differential operator which characterizes singular Jacobi
forms. Under some condition, we give a criterion that a Jacobi form is singular. In section
6, we discuss the Siegel-Jacobi operator and provide some properties of this operator. In
section 7, as application, we construct new vector-valued modular forms from given Jacobi
forms and provide some important identities. In section 8, we state the duality theorem
for the Jacobi group of higher degree without proof and discuss the invariant theory on the
Jacobi group G”. Finally in section 9, we give some remarks and open problems concerning
Jacobi forms.

Notations: We denote by Z, R and C the ring of integers, the field of real numbers, and
the field of complex numbers respectively. H, denotes the Siegel upper half plane of degree

1 This work was partially supported by TGRC-KOSEF and Inha University 1992 .
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n. For M = (é, g) € Sp(n,R) and Z € H,, we set M < Z>:=(AZ + B)(CZ + D)™™

I'n := Sp(n, Z) denotes the Siegel modular group of degree n. [['y, k] (resp. [I'n, p]) denotes
the vector space of all Siegel modular forins of weight k (respectively of type p). The
symbol “:=" means that the expression on the right is the definition of that on the left.
We denotes by Z* the set of all positive integers. F(¥!) denotes the set of all k x | matrices
with entries in a commutative ring F. For any M € F() *M denotes the transpose
matrix of M. For A € F(:*) 5(A) denotes the trace of A. For A € F(k) and B € F(k:¥),
we set B[A] = *ABA. E, denotes the identity matrix of degree n.

CONTENTS

. Introduction

"The canonical automorphic factor for the Jacobi group
. Jacobi forms

. Shimura isomorphism

. Singular Jacobi forms

. The Siegel-Jacobi operator

. Construction of modular forms from Jacobi forms

. Harmonic analysis for the Jacobi group

© 0 N UL W N

. Final remarks

2. THE CANONICAL AUTOMORPHIC FACTOR
FOR THE JACOBI GROUP

Let m and n be two fixed positive integers. It is well known that the automorphic
group Aut(Hp4y,) of the Siegel upper half plane of degree m + n is given by

Aut (Hm.+n) = S’p(m + n, R)/{ﬂ:Em+n}.

We observe that H, is a rational boundary of Hpin (cf. [N]). The normalizer N(H,) :=
{6 € Aut(Hpm4n) : 3(H,) C H, } of H, is given by

N(Hyp) = P(Hz)/{£Em+n},
where

P(Hyp):={g € Sp(m+n,R) : g(H,)C H, }
= {lo,u, (A, p, 6)] € Sp(m + n,R)}.
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Here we put

A 0 B A'%uw-BY
uA U u

loyu, (A, 1, K)] = cC 0 Du C*;LITD PR
0 0 0 fy—1

where o = (g g) € Sp(n,R), v € GL(m,R), A, u € R(™™ and « € R(™™),

It (v?/ t?‘,) € Hpyn with Z € H,, W € RO™™ and T € H,,, we simply write

(Z,W,T):= <VZV t,lvf’)

We denote the symplectic action of N(H,) on (Z,W,T) by
9-(Z,W,T):=(2,W,T), geN(H,).
It is easy to see that (Z,W,T) is of the form
Z = 0y(2),
W = a(g; 2)(W) + b(g; Z),
T = my(T) + c(g; Z, W),
where o, € Aut(H,), my € Aut(Pr),
a(g;*) : Hy — GL(C™™) holomorphic,
b(g;+) : Hp — C™™  holomorphic,
(g;--) : Hy x C™™ — H,.  holomorphic.

Here P, :={Y € R(m.m) | Y = 'Y >0 } is an open convex cone in I[{L"mzil and we set

Aut(Py,) := {g € GL(C™™) | £(Pp) = Pm } .

Precisely, if g = [0, u, (A, g, &))(mod {£Em4n}) with o = (‘é, g) € Sp(n,R)

in N(H,) C Aut(Hpmin), then we have
04(2) =(AZ+B)CZ + D)™, my(T)=uT",
a(g; Z)(W) =uW(CZ + D)™,
b(g; 2) = u(AZ +p)(CZ + D)7,
A9;Z,W)=u{AW +5—(W+AZ +p)(CZ + D)™ (C*'W +C*u~D*A)} .

Remark 2.1. In [PS], Piateski-Sharpiro called the mapping (Z,W,T) +— (Z,W,T) a
guasilinear transformation.
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From now on, we set

Hy o 1= Hy x €O, |
We observe that g = [0, u,(), g, k)|(mod {£Em4n}) € N(H,) acts on Hy, m by
(2, W) — (04(2), alg; 2)(W) + b(g; Z)).

The subgroup of N(Hy,) consisting of elements g = [o,u,(}, g, &)}(mod {£Em4,}) with
the property
my = Identity - on H,,

is called the Jacobi group, denoted by G”. It follows immediately from the definition that
G’ = {lo, Bm, (A 4, k)] € P(Hn)}-
It is easy to see that G” is the semidirect product of Sp(n,R) and H&"’m), where
E, 0 0 %

m A En
H™ o= § B, B, el = | g 5 g Sy | €PN
0 0 0 E,

is the nilpotent 2-step subgroup of P(H,), called the Heisenberg group equipped with the
multiplication law :

[EmEm, (/\7 H, K’)] ° [EmEms (Al’ /-‘,1 ""'I)]
= (B, By A+ X4 1, 6+ 64 X — gV

From now on, we simply write, if there is no confusion,
(A k) = [Em Epm, (X 1, k).

We observe that if (A, g, k) € ngn’m), K+ )\ is symmetric. Now it is easy to see that the
multiplcation law on G is given as follows:

[0, B, (N, 8)] 0 [0, By (N, 1!y 67)]
=06, Bm,(A+ N, i 4 p, 6 4+ 6" + X' — 58],

where o, o' € Sp(n,R) and (}, i) := (), p) - o'

By a simple calculation, we see that the action of [, Em, (A, g, 8)] € G7 (o’ = (é IB)) )
on (Z,W,T) is given by

Z =(AZ + B)(CZ + D)™,
W =W(CZ+ D)™ +()\Z + p)(CZ + D)7,
T =

T+ AW+ k= (W +AZ+p)(CZ + D)™ (CW +Cu— D).
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Now we consider another subgroup G of G7. By the definition, G consists of elements of
G7 whose action is of the following form:

(Z’VV,T) — (ag(Z),a(g; Z)(W)’T + c(g; Z, W))v c(g; Z’ 0) =0.

It is easily seen that

A 0 B 0

. 0 En 0 0

G = [O',Em,(o,()’ 0)] = C 0 D 0 € GJ
0O 0 0 E,

Lemma 2.2. The map
J : G x H, — GL(C™™)

defined by
J(5,2):=a(5;2), 5€@G, ZeH,

is a factor of automorphy for @, that is, J satisfies the condition
J(5189,2) = J(81,52 < zv >)J(62,2), &1, 5, €@, ZeH,.
Proof. It’_is easy to prove it. We leave its proof to the reader. a
We note that the mapping
(21)  A9(Z,W)=cg:2,W), §€G, (Z,W)€ Hnm
is a summand of automorphy, i.e.,
(2:2) A(9192,(2,W)) = A(91,92 - (2, W) + A(g2, (2, W),
where g1, g2 € G’ and (Z,W) € Hp m.

Let
K¢ C GL(C™™)

be the complex Lie group generated by the linear mapping
{a(g;2) : ge G’ }.

Then K¢ is isomorphic to GL(n,C).
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Lemma 2.3. Let
p: GL(n,C) — GL(V,):

be a finite dimensional holomorphic representation of GL(n,C) on a finite dimensional
complex vector space V, and let ' '

x : Ctmm) ¢
be a character on the additive group C(™ ™), Then the mapping
J, : G x Hy — GL(V,)

defined by 5
Jo(5,2):=p(J(5,2)), 6€G, ZeH,

is a factor of automorphy for G. Furthermore the mapping
T.o(9:(Z, W) := x(clg; Z,W)) p(a(9; 2)), g€ G’

is a factor of automorphy for the Jacobi group G’ with respect to x and p.

Proof. The proof of this first statement is obvious. The proof of the second statement
follows immediately from the fact that A(g,(Z, W)) := ¢(g9; Z, W) is a summand of auto-
morphy (cf. (2.1) and (2.2)) and that J, is a factor of automorphy for G. a

Definition 2.4. J, and J, , are called the canonical automorphic factor for G with respect
to p and the canonical automorphic factor for G’ with respect to x and p respectively.

Remark 2.5. Following the above argument, you can obtain the canonical automorphic
factor for the Jacobi group in the case that the domain considered is a domain of tube
type, i.e., a tube domain.

3. JacoBl FORMS

In this section, we establish the notations and review some properties of Jacobi forms.
Let '

(3.1) GSp(n,R)* := (M e R | 'MJ,M =vJ, for somev >0}

be the group of similitudes of degree n, where

0 E,
e (%),
Let M € GSp(n,R)*. f ‘MI,M = vJ,, we write v = v(M). It is easy to see that
GSp(n,R)* acts on H, transitively by :
M < Z>=(AZ + B)(CZ + D)™},

A B

whereM:(C D

) € GSp(n,R)* and Z € H,.
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We define the semidirect product of GSp(n,R)* and ng"’m)
(3.2) G = GSp(n,R)* o< HY™™
endowed with the following multiplication law

(M, (A, 6)] o [M', (X', !, 67)]
(3.3) = MM, (v(M') X4+ N, (MY a4+ !, v(M) e+ K
+ (M)A = ),

with M,M' € GSp(n,R)* and (\, 1) := (\,u))M'. Clearly the Jacobi group G7 :=
Sp(n,R) Hm"’m) is a normal subgroup of G7. The mapping

A 0 B A%Ww-B9

A A VvE
Gommml— | G 0" ) oyl py | €GSem R,
0 0 0 E,

where v := v(M) defines an embedding of G” into the group GSp(m+n, R)* of similitudes
of degree m + n, where M = (é, g) € GSp(n,R)*. It is easy to see that G acts on
Hpm:=Hp x C(mim) transitively by

B4) MO R) - (2, W) = (M < Z > v(W + 2 + p)(CZ + D)),

where M = (g g) € GSp(n, R, v = v(M), (Z,W) € Hpm.

Let p be a rational representation of GL(n,C) on a finite dimensional complex vector
space Vo. Let M € R(™™) be a symmetric, semipositive half integral matrix of degree
m. Let C°°(Hp m,V,) be the algebra of all C* functions on H, ,, with values in V,. We
define the action of G on C>(Hp,m,V,) by

(flP.M[Ma (A7 H“y K)])(Z, W)
= e—21ruio'(M[W+AZ+ﬂ](CZ+D)_IC)

(3:5) % e2TVIT(MOAZA2NW+(x+uN))

x p(CZ + D) f(M < Z >,v(W + AZ + p)(CZ + D)),

where v = v(M).
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Lemma 3.1. Let f € C®(Hum,V,). Let M € GSp(n,R)*, ¢, ¢* € H™™. We may
regard M, ¢, ¢' as the elements of G’ as follows:
M:= [M7 (0.’0’ 0)] € G'J’
C = [Eva(Aa K, ’9)] € GJ)
("= [Byn, (N, ', 6")] € G7.
We let _ X
g:= [M’C] = [M’()‘s”’ K’)] € GJ-

Then we have

(3'6) (flp,MC)lp,MM = f’p,M(C ° M)

3.7 (flomM)p sy mCM = flpm(M o (M).
(3.8)  (flomM)lppanyml = flom(M o () = flo,m.
(3.9)  (flpmDlpparymC’ = flom(Go ).

Proof. First we observe that
Co M = [M,(v(M)7 (A, p)M, v(M) k)],
(M = [Ezn, (A, p)M, £)),
Mo (M =[M,((\ p)M,k&)].
A straightforward calculation yields (3.6), (3.7), (3.8) and (3.9). . O

Corollary 3.2. Let g; = [M;, (i, pi, 6:)] € G7 (i = 1,2). For any f € C°(Hpym,V,), we
have

(3.10) (Flo,mg1)lpua) M2 = flpra(91 0 g2).
In particular, the Jacobi group G7 := Sp(n,R) « ngn’m) acts on C*(Hyp4m, V,) as follows:
(8.11) (Flo,m91)l0,m92 = flo,mlg1092), 91, 92 € G7.

Proof. For §j = [M,(\p,«)] € G, we note that
[Ms ()‘a H, ’5)] = [M7 (0,01 0)] o [EZM(’\, K, Ii:)]
Using (3.8), (3.6) and (3.9), we obtain the desired formula (3.10). o
Remarks 3.3. We note that
(fIPyMC)IP’MM % (f'PxMM)lpru(M)MCM'
But if M € Sp(n,R), we have
(Flo,mO)lp, MM = (f|p,m M), mC M.
Definition 3.4. Let p and M be as above. Let
™ = { Oy m) € BE™ pp 20, s ez ),

A Jacobi form of index M with respect to p on a subgroup I' C T', of finite index is a
holomorphic function f € C*°(Hp,m, V,) satisfying the following conditions (A) and (B):
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(A) flom¥ = fforall 7 € T7 :=T oc HS™™.
B) f has a Fourier expansion of the following form :
( Xp g

f(z,w) = Z Z (T, R)- KEo(T2) | 2mio(RW)

T>0 REZ(”'"‘)

half-integral
=T 3R
with some Ar € Z and ¢(T, R) # 0 only if ( ’l‘rtR 3\4 ) 2> 0. In addition, if a Jacobi form
4 ir 1
f € Jp, m(T) satisfies the strong condition that ¢(T, R) # 0 implies (’l\l‘tg Zj) >0, it
2

is called a cuspidal Jacobi form.

We denote by Jj, m(T) (resp. J, 47 (")) the vector space of all Jacobi forms (resp. cus-
pidal Jacobi forms) of index M with respect to p on I'. In the special case V, = C, p(4) =

(det A)* (k € Z, A € GL(n, C)), we write Jx m(T) instead of J, p((T") and call k the weight
of a Jacobi form f € Ji,m(T).

If n > 2, the condition (B) is superfluous by Kocher principle (cf. [Z] lemma 1.6). It
is known that the vector space J, o((I") is finite dimensional (cf. [E-Z] Theorem 1.1 or [Z]
Theorem 1.8).

Remark 3.5. Let p and M be as above. Let
xm @ Clmm) ., ¢

be a character of the additive group C(™™ defined by x m(t) := 2™ M%) for t € Clmim),
The canonical automorphic factor

(3.12) Tynip = IMp 2 G7 X Hypp — GL(V,)
for the Jacobi group G7 is given by

Iro(9,(2, W)) = e—2mio(MIW+AZ+pl(CZ+D)~1C)

% e2Mo(MAZ M2 Wn+p' ) p(CZ + D)7},

where g = [0, Em, (), #,%)] € G’ with 0 = (g g) € Sp(n,R) and (Z,W) € Hpm.

Therefore the condition (A) in Definition 3.4 can be written as
(AY  (fF(F-(Z,W)) = Im,,(5,(Z,W))f(Z2,W) forall ¥ €T7.

Remark 3.6. In [Y1]-[Y2], the author used theta series to give an explicit decomposition
of the right regular representation of the Heisenberg group H](R"'m) on L? (Hé””")\H]g"""))
into irreducibles.
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Remark 3.7. For historical remarks on Jacobi forms, we refer to [B3] pp. 3-5.

4. SHIMURA ISOMORPHISM

Let S be a symmetric, positive definite integral matrix of degree m and let a,b €
Q™). We consider

(4.1) Vs505(Z,W) 1= Z ™o (S((A+a) Z (Mta)+2(A+a) (W+D)))
Aezlm,n)
with characteristic (a, b) converging uniformly on any compact subset of Hy,m.
Let M be a symmetric, positive definite and half-integral matrix of degree m and let N'
ym » P gr &r
be a complete system of representatives of the cosets (2M)~1Z(m™) /Z(™:m) We observe

that #(N) = {det(2M)}". An easy application of the Poisson summation formula gives
Lemma 4.1. For a € N, we have

n

n 2 . -1t
ﬂzM,ayo(—Z—l, WZ_I) = {det(2M)}_7 {det (%)} eZmo(MWZ ' w)
» x Z e—-Z'iriu(ZMb'a) ‘92M,b,0(Za W) .
beN

Corollary 4.2. Let 2M be unimodular. Then P24,0,0(Z, W) is a Jacobi form of wexght
2 and index M.

(4.2)

.Lemma 4.3. Let S =rl, with r > 0. Then ¥5,,(Z, W) satisfies the heat equation

L P 4dmir O09g.p
4.3 1%y o 1%, 1 S S S .
(43) 2 OWigOWeg  2—bpg 0L, @ -1 =137

It is easy to prove it and so we omit its proof.

Lemma 4.4. Let f € J, p(T) be a Jacobi form and let ¢ € Z(™79). Then the mapping
f¢: Hyj — V, defined by f(Z,W) = f(Z,cW)(Z € Hn, W € CU™) defines a Jacobi
form in J, ;(T') with M = tMe.

The proof ‘of lemma 4.4 is obvious.

Definition 4.5. Let S € Z(2%2¥) be a symmetric, positive definite unimodular and even
matrix of degree 2k and let ¢ € Z(?¥™), We define the theta series

(4.4) 19(3’,‘2(Z,W) = Z grI(SOZMDW) g e g W e Clmm),
)«EZ(”‘:")

We observe that 19(")(Z W) = 9s,0,0(Z,cW). Thus according to corollary 4.2 and lemma
4.4, 19 E Ji,m(T') with M = 1%Sc. We consider the ordinary theta series

(4.5) Is(Z)= Y ™D zem,
Aez(zk,n)
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We observe that 95(Z) = ﬂ(s.':g(Z, W) and so 95(Z) € Ji,o(Tn). In fact, 95(Z) is a Siegel
modular form on H, of weight k. It is easy to see that the Fourier coefficients c(T, R) of
19(5""): are given by

(4.6) o(T,R) = #{\ € 2% | )6\ = 2T, ’\Sc = R}.

An easy calculation gives the following
Lemma 4.6. Let S; and 5; be two symmetric positive definite integral matrices of degree
2k; and 2k, respectively. Let ¢; € Z2F1™) and ¢, € Z(2%2™) Then

(4.7) 982 W) 98 (2 W) =0T o\ (W),

(5 )2
where (2, W) € Hy, . Thus 0‘("391 0\ o) € Tentta it aty(Tn) with My = L', 81¢1
0 52)’( )

C2
t
and M2 = -]2‘625262.

Now we fix an element Q € H,,. We let M be a positive symmetric, half integral matrix
of degree m. then the lattice Lg := Z(™™ . Q + Z(™") in C(™) acts on C(mm) properly
discontinously by
(4.8) AQ+p) - W=W+ A2+, /\,NEZ(M’"), W e ¢lmin),

Identifying (W, ¢) € C™™) x C with

(W + A0+ i, e-—Z?’rio(M(AQ'A-I—ZA'W))f), 6 € C,
we obtain a holomorphic line bundle Lg over the abelian variety Xgq := C™™ [Lgq. It is
easy to see that Lq is ample and dim¢ H%(Xq,Lg) = {det (2M)}" . In fact,

{araen(@, )| @ € @00)712m j2imm) |
form a basis for H*(Xgq,Lq). Varying Q in H,, we obtain the theta series on Hy,

D2 a,0(R2, W) 1= Z 2mie(M((A+a)Q ‘(A+a)+2(A+a)'W))
AEZ(m,n)

converging uniformly on any compact subset of Hp .

If f is a Jacobi form in J, pm(T's), it is easy to see that for a fixed element Q € H, each
component of f(2, W) represents a global section of Lg. Thus varying Q in H,, we may
write

(4.9) FZW) =" fuo(Z) 92me00(Z, W), (2, W) € Hypm,
a€N

where A is a complete system of representatives of the cosets (2M)~1Z(m") /Z(™7) and
{fa: H, — V,| a € N'} are uniquely determined holomorphic vector valued functions on

H,.
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According to (4.2), we have

sz = Lo ()} a2

(4.10) \i/)
. E e21rw(2Ma b) . fb(Z)
bEN
and
(4.11) f(Z24+8)= e—21ria'(MuS'a) - fa(2), S= tg ¢ Z(mm)

We note that the Fourier coefficients ¢(T, R) of 92u,4,0(Z, W) are given by

LY
N’

1 if I\ e 2™ st A+ a, E))M(A + 0, By) = ( T
¢(T,R) = _ lip

0 otherwise

We observe that ¢(T, R) # 0 implies 47 — RM ™R = 0. By an easy argument, we see that
the functions {f, |a € N} must have the Fourier expansions of the form

(4.12) fu(2) = z o(T) - e2mie(T2)

T="T>0
half integral

Conversely, suppose there is given a family {f,|a € N} of holomorphic functions f, :
H, — V, satisfying the transformation laws (4.10), (4.11) and the cusp condition (4.12).
Then we obtam a Jacobi form in J, s(T'n) by defining f(Z, W) via the equation (4.9).
So far we have proved the Shimura correspondence:

Theorem 4.7 (Shimura). The equation (4.9) gives an isomorphism between J, p(I's)
and the vector space of V,-valued Siegel modular forms of half integral weight satisfying
the transformation laws (4.10), (4.11) and the cusp condition (4.12).

Remark 4.8. Theorem 4.7 may be also formulated for Jacobi forms on a subgroup
I' C T',, of finite index.

Corollary 4.9. If 2k < rank (M), then we have J p(T') = 0.

Proof. The proof follows from the fact that the irreducible representation (det)k‘%”"‘k (M)
of GL(n,C) is not a polynomial representation. O
Corollary 4.10. Let 2M be unimodular and k- n be odd. Then Ji p(T',) =0

Proof. It follows immediately from (4.10) and the fact that m = 0(mod8). O
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Corollary 4.11. Let 2M be unimodular. We assume that p satisfies the following
condition (4.13):

(4.13) p(A) = p(—A) for all A€ GL(n,C).

Then we have

(4'14) JP,M(Fn) = [I‘mﬁ] : 192M,0,0(Z’ W) = [Fmﬁ]v

where g = p ® det~ 7. In particular, if k- n is even,

(4.15) Te,m(Tw) = [Cn, k = 51 D2na,00(2, W) =[O, k = T1]

Proof. The proof of (4.14) follows from (4.10), (4.11) and (4.12). The representation
det* : GL(n,C) — C* defined by det*(A) = (det (4))* satisfies the condition (4.13).
Hence (4.15) follows from (4.14). a

Example 4.12. We give several examples of the irreducible representations which
satisfies the condition (4.13).

(a) If k - n is even, then the polynomial representation p : GL(n,C) — C* defined by
p(A) = (det (A4))* (A € GL(n,C)) satisfies the condition (4.13).

(b) The polynomial representation p of GL(n,C) on the symmetric product Symm?(C")
of C" defined by

p(A)Z := AZ'A, A€ GL(n,C), Z € Symm?(C")
satisfies the condition (4.13). It is obvious that p is irreducible. This representation
is important geometrically because it is related to holomorphic 1-forms on H, invariant
‘(lsd';‘rhggolynomial representation p of GL(n,C) on Symm?(C") defined by
p(A)Z := (det A)"1A™1Z'A7Y, A€ GL(n,C), Z € Symm?*(C™)
satisfies the condition (4.13). It is easy to see that p is irreducible. This representation is

also important geometrically because it is connected with holomorphic (N — 1)-forms on
H,, invariant under I'y,, where N = n(_n2+1_) — 1(cf. [F2]).

The lattice L := Z(™™ x Z(m®) in C™" acts on Ham by
M) (2,W)=(Z,W+2Z+p), \p)eL, (Z,W)€ Hpm.

Then we have a universal family p : X — H,, of principally polarized abelian varieties
over H,. Then we observe that for each € H,, we have p~1(Q) = C™" /Lg = Xq.
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We define the mapping
(4.16) er : LxX Hym — C*

by
er((A, 1), (2, W) := ¢ 2mio(MOAZA+2AW))

Then ey satisfies the 2-cocycle condition, ie., ey € HY(L, O%.,...)- Thus we obtain a
holomorphic line bundle M — X over X identifying ((Z, W), £) € Ha,m x C with

(A 0) - (2, W), er((A 1), (Z,W))E), (\p)elL, £eC.

Then {924,4,0(Z,W)| a € N'} form a basis for H'(X, M). We note that the restriction
of M to p~1(2) = Xg coincides with a line bundle Lo over Xq. The line bundle Lq over
Xaq can be explicitly described according to Appell-Humbert Theorem([Mu] Chap. I).

5. SINGULAR JAcoBI FORMS

In this section, we define the concept of singular Jacobi forms and introduce a
differential operator My, m,am on P, X R(™™). where P, := {Y € R(»™) Y = Y >

0} denotes an open convex cone in R*%™. We show that this differential operator
characterizes singular Jacobi forms. Also we give a criterion that a Jacobi form is singular.

Let M be a symmetric positive definite, half integral matrix of degree m. A Jacobi
form f € Jp, pm(Trn) admits a Fourier expansion (see Definition 3.4 (B))

(5.1) f(Z,W)= Z o(T, R)e*™o(T2) . 27i0RW) 7 c . W g Clmm),
T,R

We note that if I' = I'y,, then Ap = 1. A Jacobi form f € J, pm(T',) is said to be singular
if it admits a Fourier expansion such that the Fourier coefficient ¢(T,R) is zero unless

det (4T — RM~YR) = 0.

Lemma 5.1. Let T and M be two symmetric real matrices of degree n and m respectively.
We assume that M is positive definite. Then

T 3R
(1t 2 )20 if and only if T'>0, 4T — RM™''R>0.
;R M

Proof. The proof follows from the fact that

T 3R\ _(E. 1RM™! ~1RM-"R 0 \'(E. L1RM
1R “\0  En. 0 M)\ 0O  E. )
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Example 5.2. Let M = 'M be as above. Let § € Z(**?%) be a symmetric positive
definite integral matrix of degree 2k and ¢ € Z(®*™). We consider the theta series

(52) (")(Z W) - Z evria(S(AZ'A-l-L\tW‘c)), Ze Hn,; We C(m,n).
AEZ(2k,n) .

We assume that 2k < n+rank(M). Then 9s,(Z, W) is a singular Jacobi form in Jx, p(T),
where M = c.Mc We note that if the Fourier coefficient ¢(T, R) of 19‘(5- 2 is nonzero, there
exists A € Z(2k ™) such that

1 (T iR
(53) gf(x,cw(x,c)—(%tR ).
Thus

T iR
rank ( 1ty j\d ) < 2k < n + rank(M).

Therefore det (4T — RM~YR) = 0 by lemma 5.1. O

3

Now we define a differential operator My m,am on Py X R(™7) defined by

o 1'/d A
(5.4) My o pa 2= det (V) - det ( =t o (av) M (57)) ,
where a—{;" = ((1+26 Ut fr) ,i,,) and % = ( af“) . For the detail of the construction of

My, m,m, we refer to [Y6).

Theorem 5.3. Let f € J, m(I'n) be a Jacobi form of index M with respect to p. Then
the following are equivalent:

(1) f is a singular Jacobi form.
(2) f satisfies the differential equation My, ;m mf = 0.

We refer to [Y6) for the proof.
Definition 5.4. An irreducible finite dimensional representation p of GL(n,C) is deter-
mined uniquely by its highest weight (A1,:--,As) € Z"™ with A; > --- > A,. We denote
this representation by p = (A1, ,As). The number k(p) := A, is called the weight of p.

Theorem 5.5. Let 2M be a symmetric positive definite, unimodular even matrix of
degree m. Assume that p is irreducible and satisfies the following condition

p(A) = p(—A) for all A € GL(n,C).
Then any nonvanishing Jacobi form in J, m(T'») is singular if and only if 2k(p) < n +

rank (M).
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We refer to [Y6] for the proof.

Conjecture. For general p and M without the above assumptions on them, e nonvan-
ishing Jacobi form f € J, m(Tn) is singular if and only if 2k(p) < n + rank (M).

Remark. A singular modular form of type p may be written as a finite sum of theta
series ¥g p(Z)’s with pluriharmonic coefficients (cf. [F1]). The following problem is quite
interesting,.

Problem. Describe the functions {fs|a € N } explicitely given by (4.9) when f €
Jp,m(T'n) is a singular Jacobi form.

6. THE SIEGEL-JACOBI OPERATOR
In this section, we investigate some properties of the Siegel-Jacobi operator.
Let p be a rational representation of GL(n,C) on a finite dimensional complex vector

space V,. For a positive integer r with r < n, we let o : GL(r,C) — GL(V,) be a
rational representation of GL(r,C) defined by

P Na)v:=p ((8 EO )) v, a€GL(r,C), veV,.

We define the Siegel-Jacobi operator ¥, : Jp m(Ln) — Jpn m(Tr) by

(61) )@ W)= Jim 1 (5 p. ) W0)),

where f € Jp m(Tn), Z € Hy and W € C™"). We observe that the above limit always
exists and the Siegel-Jacobi operator is a linear mapping (cf. [Zi]).

Definition 6.1. An irreducible finite dimensional representation p of GL(n,C) is deter-
mined by its highest weight (A1, -+ ,An) € Z™ with A1 > -+ > An. The number k(p) := A,
is called the weight of p.

Theorem 6.2. Let 2M be a positive unimodular symmetric even matrix of degree m.
We assume that p is irreducible and satisfies the condition

(6.2) p(—A) =p(A) for all A € GL(n,C).

If 2k(p) < n + rank (M), then the Siegel-Jacobi operator ¥, ,—1 is injective.

Theorem 6.3. Let 2M be as above in Theorem 6.2. Assume that p is irreducible and
satisfies the condition (6.2). If 2k(p) + 1 < n + rank (M), then the Siegel-Jacobi operator

¥, n—1 is an isomorphism.
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Theorem 6.4. Let 2M be as above in Theorem 6.2. Assume that 2k > 4n + rank (M)

and k = 0(mod 2). Then the Siegel-Jacobi operator Uon-1 : Jem(Tn) — Ji,m(Tr-1)
1s surjective.

The proofs of the above theorems are based on the Shimura isomorphism, the theory
of singular modular forms and the result of H. Maass.

Theorem 6.5. Let 1 <r <n—1. Assume that k(p) > n+r+rank (M) +1 and k(p) is
even. Then we have

T pm(Tr) C ¥ (Tp,pm(Tn))-
Proof. The proof follows from the fact that for any cuspidal Jacobi form f € J.3?, (T',),

p(r) M
we have
(6:3) Y0 (B (Z, W, ) = f(Z1,Wa),
where Z = Z*l :) € H, with 2, € H, and W = (Wy,x) € C™") with W; €

Cmn) | Here E(" M(Z, W, f) € Jpm(T'n) denotes the Eisenstein series of Klingen’s type
corresponding to a cuspidal Jacobi form f € J CE',*;P 'w(T'r). Following the idea of [Zi], pp.
208-209, we can prove (6.3). |

Corollary 6.6. Let 1 < r < n — 1. Assume that k(p) > n + r + rank (M) + 1 with

1<r <n-—1and k(p) is even. For any cuspidal Jacobi form f € J%*, (T,), we have

(6.4) U o1 (B (%%, £)) = 0.
In particular, ¥, I(E(") (*,%,f)) = 0 for any integral € Z with 1 <I<r—1.
Proof. It follows immediately from (6.3) and Theorem 6.5. 0

Remark 6.7. (1) We may define an action of the Hecke operator of 'y, on J, s(T'). We
proved that the action of the Siegel-Jacobi operator on Jacobi forms is compatible with
that of the Hecke algebra. We refer to [Y3] for the detail.

(2) Using the properties of the Siegel-Jacobi operator and the theory of singular Jacobi
forms, we may introduce the concept of the so-called stable Jacobi forms. This concept is
useful for the study of geometric properties of the universal family of principally polarized
abelian varieties of dimension n. We refer to [Y§] for the detail.

7. CONSTRUCTION OF MODULAR FORMS FROM JACOBI FORMS

In this section, we construct new vector valued modular forms by differentiating
Jacobi forms with respect to toroidal variables and then evaluating at zero in the toroidal
variables.
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Let n and m be two positive integers and let Pp, 5 := C[Wy1, Wiz, -+ , Wmn] be the
ring of complex valued polynomials on C(™™). For any homogeneous polynomial P € Py, n,
we put

] )
(1.1) P(dw):= P ( S 6Wm,,) .

Let S be a positive definite symmetric rational matrix of degree m. Let T := (1,,) be the
inverse of S. For each ¢,j with 1 <i,j < n, we denote by A; ; the following differential
operator

» Zm 9? ..
(7‘2) Ai,j = th aWpi anj’ 1 S (2] S n.
p,g=1

A polynomial P on C(™" is said to be harmonic with respect to S if

=1

(7.3) Zn: AP =0.

A polynomial P on C(™™ is called pluriharmonic with respect to S if
(7.4) AijP=0, 1<t,j<n

If there is no confusion, we just write harmonic or pluriharmonic instead of harmonic or
pluriharmonic with respect to S. Obviously a pluriharmonic polynomial is harmonic. We
denote by Hm,n the space of all pluriharmonic polynomials on C™™). The ring Py, n
of polynomials on C(™™ has a symmetric nondegenerate bilinear form < P, Q >:=
(P(0w)Q)(0) for P, Q € Pm - It is easy to check that <, > satisfies

(7.5) < P,QR>=<Q(6w)P,R>, P,Q,R€Pmn.
Lemma 7.1. Hp,, is invariant under the action of GL(n,C) x O(S) given by
(7.6) ((4,B), P(W)) — P(*BWA), A€ GL(n,C), B € 0(S).

Here O(S) := { B € GL(m,C) | *BSB = S } denotes the orthogonal group of the quadratic
form S.

Proof. See corollary 9.11 in [M-N-N]. O

Remark 7.2. In [K-V], Kashiwara and Vergne investigated an irreducible decomposition
of the space of complex pluriharmonic polynomials defined on C™™ under the action of
(7.6). They showed that each irreducible component 7 ® A occurring in the decomposition
of Hm n under the action (7.6) has multiplicity one and the irreducible representation 7 of
GL(n,C) is determined uniquely by the irreducible representation of O(S).

98



REMARKS ON JACOBI FORMS OF HIGHER DEGREE 51

We take S := (2M)~!. According to lemma 7.1, there exists an irreducible subspace

Vz(# 0) invariant under the action of GL(n, C) given by (7.6). We denote this represetation
by 7. Then we have

(7.7) (r(A)PY (W)= P(WA), AeGL(nC), PeV,, WeCm™m,
The action 7 of GL(n,C) on V* is defined by
(7.8) (F(A)TH)(P) = ((r(*A™Y)P),

where A € GL(n,C), (€ V¥ and P€ V.
Definition 7.3. Let f € J, m(T'») be a Jacobi form of index M with respect to p on
T',. Let P € V; be a homogeneous pluriharmonic polynomial. We put
(7.9) 7p(2) := P(0w)f(Z, W)IW_O, Z € H,, W eCmm,
Now we define the mapping
fr:Hy, — VIRV,
by

(7.10) (f+(2))(P) := fp(Z), Z € Hn, PEV,.

Theorem 7.4. Let 7 and 7 be as before. Let f € J, m(I'n) be a Jacobi form. Then
f+(Z) is a modular form of type 7 ® p, i.e., fr € [['n, 7 @ p].

We refer to [Y9] for the proof.

Applications
We obtain important identities by applying theorem 7.4 to special Jacobi forms.

(I) Let 2M be a positive definite symmetirc unimodular, even integral matrix of degree
m. We consider the theta series

92M(Z, W) = z eZm’a’(M(AZ A42) 'W)) .
AEZ(m,n)
Then 0,04(Z, W) is a Jacobi form of weight 7 and index M (cf. corollary 4.2). We write
f(Z,W) := 62 04(Z,W). By theorem 7.6, f, is Hom(V;,C)-valued modular form of type

#® det'. In addition, for any homogeneous pluriharmonic P with respect to (2M)~?, we
obtain the following identity

Z P(4niMA{(CZ + D)™1)- (2mio(MAAZ+B)(CZ+D)™* )
J\EZ("‘-") )
={det(CZ +D)}T Y P(4miM))ericMAZY)

A€Z(m.n)

A B

forallM':(C, D

)eI‘na.ndZEH,,.

99



52 JAE-HYUN YANG

(I) Let S € Z®*2%) be a positive definite symmetirc, unimodular even matrix of
degree 2k. We choose an integral matrix ¢ € Z®¥™) such that %Sc is positive definite. We
consider the following theta series

05,0(Z2,W) := E emio(SOAZ A+22 (W)
AEZ(2k,n)

Then 0s,c € Je,m(Ts) with M := %‘c.S’c because 5,.(Z, W) = 0s,0,0(Z,cW). We write
f(Z,W) := 05,(Z,W). Then by theorem 7.4, f, is a Hom(V;,C)-valued modular form
of type # ® det*. Furthermore for any homogeneous pluriharmonic P with respect to
(2M)~! = (%Sc)~!, we obtain the following identity

S P(2ri'SA{CZ + D)) - emie(SNAZ+B)CZ+D)™ )
A€Z(2k,n)
= {det(CZ + D)}* E P(2mi%eS)) - 2o (SAZN)
AEZ(”’!")

A B
forallM:(C, D

(III) In [Z], Ziegler defined the Eisenstein series E,(c:'/)M(Z, W) of Siegel type. Let M be a
half integral positive definite symmetric matrix of degree m and let k € Z+. We set

Fn,01={(‘é, g) Ern C=0}

Let R be a complete system of representatives of the cosets I', o\I', and A be a complete
system of representatives of the cosets Z(™™) /(ker (M) NZ(™™), where ker (M) := {\ €
R(™™) | M- X =0 }. The Eisenstein series Eg:},{ is defined by

)El"nandZEH,,.

El(:)w(z’ W):= Z det (CZ +D)—-k _ezwia(MW(CZ+D)"10'VV)
(g g)ek
. Z e2mio(M((AZ+B)(CZ+D)~ *a+2) ¢ (CZ+D)~* ’W)),
AEA

where (Z,W) € Hy, m. Now we assume that k > n+m+1 and k is even. Then according to
[Z], theorem 2.1, E,(:j)w(Z, W) is a nonvanishing Jacobi form in Ji a(T5). By theorem 7.4,

(E,(:J)w - is a Hom(V;, C)-valued modular form of type #®det*. We define the automorphic
factor j : Sp(n,R) x H, — GL(n,C) by

3(9,2) := cZ + d, 9=(Z S)ES}D(TL,R), Z € H,.
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Then for any homogeneous pluriharmonic polynomial P with respect to (2M)~1, we obtain
the following identity

det j(M,2)" 3 3 det (7, 2)7% - P(ATiMAYi(y, Z) L) - g2minMA<Z>4N)
YER AeA

=Y ) detj(7,M < Z >)7F. P(4miMA i (yM, Z)7Y) . 2ric(MAM<E>1N)
YER AEA

foral M €Ty, and Z € H,,.

8. HARMONIC ANALYSIS FOR THE JACOBI GROUP

In this section, we state the duality theorem for the Jacobi group of higher degree
without proof. We refer to [Y7] for the proof and discuss the algebra of invariant differential
operators on the Jacobi group G”.

(I) Duality Theorem

Let (p,V,) be an irreducible representation of K = U(n) with highest weight | :=
(li,lay <+ y1n) €Z™, Iy 2 1 > -+ > 1. Then p is extended to a rational representa-
tion of GL(n, C) which is also denoted by p. The representation space V, has an hermitian
inner product ( , ) such that (p(g)u,v) = (u,p(g*)v) for all g € GL(n,C), u,v € V, and
g* = 'g. Let M be a half integral positive definite symmetric matrix of degree m. For
(Z,W) € Hpm, We write Z = X +iY, W = U +1iV, X,Y € R®™, U,V € R(™™. We
put

I\‘,M(Z, W) .= g—4ma( ftYMVY ™)
and

d(Z,W) := (det V)~ "+t X dY dUdV.

Then it is easy to see that d(Z, W) is a G”-invariant volume element on H, . We denote
by E(p, M) the Hilbert space consisting of V,-valued measurable functions ¢ on Hp,m such
that

of? = /H (oIm 2) (2, W), 92, W) (2, W) d(Z, W) < +o0.

Let a1 : A — Cy = {2 € C| |2| = 1} be the unitary character of 4 = {[Ex,(0,0,x)] €
G’ |k = 'k € R(™™) } defined by x am(k) := e2™°M®) | ¢ € A. We define the automorphic
factor J, a1 2 G7 X Hyp o — GL(V,) by

Toaa(g, (2, W) : = £2mio(M[W+AZ+4)(CZ+D)™'C)

x g 2MI(MOAZ AN W1 N) | (07 4 D),

A B
¢ D

tation Ind%; (p ® X M) is realized on E(p, M) by

(Ind 3 (0 © Xaa)(o)e) (2,T0) i= Tpaals™, (2, W) (g™ - (2,W)),

where g = [0,(\, 1, k)] € G with o = ( ) € G = Sp(n,R). The induced represen-
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. where g € G’, ¢ € E(p, M) and
K7 = {[k,(0,0,x)] € G'| k€ K, x = *x € R™m™ }%’KxA.

Let H(p, M) be the subspace of E(p, M) consisting of ¢ € E(p, M) which is holomorphic
on H, . Then H(p, M) is-a closed G’-invariant subspace of E(p, M). Let 7/ be the

restriction of Indf('_’, (p ® X am) to H(p, M). We let the mapping j : G x H, — GL(n,C)
be the automorphic factor defined by

. A B
J(0,2):=CZ + D, a’—-(C D)EG'

We define a unitary representation p; of K by
pi(k) := p(j(k,iEn)), kE€K.
Takase (cf. [T], Theorem 1.1) proved the following
Theorem 8.1. Suppose I, > n+1. Then H(p, M) # 0 and n»M is an irreducible unitary

representation of G’ which is square integrable modulo A. The multiplicity of p; is equal
to one.

Let F;; denote a square matrix of degree 2n with entry 1 where the i-th row and the
J-th column meet, all other entries being 0. We put

H;:= E;i — Enqinti (1 <:i: < n), h:= Z CH;.

i=1

Then § is a Cartan subalgebra of g. Let e; : h — C(1 < j < n) be the linear form on )
defined by
Cj(H,‘) = 5,'_.,‘ )

where §;; denotes the Kronecker delta symbol. The roots of g with respect to h are given
by
+2¢; (1<i<n), tertea(1<k<i<n).

The set * of positive roots is given by

ot ={2;(1<i<n), ex+e(l<k<i<n)}.
Let

O ;={Xeg| [H,X]=a(H)X forall Heh }

be the root space corresponding to a root a of g with respect to h. Weput n:= Y g,.

a€d+
We define
N7 = {[exp X,(0,p;0)] € G7

Xen},
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where exp : g — G denotes the exponential mapping from g to G. A subgroup N9 of
G is said to be horospherical if it is conjugate to N7, that is, N9 = gN7g~1 for some
g € G. A horospherical sybgroup N is said to be c'u..spzdal for I"J =TIy ox Hy, ("’m) in GY
if (N9 NT7)\NY is compact. Let L? (I'7\G7;p) be the complex Hilbert space consisting
of all I'/-invariant V,-valued measurable functions ® on G” such that || ® ||< +oo, where
|| I| is the norm mduced from the norm | | on E(p, M) by the lifting from H, , to G7.

We denote by LZ (I'/\G’;p) the subspace of L? (r\a7; p) consisting of functions ¢ on
G’ such that ¢ € L? (TV\G”;p) and

/ p(ngo)dn =0
NoATJ\Ng

for any cuspidal subgroup N¢ of G7 and almost all go € G7. Let R be the right regular
representation of G7 on L? (I‘J \G”; p) defined by

R(90)¢(9) :=0(990), 9,90 € G, ¢ € L (T'\G7;p).
Now we state the duality theorem for the Jacobi group G7.

Duality Theorem. Let p be an irreducible representation of K with highest weight
l= (b, ,ln)€Z™ Iy, 21 > --+ > l,. Suppose I, > n + %— and let M be a half
integrable positive definite symmetric matrix of degree m. Then the multiplicity m, a¢ of
1r”' in the right regular representation R of G’ in L% (T7\G7; p) is equal to the dimension

CMP(I",,), that is,

mpm = dimg J C“‘"’ ‘i (Cn)-

Remark 8.2. In [B-B], Berndt and Bé6cherer proved the duality theorem for the Jacobi
group in the case m =n =1.

(II) Invariant differential operators on H,

First of all, we review the results of G. Shimura (cf. [S3]). We let G/K be a hermitian
symmetric space of classical and noncompact type. Here G is classical, usually a connected
noncompact semisimple Lie group with finite center and K is a maximal compact subgroup
of G. Let p be a continuous representation of K on a finite dimensional complex vector
space V,. We denote by C™(p) the set of all V,-valued smooth functions f G —V, by
G such that

F(gk™) = p(k)f(g) forallk€ K andg € G.

We let D(p) the ring of all left-invariant differential operators on G which map C*(p) into
 itself.

G. Shimura proved that if p is one-dimensional, then D(p) is commutative and there
exists a canonically defined set of generators Ly, Ly, - - , L, for D(p) which are algebraically
independent. Thus we have D(p) = C[L4,: -+ , L.]. Here r denotes the rank of the hermitian
symmetric space G/ K.
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Returning to our case, since G7 acts on Hp m := Hy x C™®) transitively, Hy, m» may
be regarded as a homogeneous space G7/K7 via the identification

GJ/KJ — Hp m, g-K”}———)g~(iEn,0), ;E GJ’

where K7 := U(n) x Sym(m,R) is the stabilizer of G’ at (iE,,0). Let 7 be a continuous
representation of K7 on a finite dimensional complex vector space V;. We denote by
C>(7) the set of all V,-valued smooth functions on G7 such that

Flgk™) = p(k)f(g), 9€G’, ke K.

We let D(7) the ring of all left-invariant differential operators on G’ which map C*(7)
into itself.

Problem: Discuss the 1st and 2nd main theorems for D(7) in the sense of invariant
theory.

9. FINAL REMARKS

In this section we give some open problems which should be investigated and give
some remarks.

Let
G’ := Sp(n,R) H](K"’m)

be the Jacobi group of degree n. Let 'V := Sp(n,Z) « Hé"’m) be the discrete subgroup
of G7. For the case m = n = 1, the spectral theory for L? (I'7\G7) of degree 1 had been
investigated almost completely in [B1-2] and [B-B]. For general n and m, the spectral
theory for L% (I'Y\G”) is not known yet.

Problem 1. Decompose the Hilbert space L? (I''\G”) into irreducible components of
the Jacobi group G for general m and n. In particular, classify all the irreducible unitary
or admissible representations of the Jacobi group G”.

Problem 2. Give the dimension formulae for the vector space J, p(T's) of Jacobi forms
and the vector space J,"yf(I's) of cuspidal Jacobi forms. Concerning this problem, discuss

a vanishing theorem on the vector space of (cuspidal) Jacobi forms.

Problem 3. Construct Jacobi forms. Concerning this problem, we have several methods
of construction:

(1) Fourier-Jacobi coefficients of Siegel modular forms.
(2) Eisenstein series of Klingen’s type.
(3) Theta series.

It seems that so far we do not have any examples of Jacobi forms obtained without com-
bining the above methods.
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Problem 4. Develope the theory of L-functions for the Jacobi group G7. There are
several attempts to establish L-functions in the context of the Jacobi group by Japanese

mathematicians A. Murase and T. Sugano using the so-called Whittaker-Shintani functions
(cf. [Murl-2]).

Problem 5. Give applications of Jacobi forms, for example in number theory, algebraic
geometry and physics. In fact, Jacobi forms have found some applications in proving non-
vanishing theorems for L-functions of modular forms [BFH], in the theory of Heeger points
[GKS], in the theory of elliptic genera [Z] and in the string theory [C].
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SINGULAR JACOBI FORMS

JAE-HYUN YANG

ABSTRACT. We introduce the differential operator M, .« characterizing sin-
gular Jacobi forms. We also characterize singular Jacobi forms by the weight
of the associated rational representation of the general linear group. And we
provide eigenfunctions of the differential operator M, , , .

1. INTRODUCTION

Let g and h be two positive integers. Let .# be a symmetric positive
definite, half-integral matrix of degree A . For two positive integers k and /,
we denote by R*-/) the space of all k x / matrices with entries in the field R
of real numbers. We let

Py :={Y €eRE8)| Y =Y > 0}

be the open convex cone of positive definite matrices of degree g in the Eu-
clidean space Ré(¢+1)/2_ We define the differential operator M, , 4 on %, x
R*:8) defined by

- 8 1 '(a (8
Mg,h,/.—det(Y)-det<6—Y+§E (-6-7)/ (6—17)>’

) 1+6, 0
_ - hog) =~
Y=0w)€Fy, V=(w) RO, o ( 2 63’#”)

a (0 )

av (avkl ‘
We note that this differential operator generalizes the differential operator M,
:= det(Y) - det(8/8Y) on £, which was introduced by H. Maass (cf. [M]).
Using the differential operator M, , Maass (cf. [M], pp. 202-204) proved that
if a nonzero singular modular form of degree n and weight k exists, then
nk = 0 (mod 2) and 0 < 2k < n—1. The converse was proved by R. Weissauer
(cf. [W], Satz 4).
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The aim of this paper is to characterize singular Jacobi forms. Singular Jacobi
forms are defined to be the Jacobi forms which admit a Fourier expansion such
that a Fourier coefficient ¢(7", R) vanishes unless

T IR
det(%,R //{) = 0.

For more detail, we refer to Definition 2.2. This paper is organized as follows.
In Section 2, we review the notion of singular Jacobi forms which was intro-
duced by Ziegler (cf. [Z], Definition 3.7) and establish the notations. In Section
3, we investigate some properties of the differential operator M, , , to be
used in the next section. In Section 4, we prove the main theorems. That is, we
prove that singular Jacobi forms are characterized by M, , , and the weight of
the associated rational representation of the general linear group GL(g, C). In
the final section, we provide eigenfunctions of the above-mentioned differential
operator M, , 4.

Notations. We denote by Z, R and C the ring of integers, the field of real
numbers, and the field of complex numbers respectively. Sp(g, R) denotes
the symplectic group of degree g. H, denotes the Siegel upper half plane
of degree g. For M = (} 2) € Sp(g,R) and Z € H,, we set M(Z) :=
(AZ + B)(CZ + D)~!'. T, := Sp(g,Z) denotes the Siegel modular group
of degree g. [y, k] (resp. [Ty, p]) denotes the vector space of all Siegel
modular forms of weight k (resp. of type p). The symbol “:=" means that
the expression on the right is the definition of that on the left. We denote by
Z* the set of all positive integers. F*:) denotes the set of all k x / matrices
with entries in a commutative ring F. For any M € F*:0 ‘M denotes the
transpose matrix of M. For 4 € F%-K  g(A) denotes the trace of 4. For
A€ F*.h and B € F*.5) we set B[A] = 'ABA. E, denotes the identity
matrix of degree g.

2. SINGULAR JACOBI FORMS

In this section, we establish the notations and define the concept of singular
Jacobi forms. Let

Sp(g,R) = {M e R®-2)|!MJ,M = J}
be the symplectic group of degree g, where
0 E
(5, %)
8 -E; 0
It is easy to see that Sp(g, R) acts on H, transitively by
M(Z):= (AZ + B)(CZ + D)™!',

where M = (é g) € Sp(g, R) and Z € Hy. For two positive integers g and
h , we consider the Heisenberg group

HE" = {[(A, p), kIl A, pe R"® i € RUH | xc + 4’2 symmetric)
endowed with the following multiplication law

(A, ), k]o[(X, 1), K'l:i=[A+ A, p+u), K+ + A4 — u'2].
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We define the semidirect product of Sp(g, R) and H,(lg h
G’ :=Sp(g, R) « HE"

endowed with the following multiplication law

(M, [(4, 1), kD) - (M, [(4, 1), k')
= (MM, [Q+X, p+u), k+x' + 100 - 3'2),

with M, M’ € Sp(g,R) and (4, i) := (A, p)M’. It is easy to see that G’
acts on H, x C-8 transmvely by
21) (M, (@A, u),k])-(Z,W):=(M(Z),(W+1Z +p)(CZ+D)™"),
where M = (4 5) € Sp(g,R), [(A, 1), x] € HE" and (Z, W) € H, x
Cth.8)

Let p be a rational representation of GL(g, C) on a finite dimensional com-
plex vector space V,. Let .# € R*:#) be a symmetric half-integral semipositive

definite matrix of degree h. Let C®°(HyxC"-8 , V,) be the algebra of all C>®

functions on H, x C*-&) with values in V,. For f € C®(H, x C*#-8) V),
we define

(flp,/[(Ma [(ia /l) s K])])(Z » W)

(2.2) - o= 2mia(HWHAZ+p)(CZ+D)™'C) | p2mic (A (AZ'A+2h ' W+(c+u ')
x p(CZ + D)~ f(M(Z), (W + AZ + u)(CZ + D)™ "),
where M = (4 8) e Sp(g, R) and [(4, u), k] € HE" .
Definition 2.1. Let p and .# be as above. Let
HE" = {[A, p), k1€ HEP| A, pe ZH-9  x € 20},

A Jacobi form of index .# with respect to p on I', is a holomorphic function
f € C®(Hy x CH-8 | V) satisfying the following conditions (A) and (B):

(A) fl, #[71=f forall €T} :=Tg o HE ",

(B) f has a Fourier expansion of the following form:

f(Z, W)= Z Z c(T,R). . e2mia(TZ) | p2nig(RW)
T>0 ReZ(s.h
half-integral

with ¢(T, R) #0 onlylf( ‘R /)>O

If g > 2, the condition (B) is superfluous by the Koecher principle (cf. [Z],
Lemma 1. 6) We denote by J, »(I';) the vector space of all Jacobi forms
of index .# with respect to p on I'y. In the special case V, = C, p(4) =
(detA)* (ke Z, A€ GL(g, C)), we write Ji_,(I'g) instead of J, »(I';) and
call k the weight of a Jacobi form f € Ji »(I'y).

Ziegler (cf. [Z], Theorem 1.8 or [E-Z], Theorem 1.1) proves that the vector
space J, ¢ (I'¢) is finite dimensional.

Definition 2.2. A Jacobi form f € J, () is said to be singular if it admits
a Fourier expansion such that a Fourier coefficient ¢(7T", R) vanishes unless

det(élk I)_
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Example 2.3. Let S € Z(%:2k) be a symmetric, positive definite, unimodular
even integral matrix and ¢ € Z(%k-%) _ We define the theta series

(23) BEUZ, W)= Y eMoSIZHR0(SAWY 7 e g, WweCh?,
A€Z(2k. 8)

We put 4 = %’cSc. We assume that 2k < g + rank(#). Then it is easy to

see that 6§f)c is a singular Jacobi form in Ji ,(Ig) (cf. [Z], p. 212).

Remark 2.4. Without loss of generality, we may assume that .# is a positive
definite symmetric, half-integral matrix of degree 4 (cf. [Z], Theorem 2.4).
From now on, throughout this paper .# is assumed to be positive definite.

3. THE DIFFERENTIAL OPERATOR M, ; 4

Let &, be the open convex cone of positive definite matrices of degree g
in R&(8+1)/2 defined in the introduction.
From now on, for Y = (y,,) € & and V = (vy) € R*-8) | we write

dY =(dyw), dV=(dvy), 1<pu,v<g, 1<k<h, 1<Il<g,
_1_9____(1+(5,,,,8) _?__(6)

Y 2 dyw)’ oV ~ \ovy )’

For a real matrix X of degree g and an integer k with 1 < k < g, we

denote by Ci(X) the matrix of minors of degree k. We define the differential
operator M; ;, on %, x R#-8 by

(3.1) My p:=0 (Ck(Y)Ck (a—a)—,— + 8L7t t (3—617) (%))) , 1<k<g.

Following the notations of H. Maass (cf. [M], p. 67), the differential operator
M, , may be expressed as

My, = )3 (a]"'ak> .(ﬂl"'ﬂk)  1<k<g.
U iga<<ase BiBe/y \eu--o) g pigid)
1<Bi<<B<g

In particular, we are interested in the following differential operator

0 Mmsam e (G () (57))

Lemma 3.1. Let T ='T ¢ R*%-8 and R € R(&-" | Then we have

9 —-2rn0(TY) _ _ —2no(TY) , T
(3.3) aYe = —2ne
and
(3‘4) Mg’h(e—er(TY+RV)) — (_g)g det(Y . (4T - R IR)) . e—Zna(TY+RV).
Proof. (3.3) follows from an easy computation. We set
- 0 1 ‘(0 0
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Then we have

9 1 z": 92
(3.6) Py = + — , 1<u<g,
Oyuu 8m P avku
and
1 0 8?2
37 P' v g [— —_— .
3.7) # 26y,,,,+87t§6vk,,avk,,’ lsp<vseg

We note that if 7 = (,,), R=(ry) and V = (vy,), then

g h
Ztu,,y,m+22t#,,y,,,,, a(RV) =3 rucvi,.

u<v u=1k=1

By an easy calculation, we get

h
7[
(3.8) Pﬂy(e—Zna(T}%RV)) = —5 (41#11 - Z rnk’uk) . e~ 2ma(TY+RV)
k=1

Thus we get
(3.9) det(P)(e~2mo(TY+RV)) — (—g)gdet(ﬂlf — R'R) . e~ 2no(TY+RV),

Consequently we obtain the desired result (3.4). O

Now we let .# be a symmetric positive definite, half-integral matrix of degree
h . We define the differential operator M, , o on %, x R*:® by

(3.10) M, = det(Y)-det | 2 + (1122 (-2
' A aY T8z F1% av) )

By changing the coordinate V by V = .#'/2V , we obtain 8/0V = .#-1/29/0V .
Thus (3.10) may be written as

8 1 '(8 8
(3.11) M, , 4 =det(Y)- det<ay+8 (a_ff) (a—f/))

Theorem 3.2. Let T ='T € R*-8) and R € R(&:" . Then we have
Mg A l(e—2na(TY+RV))

3.12
312 (—%)g det(Y - (4T — RA~VR)) - e 270 (TY+RV)

Proof. If weset R = R#~'/2,then RV = RV. Applying (3.11) to e~ 220(TY+RV)
= ¢~ 2m0(TY+RV) and using Lemma 3.1, we obtain the desired result (3.12). O

4. PROOF OF MAIN THEOREMS

First we prove that a singular Jacobi form is characterized by the differential
operator M, ; 4.
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Theorem 4.1. Let f € J, 4(T'y) be a Jacobi form of index .# with respect to
a rational representation p of GL(g, C). Then the following conditions are
equivalent:

(1) f is a singular Jacobi form.

(2) f satisfies the differential equation M, , 4f =0.

Proof. First we observe that for a Fourier coefficient ¢(7', R) of f(Z, W), we
have

T 4R\ _(E; R\ (T-LRA'VR 0\ '(E, LR#"!
'R #)7\0  E 0 M 0 " E )
Thus it follows immediately that det( %T %R)

det(4T — R#''R) = 0.
Suppose f € J, #(I';) is singular. Then according to Theorem 3.2, we have

My, #f(Z, W)= (—fzf)gdet(Y) 3" e(T, R)det(4T — RA~''R)
T,R

0 if and only if

x eZnia(TZ) . eZnia(RW).

Since f singular, ¢(7, R) # O implies det(47 — R#~''R) = 0. Hence we
obtain the equation M, , »f =0.
Conversely, we assume M, ; »f =0. Then

(-3) det¥) (T, R) det(4T - RAVR)

/ / 2. h, lf Z W) e—2ma(TZ+RW)d[X]d[U]

where Z = X +iY, W = U+iV withreal X = (x,,), ¥ = (yw), U= (up),
V = (vg;) and
d[X]d[U] = dx“dxlz v dxg_l ,gdxggdu“ ER du;,,g_,duhg.
According to the assumption, we have for any 7 and R
¢(T,R)-det(dT —R#Z"''R)=0

This means that ¢(T, R) # 0 implies det(47 — R#~''R) = 0. Hence f is
singular. O

Let § be a symmetric positive definite integral matrix of degree 4 and let
a,be Q"8 We consider
(41) l9S 2 b(Z , W) P Z enia{S((M—a)Z’(ﬂ.+a)+2(}.+a)’(W+b))}

’ A€Zth. 8)

with characteristic (a, b) converging uniformly on any compact subset of H, x
Ch.8) .

If f is a Jacobi form in J, ('), then according to [Z], we may write
42) fZ, W)=Y fiZ) Ve aoZ, W), ZeH,, WeCh?,
aeN

where ¥ is a complete system of representatives of (2.4#)~'Z*-&)/Z*.&) and
{fa: Hg — V,| a € #'} are uniquely determined holomorphic vector valued
functions on H,.

According to Yang (cf. [Y], Corollary 3.2), we have
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Proposition 4.2. Let 2.4 be unimodular. We assume that p satisfies the fol-
lowing condition:

(4.3) p(A)y=p(—A) forall Ae GL(g, C).
Then we have
(4.4) Jo,.aTg)=[Tg, pl-Bru 0,0(Z, W) =[I, p],

where p=p® det™"/%

Notation 4.3. In Propositoin 4.2, we denote the isomorphism of J, ,(I';) onto
e, p® det'h/Z] by

Sy, Ty #(Tg) =T, podet™?)

Definition 4.4. An irreducible finite dimensional representation p of GL(g, ¢)
is determined uniquely by its highest weight (4;, 45, ..., dg) € Z¢ with 4; >
A2 > --- > A,. We denote this representation by p = (41, 42,...,4,). The
number k(p) := A, is called the weight of p.

Theorem 4.5. Let 2.# be a symmetric, positive definite, unimodular even matrix
of degree h. Assume that p is irreducible and satisfies the condition (4.3). Then
a nonvanishing Jacobi form in J, 4(Tg) issingular if and only if 2k(p) < g+h.

Proof. According to Proposition 4.2, we have
Jp.#(Tg) =T, p@det™?]- 824 0,0(Z, W).

Forany feJ, 4(Ig), f=S, #(f)02s,0,0(Z, W). First of all, we observe
that the Fourier coefficients b(T, R) of 8,4 ¢,0(Z, W) is given by

1 ifIAeZ"8& st. T =4[], 'R=2424,
0 otherwise.

b(T, R) :{

Obviously we have 4T — R#~''R = 0 for T, R with b(T,R) # 0. Let
a(T) and ¢(T, R) be the Fourier coefficients of S, «(f)(Z) and f(Z, W)
respectively. If ¢(T', R) # 0, then ¢(T, R) = a(T1)b(T2, R) with T=T1+ T
because T is uniquely determined by R.

Now we suppose that f(Z, W) # 0 is singular. If a(7}) # 0 for some half
integral T} > 0, then there exist T > 0 and R € Z(&-% such that b(T;, R) #0
and hence ¢(Ty + T», R) = a(T)b(T>, R) # 0 is the Fourier coefficient of
f(Z, W). By assumption and the fact that 47, — R#~!'R =0, we have

det(4(T; + T>) — RA~'R) = det(4T}) = 0.

Hence S, 4(f) # O is singular. According to [W], Satz 4, we obtain the
condition 2k(p) < g+h . Conversely, suppose 2k(p) < g+h . Then, according
to [W], Satz 4, S, ¢(f) is singular. If ¢(T', R) # 0, then we have ¢(T, R) =
a(T))b(T,, R) for uniquely determined half-integral 7, and T, with T =
T, + T. Since a(T}) # 0 and S, ¢(f) is singular, det(T;) = 0. Using the
fact that 47, — R# 'R = 0, we obtain

det(4T — R#~''R) = det(4T) = 0.
Hence f(Z, W) is singular. This completes the proof. O
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Remark 4.6. For general p and .# without the above assumptions on them, it
is possible to prove that a nonvanishing Jacobi form f € J, 4(I'g) is singular
if and only if 2k(p) < g + h since [W], Satz 4 also holds for normal subgroups
of finite index in T, .

Remark 4.7. Ziegler (cf. [Z], Theorem 3.12) proved that a strongly singular

Jacobi form may be written as a linear combination of theta series 19?: ) (cf.
(2.3)).
Finally we prove

Theorem 4.8. Let .# be a symmetric, positive definite half-integral matrix of
degree h. Then for all a, b e Q-8 the theta series 0,4 o »(Z, W) satisfies
the differential equation

(4.5) My v, #024,0,6(Z, W)=0.
Proof. For each 1€ Z*:8  we put
T,:="(A+a)#(A+a), R;:=2'(A+a)A.
According to Theorem 3.2, we have
Mg b, a024,0,6(Z, W)

_(_T\¢ “1t
- (—-2-) det(Y). ¥ det(4T; — Rpt "' 'R))
A€Z(h . 8)
. e2nia{/((l+a)2'().+a)+2(/1+a) ’(W+b))}.

It is easy to show that det(4T; — R;.#~''R;) = 0 for all A € Z*-8) . Hence we
obtain the equation (4.5). O
5. EIGENFUNCTIONS OF M, ; 4

In this section, we give eigenfunctions of the differential operator M, , 4 .
For Y € &, we let Y = T[Q] be the Jacobian decomposition of Y such

that
L 0 ... 0 1 x ... =
0 tb ... 0 0 1 ... x
T=1. . . | 2={:: - |
0 0 ... t 00 ... 1
where T is a diagonal matrix with all £, >0 (v =1,...,g) and Q is an

upper triangular matrix with ones in the main diagonal (cf. [M]). We call tpe t,
(1 <v <g) and the elements gq; (1 <k </ <g) of Q Jacobian coordinates
of Y.

For s = (s, ..., 5g) € C&, we define the function f(Y) on % by

g
f(Y) =[] gt E Y = T[Q) € £
k=1
We put

€= (6117--"6133'~'18h1,"'78hg)ezgg’ Z2={0’ l}'
Thatis, ¢;; =0 orl1for 1<i<hand 1 <j<g.
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Theorem 5.1. Let .# be a half-integral positive definite symmetric matrix of
degree h. Let .#'> be the unique positive definite symmetric matrix such
that (#'?)* = #. We put #'? = (a;j), | < i,j < h. Then for each
§=(51,...,5¢) €C& and ¢ = (11, ..., 81, ..., 8ng) € z;’g, the function
fie.a(Y, V) on Py x RE-8) defined by

h en h b h
Sse,.a(Y, V)= f(Y)- (Z alkvkx) (Zaikvkj) (Zahkvkg)
k=1 k=1 k=1

is an eigenfunction of the differential operator M, , 5 with the eigenvalue
ls,e,/ = Hi:](sk + (g - 1)/4) .
Proof. We leave the proof to the interested reader. O

8;,3
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CONSTRUCTION OF VECTOR VALUED MODULAR FORMS
FROM JACOBI FORMS

JAE-HYUN YANG

ABSTRACT.  We give a geometrical construction of the canonical automorphic factor
for the Jacobi group and construct new vector valued modular forms from Jacobi forms
by differentiating them with respect to toroidal variables and then evaluating at zero.

1. Introduction. For given two fixed positive integers n and m, we let
H,:={ZecC"™ |Z="'ZImZ >0}

be the Siegel upper half plane of degree n and let I',, be the Siegel modular group of
degree n. Let
Py :=C[Wit,...,Wmnl, W= W) € C™

be the ring of polynomial functions on C™". Here C™" (resp. C™") denotes the space
of all complex n X n (resp. m X n)-matrices (see notation below). For any homogeneous
polynomial P € P, ,, we define the differential operator P(dy) on C™™ as follows:

0 0 )

P(w) = P(a—W—“,..,,m

In this paper, the author proves that if P is a homogeneous pluriharmonic polynomial in
Punandf €J ¢ (I'n) (see Definition 3.1) is a Jacobi form of index M with respect to
a rational representation p of the general group GL(n, C), then the following function

POw)(Z, W)|w=o

yields a vector valued modular form with respect to a new rational representation of
GL(n, C). For precise details, we refer to Definition 5.1 and Main Theorem in Section 5.
In [M-N-N] (¢f- pp. 147-156), the authors proved the similar result for theta functions.
Our result is a generalization of their result because theta functions are special examples
of Jacobi forms.

This paper is organized as follows. In Section 2, we provide a geometrical construction
of the canonical automorphic factor for the Jacobi group. In Section 3, we review Jacobi
forms and establish the notation. In Section 4, we review pluriharmonic polynomials and
obtain some properties to be used in the subsequent sections. In Section 5, we shall prove

This work was in part supported by TGRC-KOSEF and Max-Planck-Institut fiir Mathematik.
Received by the editors March 22, 1994; revised May 1995.

AMS subject classification: 11F30, 11F55.

(© Canadian Mathematical Society 1995.
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the main theorem. In Section 6, we obtain two identities by applying the main theorem
to Jacobi forms.

NOTATION. We denote by Z, R and C the ring of integers, the field of real numbers,
and the field of complex numbers respectively. I, :== Sp(n, Z) denotes the Siegel modular
group of degree n. The symbol “:=" means that the expression on the right is the definition
of that on the left. We denotes by Z* the set of all positive integers. F*) denotes the set
of all k x | matrices with entries in a commutative ring F. For a square matrix 4 € F*b of
degree k, o(A) denotes the trace of 4. For 4 € F®) and B € F*P, we set B[4] = ‘ABA.
For any M € F*D_ M denotes the transpose matrix of M. E, denotes the identity matrix
of degree n.

2. The canonical automorphic factor for the Jacobi group. Letm and n be two
fixed positive integers. It is well known that the automorphism group Aut(H,+,) of the
Siegel upper half plane of degree m + n is given by

At(Hpin) = Sp(m + 1, R)/ {£Epsn}-

We observe that H, is a rational boundary of H,+, (¢f. [N]). The normalizer N(H,)) :=
{6 € Aut(Hp+n) : 6(H,) C H,} of H, is given by

N(H,) = P(Hy)/{£Emn},

where
P(H,) : = {g € Sp(m +n,R) : g(H,) C H,}
= {[o,u,(\, 1, k)] € Sp(m + n,R)}.
Here we put
A 0 B A'u—B'X
_fux v oup uK
[U,M,()\,N,K)] L C 0 D Ct}t —Dt)\ )
0 0 O 1
A B (m,n) (m,m)
where 0 = c D € Sp(n,R), u € GL(m,R), A\, p € R"™" and k € R"™™.
t
If( VZV ?/) € Hpsn with Z € H,, W € R and T € H,,, we simply write

awn=(Z ")

We denote the symplectic action of N(H,) on (Z, W, T) by
8- (Z’ W’ T) = (Za Wa i)a g€ N(Hn)
It is easy to see that (Z, W, T) is of the form
Z = Ug(Z),

W = a(g; ZYW) + b(g; Z),
T = mg(T)+c(g; Z, W),
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where 0, € Aut(H,), my € Aut(P,,),

a(g;-) : H, — GL(C"™") holomorphic,
b(g;) : H, — €™ holomorphic,
e(g;-,") : H, x €™ — H,,  holomorphic.

Here B, := {¥ € R™m | Y =Y > 0} is an open convex cone in R"5" and we set
Aut(,) := {€ € GLC™™) | §(By) = Bn}.

REMARK 2.1. In [PS], Piateski-Sharpiro called the mapping (Z, W, T) — (Z, W, T)
a quasilinear transformation.
From now on, we set
Hyp := Hy x ™),

We observe that g = [0, u, (A, p, k)J(mod{+E+,}) € N(H,) acts on H,, ,, by
(2, W) — (04(2), a(g; Z)(W) + b(g; 2)).

The subgroup of N(H,) consisting of elements g = [0, u, (A, t, k)](mod{£E+,}) with
the property
mg = Identity on H,

is called the Jacobi group, denoted by G”. It follows immediately from the definition that
GJ = {[U’Em,(/\a K, "5)] € P(Hn)}
It is easy to see that G is the semidirect product of Sp(n, R) and H{"™, where
HZ™ = {[En, Em, (A, 1, K)] € P(H,)}

is the nilpotent 2-step subgroup of P(H,), called the Heisenberg group. For some results
on Hg’ M we refer to [Y11{Y2].

Now we consider another subgroup G of G’. By the definition, G consists of elements
of G/ whose action is of the following form:

@ W, 1) (04D, alg: )W), T+ (g2 W), c(g:2,0)=0.

LEMMA 2.2. The map
J: G x H, — GL(C"™™)

defined by
JG,2):=a(6;2), 6€G,ZeH,

is a factor of automorphy for G.

PROOF. It is easy to prove it. We leave its proof to the reader. =

118



1332 JAE-HYUN YANG

We note that the mapping

@2.1) A(g,(Z, W) =g Z,W), g€, (Z,W)€EHyp
is a summand of automorphy, i.e.,
2.2) A(g182,(Z, W) = A(g1,82 - (Z,W)) + A(g2,(Z, W),

where g1, g2 € G’ and (Z, W) € H,, .. We let
K¢ C GL(C™™)
be the complex Lie group generated by the linear mapping
{a(g;2): g€ G'}.
Then K¢ is isomorphic to GL(n, C).

LEMMA 2.3. Let
p: GL(n,C) — GL(V))

be a finite dimensional holomorphic representation of GL(n, C) on a finite dimensional
complex vector space V, and let x:C™" — C* be a character on the additive group
C™™_ Then the mapping J,: G x H, — GL(V,) defined by

J6,2):= p(J(6,2)), 6€G,ZeH,
is a factor of automorphy for G. Furthermore the mapping

Jyo(8 2, W) = x(c(g;Z,W))p(alg; 2)), g€’
is a factor of automorphy for the Jacobi group G’ with respect to x and p.

PROOF. The proof of this first statement is obvious. The proof of the second state-
ment follows immediately from the fact thatA(g, Z, W)) = ¢(g; Z, W) is a summand of
automorphy (cf. (2.1) and (2.2)) and that J, is a factor of automorphy for G. [

DEFINITION 2.4.  J, and J,, , are called the canonical automorphic factor for G with
respect to p and the canonical automorphic factor for G’ with respect to x and p respec-
tively.

3. Jacobi forms. In this section, we establish the notation and define the concept
of Jacobi forms.
Let
Sp(n,R) = {M € R | 'MJ,M = J, }

be the symplectic group of degree n, where

(0 E
e (0 E).
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It is easy to see that Sp(n, R) acts on H, transitively by
M(Z) := (AZ+B)(CZ+ D),

A B
where M = (C D) € Sp(n,R)and Z € H,.

For two positive integers n and m, we recall that the Jacobi group G’ := Sp(n, R) x
Hf{""‘) is the semidirect product of the symplectic group Sp(n, R) and the Heisenberg
group H;{"'") endowed with the following multiplication law

(M, 1, 8)) - (M, (N s 61)) = (MM R+ X i+ e+ 6+ X = BN))

with M, M’ € Sp(n, R), (\, i, &), (N, ', &') € HE™ and (3, 1) == (\, p)M'. It is easy to
see that G acts on H,,,, := H, x C™" transitively by

@G.D (M,(\, 1, 5)) - (Z, W) := (M(Z),(W+ M\Z+p)CZ+D)™"),
where M = (‘é g) € Sp(n,R), (\, 11, &) € H™ and (Z, W) € Hy .

Let p be a rational representation of GL(n, C) on a finite dimensional complex vector
space V,. Let M € R™™ be a symmetric half-integral semi-positive definite matrix of
degree m. Let C*°(H, m, V) be the algebra of all C* functions on H, ,, with valuesin V.
Forf € C*®°(Hym, V,), we define

(Mol (a0 m) )@ W)

3.2) — e—27ria(M[W+/\Z+;4](CZ+D)“C) x e21ria(M()\Z’/\+2)\'W+(n+p‘)\)))

X p(CZ +D) ' f(M(Z),(W + A\Z+ u)(CZ +D)™"),

C D
DEFINITION 3.1.  Let p and M be as above. Let
HP™ = {(\, p,k) € HP™ | \,p € I,k € 7™},
A Jacobi form of index M with respect to p on I, is a holomorphic function f €
C>°(Hy,m, V,) satisfying the following conditions (A) and (B):
(A) fl,a[71=fforally € T} :=T, x H™.
(B) f has a Fourier expansion of the following form:

fz,wy= v Y «T,R)- 2mio(TZ) | 2rio(RW)
>0 ReZ(nm)
half-integral

where M = (A B) € Sp(n,R), (A, p,K) € Hf{"'") and (Z,W) € Hym.

with ¢(T, R) # 0 only if( T %R) .
b %IR M iy
If n > 2, the condition (B) is superfluous by Kdocher principle (cf. [Z] Lemma 1.6).
We denote by J, 4,(I'») the vector space of all Jacobi forms of index M with respect to
ponT,. Ziegler (c¢f. [Z] Theorem 1.8 or [E-Z] Theorem 1.1) proves that the vector space
J,.a(T'n) is finite dimensional. For more results on Jacobi forms withn > 1 andm > 1,
we refer to [Y3H{Y6] and [Z].
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4. Pluriharmonic polynomials. We review pluriharmonic polynomials of matrix
arguments and collect some properties to be used in the next section (¢f. [K-V] and [M-
N-NJ).

Let n and m be two positive integers and let B, , := C[W;1, W12, ..., W] be the ring
of complex valued polynomials on €. For any homogeneous polynomial P € P, ,,
we put

0 0
@1 P(Oy) = P(WH””’M)'
Let S be a positive definite symmetric rational matrix of degree m. Let T := (t,,) be the
inverse of S. For each 7,j with 1 <i,j < n, we denote by A;; the following differential
operator

o
1<i,j<n.

4.2) Diji= 3 bz 1<LJ<
’ | P oW, oWy

p.9=
A polynomial P on C™" is said to be harmonic with respect to S if
4.3) S0P =0.
i=
A polynomial P on C™" is called pluriharmonic with respect to S if
(4.4) AP=0, 1<ij<n.

If there is no confusion, we just write harmonic or pluriharmonic instead of harmonic
or pluriharmonic with respect to S. Obviously a pluriharmonic polynomial is harmonic.
We denote by #,, , the space of all pluriharmonic polynomials on C™". The ring &, ,
of polynomials on C™™ has a symmetric nondegenerate bilinear form (P,Q) :=
(P(GW)Q)(O) for P,Q € P,». It is easy to check that (, ) satisfies

(4 5) (P’ QR> = (Q(aW)P5R>’ Pa QaR € Tm,w
LEMMA 4.1.  H,, , is invariant under the action of GL(n,C) X O(S) given by
4.6) ((A,B), P(W)) — P(BWA), A e GL(n,C), B € O(S).

Here O(S) := {B € GL(m,C) | 'BSB = S} denotes the orthogonal group of the quadratic
form S.

PROOF. See Corollary 9.11 in [M-N-N]. u

REMARK 4.2. In [K-V], Kashiwara and Vergne investigated an irreducible decom-
position of the space of complex pluriharmonic polynomials defined on C™" under the
action of (4.6). They showed that each irreducible component 7 ® A occurring in the
decomposition of #,, under the action (4.6) has multiplicity one and the irreducible
representation 7 of GL(n, C) is determined uniquely by the irreducible representation of

o(S).
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LEMMA 4.3.  If P is pluriharmonic, then we have
P(aW)eU(WC'WS_I) — P(zs—l WC)eU(WC[WS'I)
for all complex symmetric matrices C € C™" of degree n. We recall that o(A4) denotes
the trace of a square matrix.

PROOF. We set h(W) := o(WC'WS™"). We observe that 4(0)P = 0. Indeed,
W)y = 3" WycuWmitmi

ik,m

= ; Ck/(z bmi WmIWik)

im

=" cuhy.
i

Thus h@w)P = Tk cu(hu@w)P) = iy culixP = 0. We put (W) := ™). Then
SW) == p(W +4) = o(W)p(A)n(W), where A € €7 and n(W) := "@HC4S D,
POw)e(W)|w=14 = POw) (W)|w=0
= @A) (PEw)e(WM(M))|,,_,
= @(A)POwNW)|w=o-
Indeed, since A(Oy)P = 0, we have

P@w)(e(Wm(W))|,,_, = (P, o - 1) = (#(@w)P,n)
x 1
n=0 1*
= (P,n) = P@w)n(W)|w=o.
By an easy computation, we obtain
P@w)n(W) = PS™ ' AC)(W).

Finally, we have
P@w)e(W)|w=4 = ¢(4) - PQ2S ™ AC)(0).

Hence we obtain the desired result. =

5. Proof of Main Theorem. Throughout this section we fix a rational representa-
tion p of GL(#n, C) on a finite dimensional complex vector space ¥, and a positive definite
symmetric, half-integral matrix M of degree m once and for all.

We set S := (2M)~!. As in the previous section, we denote by H,, , the vector space
of all pluriharmonic polynomials with respect to S on C™". According to Lemma 4.1,
there exists an irreducible subspace V,(# 0) invariant under the action of GL(n, C) given
by (4.6). We denote this representation by 7. Then we have

-1y (r(A)P)(W) = P(WA), A € GL(n,C), P€EV,, W e ",
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The action 7 of GL(n, C) on V7 is defined by

(5.2) (FA)7'¢)(P) == ¢(r(47HP),
where 4 € GL(n,C),{€ V:and P € V;.

DEFINITION 5.1, Letf € J, 44(T's) be a Jacobi form of index M with respect to p
onTI,. Let P € V; be a homogeneous pluriharmonic polynomial. We put

(5.3) o(2) = P@WY(Z, W)lw=o, Z € Hy, W € O,

Now we define the mapping
Sy — VIV,

by
(5.4) (F@D)(P) ==fp(2), ZEH, PEV,.

DEFINITION 5.2. A holomorphic function f: H, — V, is called a modular form of
type pon T, if
JM(Z)) = p(CZ+D)(Z), ZE€H,

A B

forall M = c D € I',. If n = 1, the additional cuspidal condition will be added.

We denote by [, p] the vector space of all modular forms of type p on T',,.

MAIN THEOREM.  Let T and 7 be as before. Let f € J, 4((T'y) be a Jacobi form. Then
f:(2) is a modular form of type 7 ® p, i.e., f; € [[n, T ® pl.

PROOF. Let
fZ, W)= ZC(T, R)eZWiU(TZ) . 2mio(RW)
T.R
be a Fourier expansion of /(Z, W). Then we have

POw)f(Z, W) = 3 PQmi'R) - «(T,R) - 77210
TR
and
(5.5) fo(2) := P@wY (Z, W)|w=0 = Y PQni'R) - ™D . (T, R)
TR
Since f € J, 4¢(I'x), we have the following transformation law

(5 6) f(M(Z), W(CZ+D)_1) — eZWiU(MW(CZ+D)*lCrW) . p(CZ+D)f(Z’ W)

A B
C D

P@wY (M(Z), W(CZ+D)™")
= P(4miMW(CZ + D) 'C) 2o MW(CZ+D)'C'W)
X p(CZ+ D)f(Z, W) + h(Z, W) + o MW(CZ+D) " C'W)
X gPQm' 'R - p(CZ + D)c(T, R) - 2T TZ+RW),

forall M = ( ) € I's. Applying P(Ow) to (5.6), according to Lemma 4.3, we have
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where A(Z, W) is a V,-valued function on H,, whose restriction to W = 0 vanishes.
Here we used the fact that (CZ + D)~ C is a complex symmetric matrix of degree n and
Lemma 4.3. If we evaluate this at ¥ = 0, P being homogeneous, we have

(5.7) P@w) (M(Z),W(CZ+D)™") lW:O =S PQni'R) - "2 . p)(CZ + D)e(T, R).
T,R

On the other hand, '
P@wY (M(2), W(CZ+D)™")|,_,

— P(aw)z (T, R) p2mio(T-M(Z)) | ezm(RW(czw)—l)lW:O
T.R
=3 P(2mi'R(CZ+D)™") - &™) (T, R).
T.R

Thus according to (5.7), we have

(5.8) S PQmi'R) - " TMED . o(T,R) Y PQri'R) - ™D . po(CZ + D)e(T, R),
TR T,R

where P(W) := P( W{(CZ+ D)‘l). By (5.5), (5.8) implies

(.9 3 (M(Z)) = p(CZ + D)p(2),
that is,
(5.10) (FM(2)))(P) = p(CZ + D)f(Z)(P).

Since P = 7("(CZ + D)~ )P, we have from (5.9)

(67! ® 1,)(CZ + DY (M(Z))(P) = ((11: ® pXCZ + DY(2)) (P,

where 1y: (resp. 1y,) denotes the trivial representation of GL(n,C) on V; (resp. V).
Hence we obtain

(. 11) [(M(Z)) = (7 @ p)(CZ + D)(2)

A B
forallM = (C D

T p. n

) € I',. Therefore f; is a Hom(V;, V,)-valued modular form of type

6. Applications. In this final section, we obtain important identities by applying
the main theorem to two special Jacobi forms.

(I) Let S € Z®29 be a positive definite symmetric, unimodular even matrix of de-
gree 2k. We choose an integral matrix ¢ € 2™ such that ‘cSc is positive definite. We
consider the following theta series

HSC(Z, W) = Z ewin(S(/\Z'/\i-Z/\'(cW))).
’ )\ez(zk,n)
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Then b5 € J; 4¢(I'n) with M = %’cSc (cf [Z], p. 212). We write f(Z, W) := Os.(Z, W).
Then by Main Theorem, f; is a Hom(V;, C)-valued modular form of type 7 @ det*. Fur-
thermore, according to (5.9), for any homogeneous pluriharmonic P with respect to
Q@M)~! = (‘eSc)!, we obtain the following identity

Z P(Zm ICS)\ I(CZ+D)——1> . ewiU(S/\(AZ*-B)(CZ*D)"“/\)

AEZkn)
= {del(CZ+D)}* Y PQmi'cS\)- MISAZN)
A€Zkn)
A B
forall M = (C D) €l,and Z € H,.

(II) In[Z], Ziegler defined the Eisenstein series E(") ar(Z, W) of Siegel type. Let M be
a half integral positive definite symmetric matrix of degree mandletk € Z*. We set

A B
o {(8 3)er

Let R be a complete system of representatives of the cosets I', o \I', and A be a complete
system of representatives of the cosets 2™ / (ker(M)NZ™™), where ker(M) := {\ €
R | M - X\ = 0}. The Eisenstein series Ef:'ﬁ)M is defined by

C=O}.

EX‘;W(Z’ W) = A;: det(CZ+D)”‘ i e27ria(MW(CZ+D)"C’W)
C D)EK‘
i Z eZwio(M((AZ+B)(CZ+D)"',\+2/\’(CZ+D)" ’W))’
AEA
where (Z, W) € H,,,. Now we assume that k > n+m + 1 and k is even. Then according
to [Z], Theorem 2.1, E") a2 W) is a nonvanishing Jacobi form in J; 4,(I'»). By Main

Theorem, (E(nM)T isa Hom( V., C)-valued modular form of type 7 ® det*. We define the
automorphic factor j J:Sp(n, R) x H, — GL(n,C) by

j©2) = cZ+d, g= (c Z)eSp(n,R),zeH,..

Then according to (5.9), for any homogeneous pluriharmonic polynomial P with respect
to 2M)~!, we obtain the following identity

detj(M, 2} Y 3 detj(v,2)™* - P(4miM Ny, 2)7") - MDD
YER AEA

= 3 3 detj(r, M(Z) ™ - P(4TiMNG(YM, Z) ) - T MED)
YER AEA

foralMeTl,and Z € H,.
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2 JAE-HYUN YANG
1. Introduction

Recently R.E. Borcherds obtained some quite interesting results in [Bo6-7].
First he solved the Moonshine Conjectures made by Conway and Norton ( [C-N] ).
Secondly he constructed automorphic forms on the orthogonal group Ogyz2(R)
which are modular products and then wrote some of the well-known meromorphic
modular forms as infinite products. Modular products roughly mean infinite prod-
ucts whose exponents are the coefficients of certain nearly holomorphic modular
forms. The theory of Jacobi forms plays an important role in his second work in
[Bo7]. More than 10 years ago Feingold and Frenkel ( [F-F]) realized the connec-
tion between the theory of a special hyperbolic Kac-Moody Lie algebra of the type
H Ag” and that of Jacobi forms of degree one and then generalized the results of
H. Maass to higher levels. So far the relationship between the theory of Jacobi
forms of higher degree and that of other hyperbolic Kac-Moody algebras has not
been developed yet. The work of Borcherds in [Bo7| gives a light on the possibility
for the relationship between them. This fact urged me to write a somewhat sup-
plementary or expository note on Borcherds’ recent works which is useful for my
research on Jacobi forms although I am not an expert in the theory of Kac-Moody
Lie algebras and lattices. 1 hope that this note will be useful for the readers who
are interested in these interesting subjects. I learned a lot about these subjects
while I had been preparing this article. I had given a lecture on some of these ma-
terials at the 4th Symposium of the Pyungsan Institute for Mathematical Sciences
held at the Wonkwang University in September, 1995.

As mentioned above, the purpose of this paper is to give a survey of Borcherds’
recent results in [Bo6-7] to the core. This article is organized as follows. In section
2, we collect some of the well-known properties of Kac-Moody Lie algebras, e.g.,
the Weyl-Kac character formula, the root multiplicity and so on. In the appen-
dix, we discuss the generalized Kac-Moody Lie algebras introduced by Borcherds
roughly. In section 3, we give a sketchy survey on the Moonshine Conjectures
solved by Borcherds ([Bo6]). We discuss the monster Lie algebra and the no-
ghost theorem. This section is completely based on the article [Bo6]. In section
4, we review some of the theory of Jacobi forms and discuss singular Jacobi forms
briefly. We present Borcherds’ construction of nearly holomorphic Jacobi forms by
making use of the concept of affine vector systems. In section 5, we give a brief his-
tory of infinite products and present the work of Borcherds that expressed modular
forms in the Kohnen “plus” space of weight 1/2 as infinite products. For instance,
we write the well-known modular forms like the discriminant function A(r), the
modular invariant j(7) and the Eisenstein series Ey(7) (k > 4, k : even ) as infinite
products explicitly. In the final section, we discuss the fake monster Lie algebras
and Kac-Moody Lie algebras of the arithmetic hyperbolic type defined by V. V.
Nikulin ([N5]). As an example, we explain the generalization of Maass correspon-
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dence to higher levels which was done by A.J. Feingold and 1. B. Frenkel ( [F-F] ).
Finally we also give some open problems which have to be investigated. In the
appendix A, we collect some of the well-known properties of classical modular
forms. In the appendix B, we briefly discuss the Kohnen “plus” space and the
Maass “Spezialschar” which are essential for the understanding of the works in
[Bo7] and [F-F]. In the appendix C, we discuss the geometrical aspect of the or-
thogonal group Ogyg2(R) briefly. In the final appendix, we collect some of the
well-known properties of the Leech lattice A. Also we briefly discuss the Jacobi
theta functions.

Finally I would like to give my deep thanks to TGRC-KOSEF for its financial
support on this work. I also would like to give my hearty thanks to my Korean
colleagues for their interest in this work.

Notations: We denote by Z, @, R and C the ring of integers, the field of rational
numbers, the field of real numbers, and the field of complex numbers respectively.
Z* and Z, denote the set of all positive integers and the set of nonnegative integers
respectively. For a positive integer n, I, := Sp(n,Z) denotes the Siegel modular
group of degree n. The symbol “:=” means that the expression on the right is
the definition of that on the left. F*+) denotes the set of all k x | matrices with
entries in a commutative ring I. For a square matrix A € F*F) of degree k, o(A)
denotes the trace of A. For A € F(®) and B € F**  we set B[A] = ABA.
For any M e F®Y I denotes the transpose matrix of M. FE, denotes the
identity matrix of degree n. We denote by A the Leech lattice. II; ; denotes the
unique unimodular even integral Lorentzian lattice of rank 2. We denote by G the
MONSTER group. For g € G, T,(q) denotes the Thompson series of g. M and
V¥ denote the monster Lie algebra and the moonshine module respectively. 7(7)
denotes the Dedekind eta function. 7(n) denotes the Ramanujan function. Usually
p denotes the Weyl vector. We denote by [Ty, k] (resp. [I', k]o ) the complex vector
space of all Siegel modular forms ( resp. cusp forms ) on H,, of weight k with respect
to I',. We denote by [I'z, k] the Maass space or the Maass Spezialschar.

2. Kac-Moody Lie Algebras

In this section, we review the basic definitions and properties of Kac-Moody
Lie algebras.

An nxn matrix A = (a;;) is called a generalized Cartan matriz if it satisfies the
following conditions: (i) a;; = 2 for 4 = 1,---,n; (ii) a;; are nonpositive integers
for 4 # j; (iii) a;; = O implies a;; = 0. An indecomposable generalized Cartan
matrix is said to be of finite type if all its principal minors are positive, of affine
type if all its proper principal minors are positive and det A = 0, and is said to be
of indefinite type if A is of neither finite type nor affine type. A is said to be of
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4 JAE-HYUN YANG

hyperbolic type if it is of indefinite type and all of its proper principal submatrices
are of finite type or affine type, and to be of almost hyperbolic type if it is of
indefinite type and at least one of its proper principal submatrices is of finite or
affine type.

A matrix A is called symmetrizable if there exists an invertible diagonal matrix
D = diag(q1,- - ,qn) with ¢; > 0, ¢ € Q such that DA is symmetric. If A is
an n X n matrix of rank [, then a realization of A is a triple (h,II,11V), where
f is a complex vector space of dimension 2n — [, IT = {ay, -+ ,a,} and IV =
{af, -+, )} are linearly independent subsets of h* and § respectively such that
aj(e)) = a;; for 1 <i,5 <n.

Definition 2.1. The Kac-Moody Lie algebra g(A) associated with the general-
ized Cartan matrix A is the Lie algebra generated by the elements e;, f; (i =
1,2,---,n) and h with the defining relations

h,h'] =0 for all h, K’ €,

ei, fi] = 8ija for1 <i,5 <mn,

[h,e;] = ai(h)e;, |h, fi| = —ai(h)f; fori=1,2,--- n,
(ade;) =% (e;) = (ad f;)'~9(f;) =0 fori#j.

The elements of II (resp. I1Y) are called simple roots (resp. simple coroots) of
g(A).

Let Q :== Y1 Zoy, Qy = >0 Zyoy and Q- := —Q4. Q is called the root
lattice. For av:= 31" | kja; € Q the number ht(a) := Y7 | k; is called the height
of «. We define a partial ordering > on h* by A > pif A\—p € Q. For each o € h*,
we put

go = {X €g(4) | [h, X] = a(h)X for all h € h}.

If go # 0, «a is called a root and g, is called the root space attached to «. The
number mult v := dim g, is called the multiplicity of a. The Kac-Moody Lie
algebra g(A) has the following root space decomposition with respect to b:

(2.1) g(A) = Z Jo (direct sum).
acQ

A root a with a > 0 (resp. a < 0) is called positive (resp. negative). All roots
are either positive or negative. We denote by A, AT and A~ the set of all roots,
positive roots and negative roots respectively.

Definition 2.2. Let g(A) be a symmetrizable Kac-Moody Lie algebra associated
with a symmetrizable generalized Cartan matrix A = (a;5). A g(A)-module V is
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h —diagonalizable if V = @ ep» V), where V,, is the weight space of weight 1 given
by
Ve={veV|hv=plh)vforallheh}+#0.

The number multy p := dim V), is called the multiplicity of weight p. When all the
weight spaces are finite-dimensional, we define the character of V' by

(2.2) chV = Z (dim V), )e* = Z (multy p)et.
neh* peh*

An h-diagonalizable g(A)-module V is said to be integrable if all the Chevalley
generators e;, fi(i = 1,2,---,n) are locally nilpotent on V. A g(A)-module V is
called a highest weight module with highest weight A € h* if there exists a nonzero
vector v € V such that (i) e;v = 0 forall i = 1,2,---  n; (ii) hv = A(h)v for all
h € b; and (iii) U(g(A)) v = V. A vector v is called a highest weight vector. Here
U(g(A)) denotes the universal enveloping algebra of g(A).

Let ny (resp. n_) be the subalgebra of g(A) generated by ey, -- e, (resp.
S, fn). Then we have the triangular decomposition

g(A) =n_@hdny (direct sum of vector spaces).

Let b4 := b+ ny be the Borel subalgebra of g(A). For a fixed A € h*, we let C(A)
be the one-dimensional b-module with the by-action defined by

ny-1=0 and h-1=A(R)1 forall heh.

The induced module

(2.3) M(A) = U(a(A)) ®ue,) CA)

is called the Verma module with highest weight A. It is known that every g(A)-
module with highest weight A is a qutoient of M(A) and M(A) contains a unique
proper maximal submodule M’(A).

We put
(2.4) L(A) := M(A)/M'(A).

Then we can show that L(A) is an irreducible g(A)-module.
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We set
P:={\ebh*|<\ay >€Z for i=1,--,n},
Pi:={ ePl<\ay>>0 for i=1,--,n},
Piy:={ eP|<Aa)/>>0 for i=1,---,n}.

The set P is called the weight lattice. Elements from P (resp. P, or Pyy)
are called integral weights (resp. dominant or regular dominant integral weights).
We observe that Q € P and Py, C Py C P. If Ais an element of Py, ie., A
is a dominant integral weight, then L(A) is integrable (cf. [K], p. 171) and the
Weyl-Kac character formula for L(A) is given by

> wew e(w)er A P=p
Ha€A+ (1 _ e—a)mult o

Here e(w) = (—1)%®) = dety w for w € W, W the Weyl group of g(A) and p
is an element of h* such that < p,ay >=1for i =1,--- ,n. We recall that W C
Aut(h*) is the subgroup generated by the reflections o;(\) := A — AM(a))e; (1 <
i <n).

We set A = 0 in (2.5). Since L(0) is the trivial module over g(A), we obtain
the following denominator identity or denominator formula:

(2.5) chL(A) =

(2.6) [T (r—emoymtte = 3" e(w)ev .
aeAt weWw
Substituting (2.6) into (2.5), we obtain another form of the Weyl-Kac charater
formula:

D wew c(w)e At
zweW 6(w)€w<p>

Of course, in the case when g(A) is a finite dimensional semisimple Lie algebra,
then (2.7) is the classical Weyl character formula and (2.6) is the Weyl denominator
identity. We remark that an integrable highest weight module L(A) over g(A) is
unitarizable and conversely if L(A) is irreducible, then A € Py (cf. [K], p.196).

Let A = (a;;) be a generalized Cartan matrix. We associate to A a graph S(A)
called the Dynkin diagram of A as follows. If a;;a;; < 4 and |a;;| > |ajl, the
vertices ¢ and j are connected by |a;;| lines, and these lines are equipped with an
arrow pointing toward ¢ if |a;;| > 1. If a;;a;; > 4, the vertices ¢ and j are connected
by a bold-faced line equipped with an ordered pair of integers |a;;|, |aj;|. We list
some of hyperbolic Kac-Moody Lie algebras.

(2.7) ch L(A) =
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fIAg)7 [>2: O—0E=0—0—0—  + - ——0&=0

a_1 O [e %1 (o'} a3 Qp_1 Oy
2

HA;I>_17123: o—o—0—0— - —0&=©
x_1 &g Qo [0 %) Q1 Qg

HDI<J2r>17lZ2 : o— =0 —0—0— " —O0—0
a_1 oo [e %1 a0 a3 Qp_1 Oy

f]E'é2> : 0—o0—0—0&==0—o0

ap® . o

Let A = (aij)ij=—1,0,.-¢ be a hyperbolic generalized Cartan matrix whose
corresponding affine submatrix of A is given by Ay = (art)k,i=0,1,...¢. We can
realize the hyperbolic Kac-Moody Lie algebra g(A) as the minimal graded Lie
algebra L = @,ezl, with local part V + g(Ag) + V*, where V = L(—a_;) is
the basic representation of the affine Kac-Moody Lie algebra g(Ag) and V* is the
contragredient of V. Thus L = G/I, and L,, = G\, /I, where G = @p,ezGy, is the
maximal graded Lie algebra with local part V 4 g(Ag)+ V™ and I = ®pezl, is the
maximal graded ideal of G intersecting the local part trivially. Each L, (n € Z)
is a g(Ap)-module. (By definition, G = @,eczGy, is called a graded Lie algebra
if G is a Lie algebra and [G;,G;| C Gy, for all 4,5 € Z.) A graded Lie algebra
G = Pnez Gy is called drreducible if the represantation ¢_;1 of Go on G_; defined
by ¢_1(xo)r—1 = [0, 2_1] for all xg € Gy and z_; € G_; is irreducible. A graded
Lie algebra G = @®,ezG,, is said to be mazimal (resp. minimal) if for any other
graded Lie algebra G/ = @,czG,, every isomorphism of the local parts of G and
G’ can be extended to an epimorphism of G onto G’ (resp. of G’ onto G). Kac
(cf. [K]) proved that for any local Lie algebra G_; & Gy @ G, there exist unique
up to isomorphism maximal and minimal graded Lie algebras whose local parts
are isomorphic to a given Lie algebra G_1 & Gy & Gy.
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Example 2.3. Let

2 -1 0
A= (ai)ij=—101=|-1 2 =2
0 -2 2

be the hyperbolic generalized Cartan matrix. We can realize the corresponding
hyperbolic Kac-Moody Lie algebra g(A4) := HA%1> as the minimal graded Lie
2 =2
-2 2
and V := L(—a_1) is the basic representation of the affine Kac-Moody Lie algebra
g(Ao) == Ag”. The dimensions dim(L_,, ) for 0 <n <5 were computed by A. J.
Feingold, I. B. Frenkel, S.-J. Kang and etc. For instance, dim(Lg), = 1 and

o= (1 ),

algebra L = ®pez L, with local part V + g(Ag) + V*, where Ay =

where p is the partition function defined by

= n 1 n
(2.8) > n(n)g" = o o= [T-q".
n=0 q n>1
Example 2.4. Let
2 -1 0
A= (aij)iyj:_ly()’l = -1 2 —4
0 -1 2

be the generalized Cartan matrix of hyperbolic type. We can realize g(A) := HA;2>
as the minimal graded Lie algebra L. = @,z L,. The dimensions dim L_,, (1 <
n < 3) were computed by A. J. Feingold and S. J. Kang.

Example 2.5. Kac-Moody-Wakimoto (cf.[KMW]) considered the hyperbolic

Kac-Moody Lie algebra HEEE1> = Fjg. Using the modular invariant property of
level 2 string functions, they computed root multiplicities of G_9 and /_3. Thus
they obtained the formula

RN (W)Y

where £(n) is defined by the relation

S R T (')
(29) ;an)q - o(e)® <1 ¢(q4)>'
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REMARK 2.6. In [Fr|, Frenkel conjectured that for a hyperbolic Kac-Moody Lie

algebra g, we have
dimg, < p@ 2) <1 — —( ’ )>
2 ?

where £ is the size of the generalized Cartan matrix of g and the function p=2)(n)
is defined by

AR PR S oyt
(2.10) ;p QU nl;[l(l 7"t

But this conjecture does not hold for Fig (cf. [KMW]). This conjecture is true for

HA7<11>. We observe that HAS@D is of hyperbolic type for n < 7 and that HASA}) is
of almost hyperbolic type for n > 8.

Appendix. Generalized Kac-Moody Algebras

Let I be a countable index set. A real matrix A = (a;5)ijer is called a
Borcherds-Cartan matrix if it satisfies the following conditions:
(BC1) a;; =2 ora; <0foralliel;
(BC2) Qi <0 lfl#] and ai5 € Z if Qi — 2;
(BC3) a;; = 0 implies aj; = 0.
Let I" == {i € I | ag = 2} and ["™ := {i € [ | ay < 0}. Let m = (m; | i € I)
be the charge of A, i.e., m; = 1 for all i € ["® and m; € Z* for all j € "™, A
Borcherds-Cartan matrix A is said to be symmetrizable if there exists a diagonal
matrix D = diag(d; | ¢ € I) with §; > 0 (i € I) such that DA is symmetric.

Definition 2.7. The generalized Kac-Moody algebra g = g(A, m) with a sym-
metrizable Borcherds-Cartan matrix A of charge m = (m; | i € I) is the complex
Lie algebra generated by the elements h;,d; (i € I), ey, fir (€I, k=1, ,my)
with the defining relations:

hi, byl = [hy, dj] = [di, dj] = 0,

hiseje) = asjeje, |hi, fie] = —asj fie,

di,eje] = dizeje, |di, fiel = =05 fie,

eiks fie] = 0ij0neh,

(adei)' =% (eje) = (ad fix)' =" (f0) =0 if a; = 2 and i # j,
leiks ejel = fir, f5¢) =0 ifa; =0

[
[
[
[

foralli,jel, k=1,--- ,my, L=1,---,m;.
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The subalgebra b := (}-,c; Ch;) ® (X.;c; Cd;) is called the Cartan subalgebra
of g. For each j € I, we define a linear functional o; € h* by

Let T .= {a; |t € I} C h* and ITY := {h; | ¢ € I} C h. The elements of II (resp.
ITY) are called the simple roots (vesp. simple coroots) of g. We set

Q= ZZO&@ QF = ZZ+04¢7 Q= -Qt.

i€l el

@ is called the root lattice of g. We define a partial ordering < on h* by A < p if
iw— A€ Q. For a € h* we put

go = {X €eg|[h,X]|=a(h)X forall heh}.

If go # 0 and a # 0, « is called root of g and g, is called the root space attached
to the root a. The generalized Kac-Moody algebra g has the root decomposition

(2.11) g= Z Oa (direct sum).
aeQ

We observe that go, = >0, Ce; , and g_o, = > 1 Cf; k. The number mult a :=
dim g, is called the multiplicity of a. A root a with ae > 0 (with o < 0) is said to
be positive (resp. negative). We denote by A, AT, A~ the set of all roots, positive
roots, and negative roots respectively. We set

(2.12) nt = Z Jos n o= Z o

ac A+ aEA~

Then we have the triangular decomposition: g =n~ & hdn'.

Since A is symmetrizable, there exists a symmetric linear form ( | ) on h*
satisfying the condition (o | a;) = ;a4 for all 4,5 € I. We say that a root « is
real if (o | ) > 0 and émaginary if (a | a) < 0. In particular, the simple root «; is
real if a; = 2 and imaginary if a;; < 0. We note that the imaginary simple roots
may have muliplicity > 1. For each ¢ € I"¢, we let o; € Aut(h*) be the simple
reflection on h* defined by o;(\) := A — A(h;)a; for A € h*. The subgroup W of
Aut(h*) generated by the o;’s (i € I"¢) is called the Weyl group of g.

Let

Pl ={eh* | AMhy) >0 forallie I, \h;) €Zy ifay=2}.
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For A € P}, we let V()\) be the irreducible highest weight module over g with
highest weight A. We denote by T the set of all imaginary simple roots counted
with multiplicities. We choose p € h* such that p(h;) = %Cbn' for all 4 € I. Then
we have the Weyl-Kac-Borcherds character formula [Bol] :

Y wew Sopcr, pua(—1DEHFlgwOtemsB)=p
HQGA+(1_€—a)multa »

where F' runs over all the finite subsets of T such that any two distinct elements
of F' are mutually orthogonal, £(w) denotes the length of w € W, |F| := Card(F)
and s(F) denotes the sum of elements in F. For A = 0, we obtain the denominator
identity:

(214) H (1 _ e—a)multa _ Z (_1)€(w)+|F|ew(p—s(F))—p.

acAT weW
FCT

(2.13) chV()\) =

REMARK 2.8. The notion of a generalized Kac-Moody algebra was introduced by
Borcherds in his study of the vertex algebras and the moonshine conjecture [Bol-
3]. As mentioned above, the structure and the representation theory of generalized
Kac-Moody algebras are very similar to those of Kac-Moody algebras. The main
difference is that a generalized Kac-Moody algebra may have imaginary simple
roots.

3. The Moonshine Conjectures and The Monster Lie Alegebra

In this section, we give a construction of the Monster Lie algebra M and a
sketchy proof of the Moonshine Conjectures due to R. E. Borcherds [Bo6].

The Fischer-Griess monster sporadic simple group G, briefly the MONSTER,
is the largest among the 26 sporadic finite simple groups of order

246.320 .59 .76 .112.13% . 17-19-23-29 - 31 - 41 - 47-59 - 71.

It is known that the dimension of the smallest nontrivial irreducible representation
of the MONSTER is 196883 ( [FLT]). It was observed by John McKay that 1 +
196883 = 196884, which is the first nontrivial coeflicient of the elliptic modular
function j.(q) := j(q) — 744, where j(q) is the modular invariant:

(3.1) Gelg) = D e(n)g™ = g7+ 196884q + 21493760¢% + - - - .
n>—1

Later J.G. Thompson [Th2] found that the early coefficients of the elliptic modular
function j,(q) are simple linear combinations of the irreducible character degrees of
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G. Motivated by these observations, J. H. Conway and S. Norton [C-N] conjectured
that there is an infinite dimensional graded representation V# = Don>—1 V¥ of the
MONSTER. G with dim V;} = ¢(n) such that for any element g € G, the Thompson
series

(3.2) Tylg) = Y triglya®s  co(n) = triglyy)

n>—1

is a Hauptmodul for a genus 0 discrete subgroup of SL(2,R). It is known that there
are 194 conjugacy classes of the MONSTER G. Only 171 of the Thompson series
Ty(q), g € G are distinct. Conway reports on this strange and remarkable phe-
nomenon as follows: “Because these new links are still completely unexplained,
we refer to them collectively as the ‘moonshine’ properties of the MONSTER,
intending the word to convey our feelings that they are seen in a dim light, and
that the whole subject is rather vaguely illicit!”. Therefore the above-mentioned
conjectures had been called the moonshine conjectures. Recently these conjec-
tures were proved to be true by Borcherds [Bo6] by constructing the so-called
monster Lie algebra. In his proof, he made use of the natural graded representa-
tion V#:= 3" o |V} of the MONSTER G, called the moonshine module or the
Monster vertex algebra, which was constructed by L.B. Frenkel, J. Lepowsky and
A. Meurman [FLM]. ( The vector space V# and V! are denoted by V! and V_hn
respectively in [FLM].) The graded dimension dim, V* := S o (dim V)" of
the moonshine module V# is given by dim, V! = T1(q) = j(q) — 744.

Let II, ; = Z? be the 2-dimensional even Lorentzian lattice with the matrix

< 01 _01 > The Monster Lie algebra M constructed by Borcherds has the fol-

lowing properties:

(M1) M is a Z*-graded generalized Kac-Moody Lie algebra with Borcherds-
Cartan matrix A = (—(i + j))i jer of charge m = ((c(i)|i € I), where [ = {-1} U
{il¢ > 1}. The root lattice of M is I1; 1 = Z2.

(M2) M is a Z*-graded representation of the MONSTER G such that Mg g =
R? and My, 1y = Vif,,, for all (m,n) # (0,0). In particular, dim M, ,,y = dim V},,, =
c(mn) for all (m,n) # (0, 0).

(M3) The only real simple root of M is (1,—1) and the imaginary simple roots
of M are of the form (1,4) for ¢ > 1 with multiplicity c(3).

(M4) (gl M ny) = tr(glys ) = cg(mn) for all g € G and (m,n) # (0,0).

(M5) M has a contravariant bilinear form (, )o which is positive definite on the
piece My, ) of degree (m,n) # (0,0). (By a contravariant bilinear form we mean

that there is an involution o on M such that (u,v) := —(u, o(v))g is invariant and
(u,v) = 0 if deg(u) + deg(v) # 0.)
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14 JAE-HYUN YANG

We denote by e_1 1= e1 1, ¢ x) and fo1 = foi, fire (0 € 1, k(i) =
1,2, -+, c(i) ) the positve and negative simple root vectors of M respectively. Then

we have

My 1y =Ce_y, M_11)=Cfy,
M 5 = Cein @ Cein @ - @ Cey oy,
M5y =Cfiin®©Cfia® - ©Cficuy (i21).

Consider a basis of M(; ; consisting of the eigenvectors v; x(;)(g) of an element
g € G with eigenvalues \; x(;)(g), where k(i) = 1,2, -+, ¢(4). Since My ;) = V; (i >
1) as G-modules, we have

e()
(3.3) Y Ak (9) = trglug ) = trglys) = cl0)
k(i)=1

for all g € G and ¢ > 1. In addition, since M _1) = M(_; 1) = V_u1 =~ R? is the
trivial G-module, we have g -e_; =e_1, g- f-1 = f_1 forall g € G.

For small degrees M looks like Fig. 1.

0 0 0 0 Vi
o o o o v} vV
o o VvV, o v} vf W}
0O 0 0 R 0 0 0
vivi vE oo v o0 o
vEvE Vi 0o 0 0 o0
viveE vi o 0 0 o0
Fig. 1

Now we give a construction of the Monster Lie algebra. First of all we define
the notion of vertex algebras.

Definition 3.1. A wvertex algebra V over R is a real vector space with an infinite
number of bilinear products, written as u,v for u,v € V, n € Z, such that

(V1) wuyv =0 for n sufficiently large (depending on « and v),
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(V2) for all u,v,w €V and m,n,q € Z, we have

S () Cwgsithon st = D (1) Qnramiongi) = (101 iums 0.

i€ i€Z
(V3) there is an element 1 € V such that v,1 =0ifn >0 and v_;1 = v.

Example 3.2. (1) For each even lattice L, there is a vertex algebra Vi, associated
with L constructed by Borcherds [Bol]. Let L be the central extension of L by
Zs, i.e., the double cover of L. The underliying vector space of the vertex algebra
Vy, is given by Vi, = Q(L) ® S(®i0L;), where Q(L) is the twisted group ring of
L and S(@®i>o0l;) is the ring of polynomials over the sum of an infinite number of
copies L; of L ® R.

(2) Let V be a commutative algebra over R with derivation D. Then V becomes
a vertex algebra by defining

—n—1 w)v
o — 7D<_n_§>!> forn <0
0 forn > 0.

Conversely any vertex algebra over R for which u,v = 0 for n > 0 arises from a
commutative algebra in this way.

(3) Let V and W be two vertex algebras. Then the tensor product V @ W as
vector spaces becomes a vertex algebra if we define the multiplication by

(a®b)p(c®d) = Z(aic) ® (bp—1-:d), ne€Z.
i€Z
We note that the identity element of V @ W is given by 1y ® lyw.
(4) The moonshine module V¥ is a vertex algebra.
Definition 3.3. Let V be a vertex algebra over R. A conformal vector of dimen-

ston or central charge ¢ € R of V is defined to be an element w of V satisfying the
following three conditions:

(1) wov = D(v) forallveV;

(2) wiw = 2w, waw = ¢/2, wyw =0 fori=2o0ri>3;

(3) any element of V is a sum of eigenvectors of the operator Ly := w; with
integral eigenvalues.

Here D is the operator of V defined by D(v) := v_3l for all v € V. If v is an
eigenvector of Lg, then its eigenvalue \(v) is called the conformal weight of v and
v is called a conformal vector of conformal weight A\(v). If vertex algebras V and
W have conformal vectors wy and wyw of dimension m and n respectively, then
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wy ® ww is a conformal vector of the vertex algebra V & W of dimension m + n.
It is known that the vertex algebra V associated with any c-dimensional even
lattice has a canonical conformal vector w of dimension ¢. We define the operators
L;(i€Z)of V by

(34) L; = Wit1, 1 €.

These operators satisfy the relations

. i+1\c .
(35 e E Y (A PN S

and so make V into a module over a Virasoro algebra spanned by a central element
¢ and L; (i € Z). We observe that the operator L_; is equal to the operator D.
We define

(3.6) P ={veV|L(v) =wwv=r1v, Lpy(v) =0 for k>0}, i€Z.

Then the space P'/(DV N P') is a subalgebra of the Lie algebra V/ DV, which is
equal to P'/DPY for the vertex algebra V7, or for the Monster vertex algebra V¥,
Here DV denotes the image of V under D. It is known that the algebra P*/DP°
is a generalized Kac-Moody algebra. The structure of a Lie algebra on V/DV is
given by the bracket: [u,v] = ugv(u,v € V).

The vertex algebra V;, associated with an even lattice L has a real valued
symmetric bilinear form (,) such that if « has degree k, the adjoint u} of the
operator u,, with respect to (,) is given by

(3.7) wt = (=1)F Z L{ (U(u))Qk—j—n—27

320 Jt
where ¢ is the automorphism of V, defined by
(3.8) o(e) = (=)t (e) 7!

for e¥ an element of the twisted group ring of L corresponding to the vector w € L.
If a vertex algebra has a bilinear form with the above properties, we say that the
bilinear form is compatible with the conformal vector.

Definition 3.4. A wvertex operator algebra is defined to be a vertex algebra with
a conformal vector w such that the eigenspaces of the operator Ly := w; are all
finite dimensional and their eigenvalues are all nonnegative integers.
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For example, the Monster vertex algebra V¥ is a vertex operator algebra whose
conformal vector spans the subspace Vlﬁ fixed by the MONSTER . The vertex
algebra Vi, | associated with the 2-dimensional even unimodular Lorentzian lattice
IT; ; is not a vertex operator algebra.

We recall the properties of the Monster vertex algebra V¥,

(VF1) V¥ is a vertex algebra over R with conformal vector w of dimension 24
and a positive definite symmetric bilinear form (,) such that the adjoint of w,, is
given by the expression (3.7), where ¢ is the trivial automorphism of V¥,

(V#2) V' is a sum of eigenspaces V! of the operator Ly := wy, where V! is the
eigenspace on which Lo has eigenvalue n + 1 and dim V! = ¢(n). Thus V¥ is a
vertex operator algebra in the sense of Definition 3.4.

(V#3) The MONSTER G acts faithfully and homogeneously on V¥ preserving
the vertex algebra structure, the conformal vector w and the bilinear form ().
The first few representations V! of the MONSTER G are decomposed as

V—ﬁ1 = X1, Voti =0,
‘/1ti = X1+ X2,
Vzﬁ = X1+ X2+ X3,
Vgti =2x1+ 2x2 + x5+ X4,
V= 4x1 4 B2 + 3x3 + 2xa + X5 + X6 + X7
where x,, (1 < n < 7) are the first seven irreducible representations of G, indexed

in order of increasing dimension.

(V#4) For g € G, the Thompson series T,(q) is a completely replicable function,
i.e., satisfies the identity
(3.9)

Texp [ =Y Y (gl i) =D (gl )™ =D tr(glya)d”

1>0 meZt,neZ meZ nez

We remark that the properties (V#1), (V#2) and (V#3) characterize V¥ completely
as a graded representation of G.

CONSTRUCTION OF THE MONSTER LIE ALGEBRA M : The tensor product
V = V#® Vi, of V¥ and Vi, , is also a vertex algebra. Then P!/DPY is
a Lie algebra with an invariant bilinear form (,) and an involution 7. Here
Pl and D := L; are defined by (3.4) and (3.6), and 7 is the involution on V
induced by the trivial automorphism of V*# and the involutuon w of Vi, , - Let
R = {v e V| (u,v) = 0 for u € V} be the radical of (,). It is easy to see
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18 JAE-HYUN YANG

that DP is a proper subset of R. We define M to be the quotient of the Lie
algebra P'/DPY by R. The II; ;-grading of Vi, , induces a II; ;-grading on M.
According to the no-ghost theorem, M, ) is isomorphic to the piece VE  of degree
1—(m,n)?/2 = 1+mn if (m,n) # (0,0) and Mo o) = VI ©R? = R? And ifv € M
is nonzero and homogeneous of nonzero degree in II; ;, then (v,7(v)) > 0. M
satisfies the properties (M1)-(M5).

REMARK 3.5. The construction of the Monster Lie algebra M from a vertex
algebra can be carried out for any vertex algebra with a conformal vector, but it
is only when this vector has dimension 24 that we can apply the no-ghost theorem
to identify the homogeneous pieces of M with those of V#. The important thing is
that the bilinear form (,) on M is positive definite on any piece of nonzero degree,
and thus need not be true if the conformal vector has dimension greater than 24,
even if the inner product is positive definite.

Problem. Are there some other ways to construct the Monster Lie algebra?

SKETCHY PROOF OF THE MOONSHINE CONJECTURES : The proof is divided
into two steps.

STEP I. The Thompson series are determined by the first 5 coefficients ¢, (i), 1 <
i <5 for all g € G because of the identities (3.9).

STEP II. The Hauptmoduls listed in Conway and Norton [C-N, Table 2] satisfy
the identities (3.9) and have the same first 5 coefficients of the Thompson series.

The proof of step I is done by comparing the coefficients of p? and p* of both
sides of the identities (3.9) and so obtaining the recursion formulas among ¢, (7).
The proof of step II follows from the result of Norton [Nol] and Koike [Koil] that
the modular functions associated with elements of the MONSTER, G also satisfy
the identites (3.9) and hence satisfy the same recursion formulas. Roughly we
explain how Conway and Norton [C-N] associate to an element of G a modular
function of genus 0. Let ¢ be an element of G corresponding to an element of odd
order in Aut(A) with Leech lattice A such that g fixes no nonzero vectors. Let
€1, - ,€24 be eigenvalues of g on the real vector space A ® R. We define

(3.10) 19() = ng(c1q) - -nle2sq), q:=€"7, 7€ Hy,
where 7(q) = ¢*/** [L.>:(1 —¢") is the Dedekind eta function and Hi := {z €
C| 3z > 0} is the Poincaré upper half plane. We put

1 1

Jola) = ng(q)  1g(0)

Then j,(g) is the modular function of genus 0. j,(gq) is the modular function
associated with an element g of G by Conway and Norton.
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Appendix: The No-Ghost Theorem

Here we discuss the NO-GHOST THEOREM. First of all, we describe the concept
of a Virasoro algebra.

Let F = R or C. Let F[¢,t7!] be the commutative associative algebra of Laurent
polynomials in an indeterminate t, i.e., the algebra of finite linear combinations of
integral powers of t. Let p(t) € F[t,¢~!] and we consider the derivation Dy, of
F[t,t=!] defined by

d

(1) Dy = p(t)%-

The vector space a spanned by all the derivations of type (1) has the Lie algebra
structure with respect to the natural Lie bracket

(2) [Dp, Dy| = Dpgr—prq  for all p,q € F[t, t71].

We choose the following basis {d,|n € Z} of a defined by

(3) WRES —t”+1%7 n € Z.

By (2), we have the commutation relation
(4) [, dn] = (M —N)dpyn, m,n € L.

It is easily seen that a is precisely the Lie algebra consisting of all derivations of
F[t,t=1].

Now we consider the one-dimensional central extension b of a by Fe with basis
congisting of a central element ¢ and elements L,, n € Z, corresponding to the
basis d,, n € Z, of a. We define the bilinear map [, |« : bx b — b by

[Cv b]* - [bvc]* - [Cv C]* =0
and

1
(5) [Limy Ln)x = (M — ) Ly + —=(m® = m)8m n.oc

12 (
for all m,m € Z. Then [, |, is anti-symmetric and satisfy the Jacobi identity.
Thus (b, [, |«) has the Lie algebra structure. The Lie algebra b is called a Virasoro
algebra. 1t is not difficult to see that the extension b of the Lie algebra a is the
unique nontrivial one-dimensional central extension up to isomorphism.
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Now we state the no-ghost theorem and give its sketchy proof.

The No-Ghost Theorem. Let V be a vertex algebra with a nondegenerate
bilinear form (, )y . Suppose that V is acted on by a Virasoro algebra b in such
a way that the adjoint of L with respect to (, )y is L_x (k € Z), the central
element of b acts as multiplication by 24, any vector of V is a sum of eigenvectors
of Ly with nonnegative integral eigenvalues, and all the eigenspaces of Lg are finite
dimensional. We let V¥ := {v € V| Lo(v) = kv} (k € Z) be the k-eigenspace of
Lp. Assume that V is acted on by a group G which preserves all this strucutre. Let
Vi, , be the vertex algebra associated with the two-dimensional even unimodular
Lorentzian lattice IT; ; so that Vi, ; is IT; ;-graded, has a bilinear form (, );; and
is acted on by the Virasoro algebra b as mentioned in this section. We let

Pt={vec V& Vo, | Lo(v) = v, Lp(v) =0 foral k>0}

and let P,,1 be the subspace of P! of degree r € IT; ;. All these spaces inherit an
action of G from the action of G on V' and the trivial action of G on Vi, ,. Let
(,):=1(,)v®(, )11 be the tensor product of (, )y and (, )1,1 and let

R::{UEV®VH1,1| (u,v) =0 for allueV@VHm}

be the null space of (,). Then as G-modules with an invariant bilinear form,

VI=n/2 0 for ¢ £ 0

P!/R =
v/ {Vl@R27 for r = 0.

REMARK. (1) The name “no-ghost theorem” comes from the fact that in the
original statement of the theorem in [G-T], V was a part of the underlying vector
space of the vertex algebra associated with a positive definite lattice so that the
inner product on V* was positive definite, and thus P! had no ghosts, i.e., vectors
of negative norm for r #£ 0.

(2) If we take the the moonshine module V¥ as V, then V.# corresponds to V7!
for all n € Z.

A SKETCHY PROOF : Fix a certain nonzero vector r € Il ; and some norm 0
vector w € Iy ; with (r,w) # 0. We have an action of the Virasoro algebra on
V @ Vp, , generated by its conformal vector. The operators L, of the Virasoro
algebra b satisfy the relations

26
(6) [Liny Lin)x = (M = )Ly + = (m* = m)dmino, m,n € Z,

12
and the adjoint of L., is L _,,,. Here 26 comes from the fact that the central element

c acts on V' as multiplication by 24 and the dimension of II; ; is two. We define
the operators K,,, m € Z by

(7) Km = Um—1,
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where v 1= e_5’e" is an element of the vertex algebra Vi7, ; and e® is an element
of the group ring of the double cover of 11, ; corresponding to w € II; ; and e™*
is its inverse. Then these operators satisfy the relations

(8) (L, Kl = =Ko yn,  [Kp, Kol =0

for all m,n € Z. (8) follows from the fact that the adjoint of K, is K_,, and
(w,w) = 0.
Now we define the subspaces T* and Ve” of V ® Vi, , by

Th:={v eV &V, |deg(v) =1, Lo(v) = v, Lin(v) = K;p(v) = 0 for allm >0}

and Ve" :=V ® e". Then we can prove that

(9) Tt yi=n/2er and T =~ PY/R.

We leave the proof of (9) to the reader. Consequently we have the desired result
PR~ VI=()/2gr s y1=(mn)/2.

For the case r = 0, we leave the detail to the reader.

Finally we remark that in [FI] Frenkel uses the no-ghost theorem to prove some
results about Kac-Moody algebras.

4. Jacobi Forms

In this section, we discuss Jacobi forms associated to the symplectic group
Sp(g,R) and those associated to the orthogonal group O, 2 2(R) respectively. We
also discuss the differences between them.

I. Jacobi forms associated to Sp(g,R).
An exposition of the theory of Jacobi forms associated to the symplectic group
Sp(g,R) can be found in [E-Z], [Y1]-[Y4] and [Zi].
In this subsection, we establish the notations and define the concept of Jacobi
forms associated to the symplectic group. For any positive integer g € ZT, we let
Sp(g,R) — {M € RE929) | g, M — J,}

be the symplectic group of degree g, where
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It is easy to see that Sp(g,R) acts on H, transitively by
M < Z >=(AZ + B)(CZ + D)™},

where M = <é, g) € Sp(g,R) and Z € H,. For two positive integers ¢ and h,

we consider the Heisenberg group
Hﬂég’m = {0 pw), K] |\ p e RP9 o e RBP4 1B\ symmetric}
endowed with the following multiplication law
[ 1) w0 [V 1), K] o= [V N ot 1), kb R4 A = N,
We define the semidirect product of Sp(g, R) and Hﬂég’m
G7 = Sp(g,R) x HEM
endowed with the following multiplication law

(Mv[()‘v /'L)v "Q]) : (M/7 [()‘/7 /’l//)7 "Ql])
= (MM [+ N, Tt i), 5+ 1+ N — X)),

with M, M’ € Sp(g,R) and (X, i) = (A, p) M". Tt is easy to see that G” acts on
H, x C"9) transitively by

(4.1) (M, [\ p),6) - (Z,W) = (M < Z >, (W +AZ+ p)(CZ+ D)™ Y),

where M = <A B > € Sp(g,R), [\, ), k] € HE™ and (2, W) € Hy x Ch9).

C D

Let p be a rational representation of GL(g,C) on a finite dimensional complex
vector space V,. Let M € R be a symmetric half-integral semipositive definite
matrix of degree h. Let C°°(H, x C{9), V,) be the algebra of all C* functions on
H, x C"9) with values in V,. For f € O%(H, x C"9 V), we define

(f|P7M[(M7 [()‘7 /1)7 "Q])])(Zv W)

(4.2) - e—zma(M[WJrAZJrM](CZJrD)*10) .€27m'a(/\/l(/\Zt/\+2/\tW+(n+ut/\)))
x p(CZ + D) ' f(M < Z > (W+AZ+u)(CZ+ D)™h,
where M = <é, g) € Sp(g,R) and [(\, p), k] € HE™.
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Definition 4.1. Let p and M be as above. Let
HEM = [\ ), 6] € HE™ | Ay € 209 i € 7M.

A Jocobi form of index M with respect to p on I'y is a holomorphic function
f € C=(H, x Ch9 V) satisfying the following conditions (A) and (B):

(A) flpml3] = f for all § €T == Ty x HPM.

(B) f has a Fourier expansion of the following form

f(Z,W) = Z Z o(T, R) - 270 (T2) _ j2mio(RW)

T>0 ReZla:h)
half-integral

ith (7, R) £ 0 only if { L. 28} 5 ¢
w C s only %tR M ~ U

1
Moreover if ¢(T, R) # 0 implies < 11,; 211

Lip /\/l> > 0, f is called a cusp

Jacobi form.

If g > 2, the condition (B) is superfluous by the Koecher principle (cf. [Zi],
Lemma 1.6). We denote by J, m(I'y) the vector space of all Jacobi forms of index
M with respect to p on I'y. In the special case V, = C, p(A) = (detA)*(k €
Z, A € GL(g,C)), we write Jx,am(T'y) instead of J, pm(I'y) and call k the weight of
a Jacobi form f € Jp m(Ty).

Ziegler (cf. [Zi], Theorem 1.8 or [E-Z|, Theorem 1.1) proves that the vector
space J, pm(I'y) is finite dimensional.

Definition 4.2. A Jacobi form f € J, m(T'y) is said to be singular if it ad-
mits a Fourier expansion such that a Fourier coefficient ¢(7, R) vanishes unless

T IR

Example 4.3. Let S € Z(%2k) be a symmetric, positive definite, unimodular
even integral matrix and ¢ € Z%") We define the theta series

(43) WO(ZW) = 3 oS INR0SNW) g g gy e o),
\eZ(2k,9)

We put M = %tcSc. We assume that 2k < g + rank(M). Then it is easy to see
that 1955{1 is a singular Jacobi form in Ji (D) (cf. [Zi], p. 212).

REMARK 4.4. Without loss of generality, we may assume that M is a positive
definite symmetric, half-integral matrix of degree h (cf. [Zi], Theorem 2.4).
JFrom now on, throughout this paper M is assumed to be positive definite.
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Definition 4.5. An irreducible finite dimensional representation p of GL(g,C)
is determined uniquely by its highest weight (A1, Az, -+, Ay) € Z9 with Ay > Ay >

- > Ag. We denote this representation by p = (A1, A2, -+, Ay). The number
k(p) := A4 is called the weight of p.

The author (cf. [Y3]) proved that singular Jacobi forms in J, p(I'y) are char-
acterized by their singular weights.

Theorem 4.6 (Yang [Y3]). Let 2M be a symmelric, positive definite even
integral matriz of degree h. Assume that p is an irreducible representation of
GL(g,C). Then a nonvanishing Jacobi form in J, pm(L'g) is singular if and only
if 2k(p) < g+ h. Only the nonnegative integers k with 0 < k < % can be the
weights of singular Jacobi forms in Jx m(Tg). These integers are called singular
weights in Jp (D).

Proof. The proof can be found in [Y3], Theorem 4.5. O

I1. Jacobi forms associated to Oy 2(R)

An exposition of the theory of Jacobi forms associated to the orthogonal group
can be found in [Bo7], [G1] and [G2].

First we fix a positive integer s. We let Lg be a positive definite even integral
lattice with a quadratic form @ and let II, ; be the nonsingular even integral

lattice with its associated symmetric matrix [y = <_01 _01> . We define the
following lattices L1 and M by
(44) L1 =Lg&® H171 and M = H171 @ L.

Then L; and M are nonsingular even integral lattices of (s + 1,1) and (s + 2,2)
respectively. From now on we denote by Qo, Q1, Qar (resp. (, )o, (, )1, (, )ar)
the quadradic forms (resp. the nondegenerate symmetric bilinar forms) associated
with the lattices Lo, L1, M respectively. We also denote by Sp, 51, and Sy the
nongingular symmetric even integral matrices associated with the lattices Lg, L
and M respectively. Thus S; and Sy are given by

0 0 -1 0 0 I
(4.5) S| = 0 Sy 0 and Spy =1 0 Sy 0 ],
-1 0 0 b 0 0
0 -1
where I = <_1 R We let Mrp :— M ®z R and M¢ := M &7 C be the

quadratic spaces over R and C respectively. We let

(4.6) O(MR7SM) = {g S GL(MR) | thMg = SM}

150



JACOBI FORMS AND INFINITE PRODUCTS 25

be the real orthogonal group of the quadratic space (Mg, Qar). We denote by Oy
the isometry group of the lattice (M, Q). Then Oy is an algebraic group defined
over Z. We observe that Sys is congruent to sy over R, ie., Sy = taEerg,ga
for some a € GL(s + 4,R), where

E, 0
(4.7) Eoia2 :< O“ _E2>.

Then it is easy to see that O(Mg, Spr) = a='O(Mg, Fs 2 2)a. Now for brevity we
write O(Mg) simply instead of O(Mg, Sis). Obviously O(Mg) is isomorphic to the
real orthogonal group

(4.8) Os122(R) = {9 € GL(s + 4,R) | gE,s 229 = Esya2}.

O(Mg) has four connected components. Let G§ be the identity component of
O(Mg) and let K3 be its maximal compact subgroup. Then the pair (G}, Kg) of
the real semisimple groups isomorphic to the pair (SO(s + 2,2)%, SO(s + 2,R) x
SO(2,R)) is a symmetric pair of type (BDI) (cf. [H] 445-446). The homogeneous
space X := G%/Kp is a Hermitian symmetric space of noncompact type of dimen-
sion s+ 2 (cf. see Appendix C). Indeed, X is a bounded symmetric domain of type
IV in the Cartan classification. It is known that X is isomorphic to a Gg-orbit
in the projective space P(Mc). Precisely, if we let D := {z € P(Mc) | (z,2)m =
0, (2,Z)m < 0}, then

(49) D = G]%lbg U G]%iC_O = l)+ U ﬁ7 l)+ = G]%lb(h

where Ty denotes the complex conjugation of xg in P(Mc¢). We shall denote by Gr
the subgroup of O(Mg) preserving the domain D*. It is known that DT =~ G /K3
may be realized as a tube domain in C**2 given by

(4.10) D={"7=(w,z7)eC?|we H, reH, S$i[lmZ] <0},

where Im Z denotes the imaginary part of the column vector Z. An embedding of

the tube domain D into the projective space P(Mc), called the Borel embedding,
is of the following form

(411) p(Z) = p({w, 21, 120, 7)) — t(%Sl[Z] Witz T 1) € P(Me),

Gr acts on D transitively as follows: if g = (gx;) € Gr with 1 < k,[ < s+ 4 and
Z=Yw, 21, ,2s,7) €D, then

(412) g < Z >i= (a}7g17 7gs7f7:)7
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where
s+2
1 _1
W= (5920912 + g2pw + Y go0m-2 + gasysT + g2,044) J(9,2) 7
1—3
1 s+2
2k = (§9k+2,151 [Z] + gry2,0w + ngz,z%-z + Gry2.eraT + grro.s1a) J(g, 2)7H 1<k <s,
-3
s+2
1 B
T = (§gs+3,151 [Z] + gsqs3,2w + ng+3,lzl—2 + gs13,5437 + gs+3,s+4) J(g,2)".

=3
Here we put

1 s+2

(4.13) J(9, 2) = 59514151 Z] + gspapw + D Geraizioz + GorasisT + Gotasra-
=3

It is easily seen that
(4.14) plg < Z>)J(g,72) =g -p(Z) (- is the matrix multiplication)
and that J : Gg x D — GL(1,C) = C* is the automorphic factor, i.e.,

J(9192,2) = J(g1,92 < Z >)J (92, Z)

for all g1, g2 € Gr and Z € D.
Let Ops(Z) be the isometry group of the lattice M. Then '3y := Gg N Op(Z)
is an arithmetic subgroup of Gg.

Definition 4.7. Let k be an integer. A holomorphic function f on D is a modular
form of weight k with respect to I'ps if it satisfies the following transformation
behaviour

(4.15) (flen)(2) = J (v, 2)" f(y < Z >) = [(Z)

for all v € I'py and Z € D. For a subgroup I of '3 of finite index, a modular form
with respect to I' can be defined in the same way.

We denote by M (') the vector space consisting of all modular forms of weight
k with respect to I'. We now introduce the concept of cusp forms for I'y;. First
of all we note that the realization Dt of our tube domain D in the projective
space P(Mc) is obtained as a subset of the quadric D in P(Mc) (cf. see (4.10)).
A maximal connected complex analytic set X in D+ ~ Dt is called a boundary
component of DT, where DT denotes the closure of Dt in P(M¢). The normalizer

152



JACOBI FORMS AND INFINITE PRODUCTS 27

N(X) := {9 € Gr | g(X) = X} of a boundary component X of D* is a maxi-
mal parabolic subgroup of Gg. X is called a rational boundary component if the
normalizer N(X) of X is defined over Q. A modular form with respect to I'ys is
called a cusp form if it vanishes on every rational boundary component of D1. It
is well known that any rational boundary component X of Dt corresponds to a
primitive isotropic sublattice S of M via X = Xg = P(S ® C) N D+. Since the
lattice M contains only isotropic lines and planes, there exist two types of rational
boundary components, which are points and curves.

The orthogonal group Gg has the rank two and so there are two types of max-
imal parabolic subgroups in I'js. Therefore there are two types of Fourier expan-
sions of modular forms. A subgroup of I'y; fixing a null sublattice of M of rank
one is called a Fourier group. A subgroup of I'js fixing a null sublattice of M of
rank two is called a Jacobi parabolic group™. Both a Fourier group and a Jacobi
parabolic group are maximal parabolic subgroups of I'as.

Let f € Mp(Tar) be a modular form of weight k with respect to I'ps. Since the
following v¢(£ € Ly = Z5+2) defined by

1 o b 1
(416) Yo i— 0 Es+2 l s b= 551 [EL a = Slﬁ
0 0 1

are elements of I'yy, f(Z + L) = f(Z) for all £ € L;. We note that v,(Z2) =7+ ¢
for all Z € D and J(~,, Z) = 1. Hence we have a Fourier expansion

(4.17) F(Z) =3 a(t)erm i 2),

14

where ¢ runs over the set {¢ € Ly | il € D, Si[¢] > 0}. Here Ly denotes the dual
lattice of Ly, that is,

E\l ={leL,®;Q|%S1a € Zforallac Li}.

We let
(4.18) HZ) = J(w,2,1) = D dm(r, 2)e"™ ™

m>0

be the Fourier-Jacobi expansion of f with respect to the variable w. Obviously the
Fourier-Jacobi coefficient

(4.19) Go(T,2) = lim f(iv, z,7)

v 00

*In [Bo7], this group was named just a Jacobi group. The definition of a Jacobi group is
different from ours.
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depends only on 7. We can show that the Fourier-Jacobi coefficients ¢, (7, z) (m >
0) satisfies the following functional equations

ar +b z & im cSolz]
4.20 m — T —_— d UM =7 g m ,
and
(421) ¢m(7_7 2+ xr + y) _ e—271'z'm(75;;[;5'0z+%SO[:z:]r)(bm(T7 z)
for all i 2 ely = SL(2,Z) and all z, y € Z°.

Now we define the Jacobi forms associated to the orthogonal group. First we
choose the following basis of M such that

(422) M = Z€1 D Zeg D LO D Z€_2 &5, Z€_17

where e, e, e_1,e_ are four isotropic vectors with (e;, e;) = d; —;. Let Pr be the
Jacobi parabolic subgroup of Gy preserving the isotropic plane Re; @ Reg. Then
it is easily seen that an element g of Fr is given by the following form:

A Xy, Y
(4.23) g= 0 U X]|, XieR®YyerR®d X R,
0 0 A

A€ GLy(R)T, SolU] =Sy, A”=TI'A"11,
X, = I'A7YX S U, WTA+'AIY = So[X],

0 -1
-1 0
or conformal group of the lattice L consisting of linear transformations multiplying
the quadratic form by an invertible element of a lattice L. We let K := Ze ®Ze, be
the 2-dimensional primitive null sublattice of M. Then we have a homomorphism
7p: Pr — GOk (R) x GO, (R) defined by

where [ 1= Iy = > . We denote by GOy, for the general orthogonal group

Ag X, Y
(4.24) 0 U X |+—(4%0).
0 0 A

The connected component of the kernel of 7p is called a Heisenberg group, denoted
by Heis(Mg). It is easy to see that Heis(Mg) consists of the following elements

1 0 WSy @Soy—r 1Solyl

0 1 %Sy %So [x] r
(4.25) {Xsr}={x,y;7} =0 0 E, x Y ;

0 O 0 1 0

0 O 0 0 1
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where X = (z,y), with 2,5 € R and r € R. The multiplication on Heis(Mg)
is given by

(4.26)

{Xy;r H{ Xy ra} = { X1 + Xy + 72+ 2150y}, Xu = (21,91), Xao = (w2,92).

We let G be the subgroup of Pg generated by the following elements
(4.27) {A} = diag(A”, Fs, A), A€ SL(2,R), A° = I'A™']

and {X;7} in Heis(Mg). G{ is called the (real) Jacobi group of the lattice M. We
observe that G is isomorphic to the semidirect product of SL(2,R) and Heis(Mg).
It is easy to check that

(425) (X5 HAY = (ANHX A5+ 5 (aSoya — ‘2500),

where x4 and y4 are the columns of the matrix X A. We see easily that Heis(Mg)
is a normal subgroup of the Jacobi group G and the center C7 of G consists of
all elements V(r) := {0,0;7}, r € R. According to (4.12), the actions of {A} and
{x,y;r} on D are given by as follows:

(4.29)
of o cSolz] 2 ar+b\
A <2>= <w 2er+d) er+d er+d)’
(4.30)
1
{z,y;7} < Z >=Yw+7r+ S0z + 550[:5]7-7 +ar+y),7),
where A = <Z Z) € SL(2,R) and Z = Yw,z,7) € D. {From (4.29) and (4.30),

we can define the action of the Jacobi group Gg on the (7, z)-domain H; x C*,
which we denote by g < (7,2) >, g € G§.

Let k and m be two integers. For g € G and Z = {w, %, 7) € D, we denote
by w(g; Z) the w-component of ¢ < Z > . Now we define the mapping Jx » :
G x (H, x ©) — GL(1,C) = C* by

(4.31) Tem(g, (7, 2)) 1= J(g, Z)ke=2mime(a:2) . g2mime

where g € G, Z = {(w,%, 1) € D and J(g, Z) is the automorphic factor defined by
(4.13). Jim is well-defined, i.e., it is independent of the choice of Z = (w, %, 1) €
D with given (1,2) € Hy x C*. It is easy to check that Ji ,, is an automorphic
factor for the Jacobi group Gg. In particular, we have

.emSo[z]

(4.32) Jem({A}, (1,2)) = €™ eta - (er +d)F, A

<CCL Z) € SL2,R)
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and
(4.33) Jk,m({$7 y; r}7 (7—7 z)) _ e—?ﬁim(r+txsoz+%so[:z:]7').

We have a natural action of G on the algebra C*°(H; x C?) of all C* functions
on H; x C? given by

(4.34) (@lemg)(7,2) = (g, (1,2)) 'y < (7,2) >),

where ¢ € C°(H; x C*), g € G§ and (1,2) € H; x C°. We let 'Y, :== Ty NGY
(cf. Definition 4.7). Then I'{, is a discrete subgroup of Gg which acts on H; x C*
properly discontinuously.

Definition 4.8. Let k and m be nonnegative integers. A holomorphic function
¢ : Hy x C* — C is called a Jacobi form of weight k and index m on I'J, if ¢
satisfies the following functional equation

(4.35) Plrmy =@ forall el

and f(7, z) has a Fourier expansion

(4.36) (25(7'7 z) _ Z Z C(n7£)€277i<n7-+t6302>

neZ EGZ\O
with ¢(n, £) # 0 only if 2nm — Sp[¢] > 0. Here Lo is the dual lattice of Lo, i.e.,
E\O ={lecLo®Q|%Soa €Z for all a € Lo}.

A Jacobi form ¢ of weight k and index m is called a cusp form if c(n, £) # 0 implies
2nm — So[f] > 0. We denote by Ji m(I'f;) (vesp. J¢'o¥(I'y,)) the vector space of
all Jacobi forms (resp. cusp forms) of weight k and index m on T'%,.

REMARK 4.9. (1) Jg(I'4;) is finite dimensional.
(2) The Fourier-Jacobi coefficients ¢, of a modular form f (cf. (4.17)) are Jacobi
forms of weight k and index m on T'{,. (cf. (4.20) and (4.21)).
(3) If ¢ € Jem(T4y), the function fs(w,2,7) = ¢(7,2)e? ™« is a modular form
with respect to the subgroup of finite index of the integral Jacobi parabolic sub-
group Pz := Fr N Tyy.

Let m be a nonnegative integer and let Gy, (Lo) := Lo/mLg be the discrimi-
nant group of the lattice Lg. For each h € G,,(Lg), we define the theta function
Vso,m.h = VLgm.h

(437) 19L0 m h(q-7 z) — Z eﬂ"im(SO[ﬁ+%]T+2t<E+%)Soz)7
e Ly
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where (7,2) € Hy s := H; x C*. Any Jacobi form ¢ € Ji ,,(I'{,) can be written as

(4.38) $r.2) = Y. on(T)iemn(r,2)
heGpm (Lo)
with
én(r) =Y c((2r + ¢Solh]) (2gm) ™", h)e*

r>0

where each r > 0 satisfies the condition 2r = —¢Sp[h|(mod 2gm), ¢(n,£) denotes
the Fourier coefficients of ¢(7,z) and ¢ is the level of the quadratic form Sy. We
can rewrite (4.38) as follows :

(4.39) O(1,2) = '0(7) - OLem (T, 2),

where

(4.40) (1) == (Gu(T)hecn o) 204 OLom = (Vromi)iea,, (Lo -
a b

Then we can show that for any v = € SL(2,Z), the theta function

d

Or,,m satisfies the following transformation formula

bt A otd - 5 .ov(M "
CT+CZ7CT+CZ +d (CT+d) X( )@Lo, (Tvz)v

(441)  Op,m <a7- +b oz > _ grim2l

where x(M) is a certain unitary matrix of degree |G,,(Lo)| (cf. [G2], p.9 and [O],
p.105). And ®(7) satisfies the following functional equations :

(4.42) B(r 1) =™ W B(r), B(-1/7) = TFEU(D)B(r),
st s = (%) 1) e
(4.43) U(J) = (detS,) " <%> <e_27” g50h>g,heem@o>

We note that the finite group G,,(Lg) may be regarded as the quadratic space
equipped with the quadratic form ¢, 1, defined by

(444) qmyLo(h -+ mLO) = (h + mLg, h+ ng) € (h7 h)g + 27.

JFrom (4.41) and (4.42) it follows that ®(7) is a vector-valued modular form of a
half-integral weight and that the vector space of Jacobi forms of index m depends
only on the quadratic space (Gp,(Lo), @m,L,)-
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Lemma 4.10. Let My and My be two even integral lattices of dimension s1 ans
so. We assume that the quadratic spaces (G, (M1), @y ar,) ond (Gray (M), @y 01,)
are isomorphic. Then we have the isomorphism

Jk,m1 (Fl{/h) = J]H,%J@ (Fl{/lg)'

Proof. The proof is done if the map

(445) t(I)(T) : @Ml ,1] (7—7 z) t(I)(T) : @M27m2 (7—7 z)

is an isomorphism of J . (F]‘{/[l) onto Jk+52751 - (F]‘{/[Q). The isomorphism can
p) 5

be proved using (4.41) and s; = s3 (mod8). O

Now we discuss the concept of singular modular forms and singular Jacobi
forms.

Definition 4.11. A modular form f with respect to I'y; (or a Jacobi form ¢ of
index with respect to I'{;) is said to be singular if its Fourier coefficients satisfy
the following condition that

a(n, £, m) = 0 (or c(n, £) # 0) implies 2nm — Sp[£] = 0,

where a(n,f, m) and ¢(n,£) denote the Fourier coefficients of f and ¢ in their
Fourier expansions respectively.

We consider the differential operators D and D defined by

o 1.,,0
and
~ 0 1 0
4D D= 5 = Tmim 0l

Then it is easy to see that if f if a singular modular form and if ¢ is a Jacobi form
of index m, then Df = 0 and ﬁqﬁ = 0. We can also show easily that any Jacobi
form with respect to I'{, has its weight s/2 and that any Jacobi form of weight s/2
with respect to I'Y, is singular. From this fact, we see that a weight of a singular
modular form with respect to I's is either 0 or s/2.

For each positive integer m, we let M(m) = II, ; @ Lo @ II; ; be the lattice
with its associated symmetric matrix given by

0 0 I 0 -1
(448) S(m) = 0 mSO 0 s IQ = <_1 0 > .
I, 0 0
We let I'Y, = Fl{/f(m) be the integral Jacobi group of the lattice M (m). It follows

immediately from the definitions that if ¢ € Ji ,(I'4,), then ¢ € Jx1(I'2,). The
existence of a nonconstant singular Jacobi form of index 1 with respect to 'Y,
guarantees the unimodularity of the lattice M. Precisely, we have
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Proposition 4.12 ([G2], Lemma 4.5). Let M be a maximal even integral
lattice. This means that M is not o sublattice of any even integral lattice. Then a
nonconstant singular Jacobi form of index 1 with respect to I'Y, ewists if and only
if the lattice M is unimodular.

Proof. The proof can be found in [G2], p.21. But we write his proof here. Let
¢(7,2) be a nonconstant singular Jacobi form of index 1 with respect to I'Y,.
According to (4.39), ¢(7,2) = ©(7) - Or,,1(7, 20). Thus the components ¢ (1) (h €
G1(Lo)) of ® are constants because their weights are all zero. By (4.42), we have

rn(r +1) = e ™0lg, (7)) he Gi(L).

Therefore the components ¢y are not zero only for the isotrophic vectors h in the
group G1(Lg) = E\O/LO. Since M =11 ; ® Lo @I, ; is maximal, there exists only
the trivial isotropic element h = 0 in G1(Lg). Again by (4.42), we obtain that
|G1(Lo)| = 1 and so Lg is unimodular. Hence the lattice M is unimodular. O

Example 4.13. We assume that M is a unimodular even integral lattice of
signature (s + 2,2). Then the theta series

(4.49) W, 2) = Z 67”(‘%[A]TJF?ASOZ’>7 (r,2) € Hy 5
el

is a singular Jacobi form of weight s/2 and index 1 with respect to I'{,. The
arithmetic lifting fy of ¥(7, 2z) defined by

(4.50)
s/2 —1)1¢(s/2 o
fﬁ(w7z77-) - ( / (2 Z;sg/g / ) + Z 0'3/2_1(’/7/7771; )\) 627Tz(nr+ ASozmw)
T n,m>0, el
2nm=35p[A]
(n,m)7(0,0)

is a singular modular form of weight s/2 with respect to I'{;, where Os/2—1(n,m; A)
denotes the sum of (s/2 — 1)-powers of all common divisors of the numbers n, m
and the vector A € L. For more detail, we refer to Theorem 3.1 and Example 4.4
in [G2].

As we have seen so far, automorphic forms on the real symplectic group and
those on the real orthogonal group have different geometric objects, different au-
tomorphic factors (cf. (4.12)), and somewhat different properties. For instance, in
case of the orthogonal group Oy 2(R), there is a gap between 0 and s/2 such that
there exist no modular forms and no Jacobi forms with weights in this gap. By the
way, this phenomenon does not happen for automorphic forms and Jacobi forms
in the case of the symplectic group Sp(g,R) because all integers less than half the
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largest singular weight are also singular weights. For more detail, we refer to [F]
for singular modular forms and to [Y3] for singular Jacobi forms. In both cases the
number of singular weights is equal to the real rank of the corresponding Lie group.
Nonetheless the properties of Jacobi forms for the orthogonal group are similar to
those of Jacobi forms for the symplectic group. For example, the Fourier coeffi-
cient ¢(n, £) of a Jacobi form of weight k and index m for O,y 2(R) depends only
on the number 2mn — Sg[f] (which is the norm of the vector (n, £, m) in the lattice
L) and the equivalence class of £ in the discriminant group G, (Lo) = Lo/Lo (cf.
compare Theorem 2.2 in [E-Z] with our case). We observe that the automorphic
factors for the Jacobi groups for both cases are quite similar (cf. see (4.2) and
(4.31)-(4.33)). The expression of Jacobi forms in terms of (4.38) or (4.39) are
similar to that of Jacobi forms for the symplectic group (cf. [E-Z], [Y1], and [Zi]).

REMARK 4.14. In [Bo7], R. Borcherds investigates automorphic forms and Jacobi
forms for Os122(R) which are either nearly holomorphic or meromorphic.

Meromorphic functions with all poles at cusps are called nearly holomorphic
ones.

BORCHERDS’ CONSTRUCTION OF JACOBI FORMS : Let K be a positive definite
integral lattice of dimension s. A function ¢ : K — Z* U {0} is said to be a vector
system if it satisfies the following three properties (1)—(3) :

(1) The set {v € K|c(v) # 0} if finite.

(2) e(v) =c(—v) forall v € K.

(3) The function taking A to 3,5 c(v)(A,v)? is constant on the sphere of
norm 1 vectors A € K @ R.

We will write V for the multiset of vectors in a vector system and so we think of
V' as containing c(v) copies of each vector v € K. And we write ) .y f(v) instead
of 3 ,cx ¢(v)f(v). The vector system is said to be trivial if it only contains vectors
of zero norm.

The hyperplanes orthogonal to the vectors of a vector system V divides Kg :=
K ® R into cones which we call the Weyl chambers of V. We note that unlike the
case of root systems, the Weyl chamber of V need not be all the same type. If
we choose a fixed Weyl chamber W, then we can define the positive and negative
vectors of V' by saying that v is positive or negative, denoted by v > 0 or v < 0
if (v,A) > 0 or (v,\) < 0 for some vector A in the interior W° of W. It is easy to
check that the concept of positivity and negativity does not depend on the choice
of a vector A in W9, Obviously every nonzero vector of the vector system V is
either positive or negative.

We define the Weyl vector p = pw of W by

p::%qu.

veV
v>0
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We define d to be the number of vectors in V' and define k = C<2—O>. The rational
number k is called the weight of V. We define the index m of V by

m = (2dim K)™! Z(uv)

veV

We can show that the index m of V is a nonnegative integer. If V is a vector
system in K, we define the (untwisted) affine vector system of V to be the multiset
of vectors (v,n) € K @ Z with v € V. We say that (v,n) is positive if either n > 0
orn =0, v > 0. It can be seen that the Weyl vectors for different Weyl chambers
differ by elements of K.

Borcherds (cf. [Bo7], p.183) define the function (7, z) on H; x K¢ with K¢ =
K g C=C?® by

(4.51) Y(rz)i=qfic [[ (1—q"¢"), (r,2) € Hy x K,

(v,n)>0

where (v,n) runs over the set of all positive vectors in the affine vector system of
V, q% == 2™ and (¥ = €2™*Y) Then v(r, 2) is a nearly holomorphic Jacobi
form of weight k and index m. Thus ¥ can be written as a finite sum of theta
functions times nearly holomorphic modular forms. In fact, v satisfies the following
transformation formulas:

— T (7, 2),
— (=) Y2R (5 fiyRem =D T (1, 2,

= (=1)*Hy(7, 2),
= (—1)2N TNy (7 2)

P(r+1,z
Y(=1/72/7
Y(T, 2+ 1
(1,2 + AT

D N N R

for all A, u € K (the dual of K).

5. Infinite Products and Modular Forms

In [Bo7], R. Borcherds constructed automorphic forms on Og 5 2(R)° which are
modular products and using the theory of these automorphic theory expressed
some meromorphic modular forms for SL(2,7Z) with certain conditions as infinite
products. Roughly speaking, a modular product means an infinite product whose
exponents are the coefficients of a certain nearly holomorphic modular form. For
instance, he wrote modular forms as the modular invariant j and the Eisenstein
series B, and Fjg as infinite products. These results tell us implicitly that the
denominator function of a generalized Kac-Moody algebra is sometimes an au-
tomorphic form on Ogy52(R)" which is a modular product. In this section we
discuss Borcherds’ results just mentioned in some detail.
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We shall start by giving some well-known classical product identities. First we
give some of the product identities of L. Euler (1707-83) which are

(_1)nqn(n+1)/2zn n
(51 2 acgi-a@ a-g  10-a

n>0 n>0

(52) D o e | AU

n>0 n>0

(5.3 S (-1 g T (1 )

ner n>0
A similiar product identity due to C. F. Gauss (1777-1855) is
(5.4) ST =0 AA-A)A ) —qh)
nez

Both of (5.3) and (5.4) are special cases of the so-called Jacobi’s triple product
identity [ C. G.J. Jacobi (1804-51) |

(5.5) St = [ - - ) - ¢
nEZ n>0
if we choose 2 to be some fixed power of ¢. In fact, if you replace ¢ and z in (5.5)
by ¢*/% and ¢'/? respectively, you obtain the identity (5.3), and if you replace z in
(5.5) by —1, you get the identity (5.4).
The quintuple product identity derived by G.N. Watson (1886-7) is
Z q(3n2+n)/2(z3n _ z—Sn—l)

nez
= [ -g0 =)0 =g 21 =21 = ¢ 127?).
n>0
Historically speaking, in 1929 Watson (cf. [W1]) derived the identity (5.6) in the
course of proving some of Ramanujan’s theorems on continued fractions. In 1938,
Watson ( cf. [W2] ) proved the following identity :

Z qn(3n+2) (z—Sn _ z3n+2)

neZ

_ H 1 _ q 2n 2,32)(1 _anz—Q)(l+q2n—1z)—1(1+q2n—1z—1).

n>0
Subbarao and Vidyasagar (cf. [S-V]) showed that the identities (5.6) and (5.7)

are equivalent. The two identities (5.1) and (5.2) of Euler are easily estab-
lished ( cf.[Be],p.49). G.E. Andrews showed that the Jacobi’s triple product iden-
tity (5.5) can be obtained easily from the identities (5.1) and (5.2) in his short
paper [A]. Carlitz and Subbarao (cf. [C-S]) gave a simple proof of the quintuple
product identity (5.7).
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The following denominator formula for a finite dimensional simple Lie algebra
g

(5.8) e” Y det(w) e = JT(1—e")

weWw a>0

is due to Hermann Weyl ( 1885-1955), where W is the Weyl group of g, p is the
Weyl vector and the product runs over the set of all positive roots. Macdonald ( cf.
[Mac] ) observed that the Weyl denominator formula is just a statement about finite
root systems, and then generalized this formula to affine root systems producing
the so-called Macdonald identities. He noticed that the Jacobi’s triple product
identity is just the Macdonald identity for the simplest affine root system. Kac
observed that the Macdonald identities are just the denominator formulas for
the Kac-Moody Lie algebras in the early 1970s. Thereafter he obtained the so-
called Weyl-Kac character formulas for representations of the affine Kac-Moody
algebras generalizing the Weyl character formula (see (2.5)-(2.7) and [K], p. 173).
The Weyl-Kac character formula for the affine Kac-Moody algebra is given as
follows :

(59) eP Z det(w) e—IU(P) _ H (1 _ e—a)mult(a)7

weWw a>0

where mult (a) is the multiplicity of the root a. For more detail we refer to
(2.6) and [K]. For instance, the Jacobi’s triple product identity is just the Weyl-
Kac character formula for the affine Kac-Moody algebra SLy(R[z,27}]) and the
Weyl-Kac character formulas for the affine Kac-Moody algebras SL,,(R[z, 271])
are just the Macdonald identities. It seems that the Weyl-Kac character formula
is true for non-affine Kac-Moody algebras. Borcherds obtained the so-called Weyl-
Kac-Borcherds character formula for a generalized Kac-Moody algebra (cf. (2.13)-
(2.14) ). The Weyl-Kac character formula is proved by the Euler-Poincaré principle
applied to the cohomology of the Lie subalgebra F of g associated to the positive
roots of the Kac-Moody algebra g.

It seems to the author that Borcherds was the first one that discovered that
the denominator functions of the generalized Kac-Moody algebras which could be
written as infinite products are often automorphic forms on the orthogonal group
Os122(R)Y. Moreover he gave a method of constructing automorphic forms on
Osy2.2(R)Y through modular forms of weight —s/2 with integer coefficients and
obtained the connection between the Kohnen’s “plus” space of weight 1/2 and the
space of modular forms on I'; satisfying some conditions.

Now we are in a position to describe his works on infinite products related to
automorphic forms on the orthogonal group O 2(R).
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We let L be the unimodular even integral Lorentzian lattice I ; of dimension
s+ 2 and let M := L @ II; ;, where II; ; is the unique 2-dimensional unimodular

. . . R . —1
even integral Lorentzian lattice with its inner product matrix <_01 0 > We

choose a negative norm vector « in Ly := L ® R. We say that a vector v in Ly is
positive, denoted by v > 0 if (v, a) > 0.

Theorem 5.1 ( Borcherds [Bo7], Theorem 10.1). Let f(r) = >, ¢(n)¢" bea
nearly holomorphic modular form of weight —s/2 for I'; with integer coefficients,
with 24|c(0) if s = 0. Then there is a unique vector 6 € L such that

. N e(=r2/2)
(5.10) B(v) = e 2miO0) H (1 - 5_27”(”’”)) , ve
r>0,rel

is a meromorphic automorphic form of weight ¢(0)/2 for Op(Z)° = O y22(Z)°,
where 1?2 := (r,r) and

Q={2eMxC]| (2,2 =0, (2,2) >0}.

REMARK 5.2. Borcherds showed that all the zeros and poles of ® lie on the ratio-
nal quadratic divisors and computed the multiplicites of the zeros of ®. Roughly
speaking a rational quadratic divisor means the zero set of a(y,y) + (b,y) +¢=0
with a,c € Z and b € L.

Definition 5.3. We define the function H : Zy — Q by

H(n):= {
We note that

H(q) =Y H(n)g" = =1/124¢*/3+¢"/2+ 4" +¢* + 4" + (4/3)g" +---.
n>0

the Hurwitz class number of the discriminant —n if n > 0;
—1/12 if n = 0.

Now we state a very interesting result.

Theorem 5.4 ( Borcherds [Bo7], Theorem 14.1). Let A be the additive group
consisting of nearly holomorphic modular forms of weight 1/2 for I'g(4) whose
coefficients are integers and satisfy the Kohnen’s “plus space” condition. We also
let B be the multiplicative group consisting of meromorphic modular forms for
some characters of I'y of integral weight with leading coefficient 1 whose coeflicients
are integers and all of whose zeros and poles are either cusps or imaginary quadratic
irrationals. To each f(7) =3, ¢(n)¢™ in A we associate the function ¥y : H; —
C defined by

(5.11) Wp(r) =g " [ (1 — gy,

n>0

where h is the constant term of f(r)H(q). Then we have the following:
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(a) For each f € A, Wy is an element of B whose weight is ¢(0) ;

(b) the map ¥ : A — B given by U(f) := U for f € Ais a group isomorphism
of A onto B;

(c¢) the multiplicity of the zero of ¥ at a quadratic irrational 7 of discriminant
D <0is Y 00 c(Dd?).

REMARK 5.5. The product formula for the classical modular polynomial ( for
discriminant D < 0 whose degree is H(—D) )

(5.12) [1G() =) = D T (= )™

o] n>0

holds, where o runs over a complete set of representatives modulo I'; for the
imaginary quadratic irrationals which are roots of an equation of the form ac? +
bo +c=0(a,b,c€Z) of the discriminant % — 4ac = D < 0 (except that o is a
conjugate of one of the elliptic fixed points i or (1 +14v/3)/2 we have to replace the
corresponding factor j(r) — 1728 or j(r) by (j(r) — 1728)'/2 or j(7)'/?) and the
exponents ¢(n?) are the coefficients of the uniquely determined nearly holomorphic
modular form in A. It is easy to check that the classical modular polynomial on
the left hand side of (5.12) is contained in B and that its corresponding element
in A is of the form ¢” + O(q).

Examples 5.6. (1) Let f(r) := 120(r) = 123 _, g% . Tt is easy to check that
f(7) is an element of A and that Wy () = ¢ ][, (1 —¢")** is a cusp form for I'y
of weight 12 known as the discriminant function.

(2) We put

F(r):== Y ouln)g" =q+4¢° +64° +8¢ +13¢° +--- .
n>0,n:odd

f(r) =3F(m)0(r)(0(r)* = 2F (7)) (0(7)* — 16 F (1)) Egs(471)/A(47) + 1680(7),

where 6(1) = 3, oz ¢, A(r) and E4(r) denote the discriminant function and
the Eisenstein series of weight 4 respectively. ( see Appendix A ). It is easy to check
that f(r) is an element of A and that W, (7) = j(7) is the modular invariant. We

also check that W;(7) = j(7) has order 3 at the zero 1++‘/§ whose discriminant is
—3. Hence we obtain the modular product

](7_) _ q—l(l _ q)—744(1 _ q2)80256(1 _ qS)—12288744 el
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(3) The Eisenstein series F4 and Eg are elements of 5. The elements of A corre-
sponding to F4 and Fg are given by

fa(7) = ¢7% + 4 — 240q + 26760¢* — 85995¢° + 1707264¢° — 40962404° + - - -
and

fo(T) = ¢* 4+ 6 + 504q + 143388¢*
+ 565760¢° + 184373000¢° + 51180024¢° + O(q'?)

respectively. Use the fact B = j - A for f4. The function fs(7) can be obtained
from the theory of a generalized Kac-Moody algebra of rank 1 whose simple roots
are all multiples of some root a of norm —2 and the simple roots are na with
n € Z* and multiplicity 50403(n). Precisely,

fo(T) = (§(47) — 876)0(7)
= 2F(1)0(r)(0(r)" = 2F(r))(0(r)* = 16F (7)) Es(47)/ A(47),

where 0(7) and F(7) are defined in (2). Since By = E%, E1g= F4 Fs and Eyy =
E?Fg, their corresponding elements in A are given by 2fs, fi+ fo and 2f4 + fg
respectively. The remaining Eisenstein series (k # 4,6,8,10,14, k : even, k > 4)
are not elements of B and hence they cannot be written as modular products. For
instance, the modular products for Fy, Fgs, Fs, F19 and Fy4 are given by

E4(T) _ (1 _ q)—240(1 _ q2)26760(1 _ qS)—409624O e

E6(7—) _ (1 _ q)504(1 _ q2)143388(1 _ q3)51180024 .
Eg(T) _ (1 _ q)—480(1 _ q2)53520(1 _ qS)—8192480 .
ElO(T) _ (1 _ q)264(1 _ q2)170148(1 _ q3)47083784 .

and
Eia(r) = (1 - q)24(1 _ q2)196908(1 _ q3)42987544 o

(4) Using the above theorem, we can show that there exist precisely 14 modular
forms of weight 12 on Iy which are contained in B. Indeed, if

={nezZljlr)y—meB}
={j(r) € Z| 7 € Hy, 7 is imaginary quadratic },

[1]
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only the modular forms A(7)(j(7) — n) (where n € Z) and A(r) are modular
forms of weight 12 in B. It is well known that the elements of = are

j<1+i\/§>07 (i) = 25.3% j<1+iﬁ>—33'537 §(iv2) = 28.5%,

2

— 215 (iV3) = 243358 j(20) = 2°.3%.11°,

1+:v1 1+1iv2
M) — 21533 (W) — —219.3.5% j(iV7) = 3355178,

— 283353 (H; V67> — —215.3%.5%.113,

L V163> — _918.33.53.933 993

6. Final Remarks

In this final section we make some brief remarks on the fake monster Lie alge-
bras, generalized Kac-Moody algebras of the arithmetic type, hyperbolic reflection
groups and Jacobi forms. Finally we give some open problems.

6.1. The Fake Monster Lie Algebras

First of all we collect the properties of the fake monster Lie algebra My. (In
[Bob], Ma was called just the monster Lie algebra because the monster Lie algebra
M defined in section 3 had not been discovered at that time yet.)

Let A be the Leech lattice of dimension 24. M}y is the generalized Kac-Moody
Lie algebra with the following properties (Ma1) — (M 10):

(Mp1) The root lattice L of My is a5 := A @I ;.

(Mx2) p = (0,0,1) is the Weyl vector of L with norm p? = 0. The real simple
roots of M are the norm 2 vectors of the form (A, 1,A%/2 — 1), A € A, and
the imaginary simple roots are the positive multiples of p each with multiplicity
24. ( We observe that if r is a real simple root, then (p,r) = —1)

(Ma3) A nonzero vector 7 € L = Ily5; is a root if and only if 72 < 2, in
which case it has multiplicity pas(1 —72/2), where pa4(1 —r?/2) is the number of
partitions of 1 —72/2 into 24 colours.

(Ma4) My has a Ilg; ;-grading. The piece My (r) of degree r € Ilg5 1,7 # 0 has
dimension pa4(1 —1r2/2).
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(M75) My has an involution w which acts as —1 on Ily5 1 and also on the piece
M (0) of degree 0 € Ty ;.

(Mp6) My has a contravariant bilinear form (, ) such that My (k) is orthogonal
to M (l) with respect to (, ) if k # —I, k,l € Ilz5,1 and such that (, ) is positive
definite on My (k) for all k € Ilp5 1 with k # 0.

(MAT) The denominator formula for My is given by

(6.1) e P Z Zdet(w) 7(n) ew(np) — H (1— 673)1924(1—,,2/2)7

weW nez relt+

where W is the Weyl group, Lt is the set of all positive roots of My, and 7(n) is
the Ramanujan tau function. ( The discriminant function A(7) is the generating
function of 7(n).) Indeed, L' is given by

Lt ={veTly,|v* <2, (v,p)<0}U{np|lneZt}.

(Mx8) The universal central extension MA of My is a Ily5 1-graded Lie algebra.
If 0 # r € 1251, then the piece MA(T) of My of degree r is mapped isomorphically

to My (r). The piece My (0) of degree 0, called the Cartan subalgebra of My, can
be represented naturally as the sum of a one-dimensional space for each vector of
A and a space of dimension 242 = 576 for each positive integer.

(M9) For each r € L™, we put

m(r) = E mult(r/n)-n.
n>0
r/n€llas 1

Then for each r € L, we have the following formula

(6.2) (r+p)*m(r) = Y (a,8)m(a)m(5).

a,BeLt
atfp=r

(Mx10) My is a Aut(A)-module. In fact, Aut(A) acts naturally on the vertex
algebra of A and hence on My.

The detail for all the properties (M 1)-(M10) can be found in [Boj].
REMARK 6.1. (a) My is essentially the space of physical vectors of the vertex
algebra of Ily5 1, where Ily5 ; is the unique central extension of Ily5 1 by Zs.

(b) M can be constructed from the vertex algebra of Vi of the central extension

Aof A by Z, in the same way that the monster Lie algebra M was constructed
from the monster vertex algebra V' in section 3.
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(¢) The multiplicities poa(1 + n) of the roots of My is given by the Rademacher’s
formula
_ 13/2 13 . 2ni(nh+h")/k
poa(l +mn)=2mn E — E e ,

k>0 0<h, W/ <k
hh'=—1 (mod k)
where I13(z) := —iJ13(i2) is the modified Bessel function of order 13. In particular,
p24(1+ n) is asymptotic to 271/2p=27/4e47V for large n.

In [Bo6], Borcherds constructed a family of Lie algebras and superalgebrs, the
so-called monstrous Lie superalgebra whose denominator formulas are twisted de-
nominator formulas of the monster Lie algebra M. For each element g in the
MONSTER G, we define the monstrous Lie algebra of g to be the genrealized
Kac-Moody superalgebra which has its root lattice II; ; and simple roots (1, n)
with multiplicity ¢r(g|y+). The denominator formula for the monstrous Lie super-
algebra M, of g is given by

(6.3) Ty(p) —Tylg) = D_tr(ghe )p™ = > tr(glye)q”

_ p—l H (1 . pmqn)multg(m,n)'

m>0,neZ

The multiplicity multy(m, n) of the root (m,n) € I ; is

1(s) d
(6.4) mult,(m, n) = ) |<Z . s tr(g |V75m)'

where N is the order of g. We recall that the Thompson series T;(q) of g is
the normalized generator for a genus zero function field of a discrete subgroup
of SL(2,R) containing the Hecke subgroup I'o(hN), where h is a positive integer
with h|(24, N).

Furthermore Borcherds ( cf. [Bo6],) constructed a family of superalgebras whose
denominator formulas are twisted ones of the fake monster Lie algebra My in the

same way that he constructed a family of monstrous Lie superalgebras from the
monster Lie algebra M.

Let ¢ be an element of Aut(A) 2 224 . Aut(A) of order N. We let
(6.5) L={XeA|lgh=)}

be the sublattice of A fixed by g. Then the dual L’ of L is equal to the projection
of A into the vector space Lg := L ®z R because A is unimodular. For simplicity
we assume that any power g™ of g fixes all elements of A which are in the inverse
image of A9", where A9" is the set of elements in A fixed by g”. According to

[Bo3], there exists a reflection group W9 acting on L with following properties
(WI1)-(W2):

169



44 JAE-HYUN YANG

(W1) The positive roots of W9 are the sums of the conjugates of some positive
real roots of Iz ;.

(W2) Let p be the Weyl vector of W9. The simple roots of W9 are the sums of
orbits of simple roots of W that have positive norms and they are also the roots
of W9 such that (r, p) = —r?/2 with p? = 0.

Let g, be a generalized Kac-Moody superalgebra with the following simple
roots:
1. L is the root lattice of g,.

2. The real simple roots are the simple roots of the reflection group W9, which
are the roots r with (r, p) = —r?/2.

3. The imaginary simple roots are np (n € Z* ) with multiplicity mult,(np) given
by

multy(np) Z b

jar=n
if ¢ has a generalized cycle shape all’lag"’ e
Then the denominator formula for the fake monstrous superalgebra g, is given by

(6.6) e Y det(w)w(ng(e”)) = [ (1 —enymtta®,

weWyg rel+

where 1,4(q) is the function defined by

(6.7) ng(q) = n(erq)nle2q) - - n(€24q)

if g has eigenvalues €1, -+ ,&24 on Ag := A ®z R. It is easy to check that if g has
a generalized cycle shape all’l ag"’ -+, then

ng(q) = n(g*) " n(g*>)"> - --

Example 6.2. Let p = 2,3,5,7, 11, 23 be six prime numbers such that p+1 divides
24. We let g be an element of Aut(A) of order p corresponding to an element of
Moy C Aut(A) of cycle shape 124/(P+1) 24/ (P+1) where My, is the Mathieu group.
Then the denominator formula for the fake monstrous superalgebra (in fact, a Lie
algebra) g, = g, is given by

e’ Z det(w) w (e” H )24/ () (1 epnp)24/(p+1)>

weWa n>0
- H (1 — eypol=r?/2) H (1 — e ypoll=r?/2p)
rel+ repLt
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where L1 denotes the set of all positive roots of g, and py(1 + n) is defined by

(6.9) > pa(1+n)g" = 1/n4(q).

n>0

g2, g3, g5, g7 and g11 are called the fake baby monster Lie algebra, the fake Fis-
cher monster Lie algebra, the fake Harada - Norton monster Lie algebra, the foke
Held monster Lie algebra and the fake Mathieu monster Lie algebra respectively.
We observe that the dimension of g, (p = 2,3,5,7,11,23) are 18,14, 10,8,6, 1
respectively.

Example 6.3. Let gro be the fake Conway Lie superalgebra of rank 10. gro
is the fake monstrous Lie superalgebra associated with an element g € Aut(f\)
of order 2 such that the descent go of g to Aut(A) is of order 2 and the lattice
A9 of A fixed by gg is isomorphic to the lattice Fs with all norms doubled. The
lattice L of gy is the nonintegral lattice of determinant 1/4 all whose vectors
have integral norm which is the dual lattice of the sublattice of even vectors of
Iy. Here Ig, = {(v,m,n)| ve Es, m,n € Z, m+niseven} is the lattice of
dimension 10. Let W be the Weyl group of g¢c. In other words, W' is the subgroup
of Aut(L) generated by the reflection of norm 1 vectors. The simple roots of W
are the norm 1 vectors with (r, p) = —1/2. The simple roots of gy are the simple
roots of W together with the positive multiple np (n € Z*) of the Weyl vector
p = (0,0,1) each with multiplicity 8(—1)™. Here the multiplicity —k < 0 means
a superroot of multiplicity k, so that the odd multiples of p are superroots. The
multiplicity mult(r) of the root r = (v,m,n) € L is given by

(6.10)  mult(r) = (=1)" 7V Vpg (1= 1%)/2) = (=1 g (1 = 7*)/2)],

where py(n) is defined by

> pen) =g ] = g2

n>0

Finally the denominator formula for the fake Conway sueralgebra g¢c is given by

(6.11) e P Z det(w) w (eP H(1 _ enﬂ)(—l)"8> _ H (1- er)mult(r)7

weWw n>0 rel+

where L1 denotes the set of positive roots.
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6.2. Kac-Moody Algebras of the Arithmetic Type

Let A = (a;;) be a symmetrizable generalized Cartan matrix of degree n and
let g(A) its associated Kac-Moody Lie algebra (see section 2). Then there exist

a diagonal matrix D = diag(ey, -« ,e,) with ¢, >0, ¢, € Q(1 <i <n)and a
symmetric integral matrix B = (b;;) such that
(6.12) A=DB, gcd({by|1<i,j<n})=1

We note that such matrices D and B are uniquely determined. Let
Q= ZZO% Qi = ZZ+ai7 Q- = —Qy,
i=1 i=1

where ai,--- ,a, are simple roots of A or g(A4). Then @ = Q4 U Q_ is a root
lattice of A.

Now we have the canonical symmetric bilinear form
(6.13) () Q@xQ—1Z, (ay0a;)="by=ay/e.
Let A, AT and A~ be the set of all roots, positive roots, and negative roots of g(A)

respectively. We let W be the Weyl group of g(A) generated by the fundamental
reflections
(67 ai)

6.14 s = -2 79
(6.14) 1o (8) = 8= 2
It is clear that A is invariant under W. We let

(6.15) K:={ae€Q4|a#0, (a,a;) <0 for all 4, and supp(«) is connected },

where for o = Y7 | kja; € Q, supp(a) is defined to be the subset {a;|k; >
0} of the set {ai, - ,a,}, and supp(a) is said to be connected if there do
not exist nonempty two sets A; and A such that supp(a) = A1 U As and
(a,3) = 0 for all & € A; and 3 € Ag. Let A" (resp. A;y, ) be the set of all
real roots ( resp. imaginary ) roots of g(A). Then it is easy to check that

BeQ, 1<i<n.

(6.16) A" =W(a)U---UW(ay)
and
(6.17) A™NQ, = W(K).

Definition 6.4. A generalized Cartan matrix A of degree n or its associated Kac-
Moody Lie algebra g(A) is said to be of the arithmetic type or have the arithmetic
type if it is symmetrizable and indecompsable and also if for each 3 € @) with the
property (3, 3) < 0 there exist a positive integer n(3) € Z* and an imaginary root
a € A" such that

(6.18) n(B)f=a modQy on Q,
where Qo :={~v € Q| (v,8) =0 for all § € @} denotes the kernel of (, ).
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If we set M := Q/Qo, then (, ) induces the canonical nondegenerate, symmetric
integral bilinear form on the free Z-module M defined by

(6.19) S:MxM—1Z.

We let © : Q@ — M be the projection of @ onto M, and we denote by & = w(x)
the image of € ) under 7. We denote by (¢, ,t_,ty) the signature of a symmetric
matrix B.

The following theorem is due to V. V. Nikulin.
Theorem 6.5 ( [N5], Theorem 2.1). A symmetrizable indecomposable gener-
alized Cartan matrix A or its associated Kac-Moody Lie algebra g(A) has the
arithmetic type if and only if A has one of the following types (a), (b), (¢) or (d):

(a) The finite type case: B > 0.

(b) The affine type case: B > 0 and B has the signature (£, 0, 1).

(¢) The rank 2 hyperbolic case: B has the signature (1, 1,0).

(d) The arithmetic hyperbolic type: B is hyperbolic of rank > 2, equivalently,
B has the signature (£ — 1,1, k) with £ > 3, and the index [O(S) : W] is finite.

Here O(S) and W denote the orthogonal group of S and the image of the Weyl
group W under 7 respectively.

Now we assume that A is of the arithmetic hyperbolic type and that B has the
signature (t4, 1, k) with t; > 2. We choose a subgroup W of W(S) of finite index
generated by reflections. We choose a fundamental polyhedron M of W, and then
let P(M)pr be the set of primitive elements of M which are orthogonal to the
faces of M and directed outside.

Theorem 6.6 ( [N5], Theorem 4.5). We assume that S : M x M — Z is
a reflexive primitive hyperbolic, symmetric integral bilinear form and that W C
W (S) satisfies the following conditions (6.20) and (6.20):

(6.20) P(M),, generates M ;

(6.21) P(My),r generates M,

where Mg is the fundamental polyhedron of W (S).

In additon, we assume that we have a function

A P(M)y, — Z
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satisfying the conditions (6.22) and (6.23).:
(6.22) S(AMa)a, Ma)a) divides 2 S(A(B) 5, Ma)a) for all o, 3 € P(M),,;

(6.23) {Ma)a| a e P(M)p, } generates M.

Then the data (S, W, \) defines canonically a generalized Cartan matrix of the
arithmetic hyperbolic type

A(S,W,0) = (2SAB)B, N@)a) /S @, M)a),  a, f € P(M)yr.

REMARK 6.7. (a) According to Nikulin (¢f. [N3],[N4] ) and Vinberg ( ¢f. [V]), there
exist only a finite number of isomorphism classes of reflexive primitive hyperbolic
symmetric integral bilinear forms S of rank > 3, and the rank of S is less than
31. Therefore by Theorem 6.6, there are only finite Kac-Moody Lie algebras of the
arithmetic hyperbolic type.

(2) In [K], a very special case of a generlized Cartan matrix A is considered. This
matrix is called just hyperbolic there. This has the property that the fundamental
polyhedron M of W is a simplex. There exist only a finite list of these hyperbolic
ones. These are characterized by the property: 0 # 0 € () is an imaginary root if
and only if (a,a) < 0.

(¢) The complete list of the bilinear forms mentioned in Theorem 6.6 is not known
yet.

Example 6.8. We consider an example of s symmetric generalized Cartan matrix
A of the arithmetic hyperbolic type given by

2 -2 0
(6.22) A=(ay)=|-2 2 -1
0 -1 2

Let F := g(A) be its associated Kac-Moody Lie algebra of the arithmetic hyper-
bolic type. Let Fy be the affine Kac-Moody Lie algebra of type Ag” with its

_22 _22> . Then it is known that

Fo = sly(C) @ Clt,t 7 @ C-c,

Cartan matrix Ag — <

which is a one-dimensional central extension of the loop algebra sf;(C) ® C[t, t71].
We let F5 be the semi-direct product of Fy and C-d, d:= —t%7 whose bracket is
defined as follows:

[z @ty t™ = [z,y] ™" +n < 2,y > p—me, myn € Z,
d, x 01" = —n(z @ t"), nelZ,

[c,a] = 0 for all @ € F§, i.e., ¢ acts centrally,
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where x,y € sl(C) and < z,y >:= tr(zvy) = 1/4tr(adaxady) denotes the
Cartan-Killing form on the Lie algebra sf3(C). The fact that the Weyl group of F is
isomorphic to PGL(2,Z) implies that F is closely related to the theory of classical
modular forms. In [F-F]|, Feingold and Frenkel constructed F concretely and
computed the Weyl-Kac denominator formula for F explicitly. The denominator
formula for F is given by

(6.23) Z det (g) e2mio(9P'9Z)

gePGL(2,7)
2mic(PZ ario(Nz)) P 2mic(NZ)
:67710'( ) H (1_€7mo‘( ) H (1_€7mo‘ )7
0<NeSy(Z) NeR
(312 (T oz
where P = <1/2 5 >7 7z = <z w) € Hy, S3(Z) denotes the set of all

symmetric integral matrices of degree 2 and

R:{N <Z; Zi) 652(Z)|n1n2—n§:—17 ng > 0, ng < ni+ no, O§n1+n2}.

We note that the root lattice of F is isomorphic to S3(Z).

Let h := Chy @ChyBChs be a Cartan subalgebra of . We denote by ay, oz, as
the elements of h* defined by

(624) Oéi(hj) = Q4j, 1< 17] < 3.
We put
Y= an /2, vp = —an — Qo —as, Ya i— —an — Qo
and
P = Ingyf 4+ novd + nsvs | ni,ne,ns € Zy, ng >ng >ng >0}

DEFINITION. (1) The number m; +myg in the weight A = myvy{ + (m1 +ma)ys +
mays is called the level of the weight .

(2) An irreducible standard F§-module or its character is called F-dominant if the
highest weight of this module lies in PT. A Fé-module or its character is called
F-dominant if each irreducible standard component is F-dominant.

We let M}, be the complex vector space spanned by those F§-characters of the

form
X(Tv <, w) - Z Xm(Tv 2, W)v
m>0
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where for each m > 0, xp, is the function satisfying the condition

(6.26)  Xin(T, 2,w) = (—7) Fxm(=1/7, —2/7,w — 22/7), <Z 5) € H.

Let My(m) be the subspace of M), spanned by the F§-characters of level m sat-
isfying the condition (6.26). We recall the results of J. Igusa (cf. [Igl]) on Siegel
modular forms of degree 2. We denote by [z, k| (resp. [['g, k|o ) the complex vec-
tor space of all Siegel modular forms (resp. cusp forms) of weight k on I'z. Let
Er (k> 4, k:even) be the Eisenstein series of weight k on I'y defined by

(6.27) Bi(Z) =Y det(CZ+ D)™, Z € Hy,
C.D

where (C, D) runs over the set of non-associated pairs of coprime symmetric matri-
ces in Z(2:2), Igusa proved that Fy, Eg, F1o and F5 are algebraically independent
over C and that

(6.28) @i olla, k| = C[Ey4, Fs, Fro, F12].

We define two cusp forms y15 and x12 of weight 10 and 12 by

(6.29) X10 = —43876-2712.375 . 572 . 771 537 (B, FEg — Eyp)

and

(6.30) Y12 ;= 131-593.2713.377.573.772.33771(32 . 723 — 2. 5° E2 —691E}3).
Then according to (6.28), we have

(6.31) Droll'2, k] = C[E4, Es, x10, X12]-

For two nonnegative integers k,m > 0, we define the set

(6.32) S(k,m) = {(a,b,c,d) € (Z4)"| k=4a+6b+ 10c+ 12d, c+d=m}.

We define the subspace [y, k](m) of [, k] by

(6.33) Do, kl(m) = Y CE{ENXSoxTs
(a,b,e,d)eS(k,m)

Obviously [I'z, k] = >, 0[I'2, k] (m).
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For f(7—7z7w) S [F27 k’L we let
(631)  f(2) = f(raw) = Y bmlr2) ™™, 7= (T w) e 11,

be the Fourier-Jacobi expansion of f. As noted in section 4, ¢,,(7, 2) is a Jacobi
form of weight & and m. Now for each non-negative integer m > 0 we define the
linear map Ly, : [T, k] — My by

(6.35)

(L) = (L)1) = () 27, e ltal, 2= (T 2 ) €t

w

where ¢, (7,2) (m > 0) is the Fourier-Jacobi coefficient of the expansion (6.34)
of f.

DEFINITION. Let M/ (resp. M/ (m)) be the subspace of M}, (resp. My(m)) con-
sisting of PSL(2,Z)-invariant F§-characters which are F-dominant.

In [F-F], Theorem 7.9, Feingold and Frenkel showed that L,, maps [['s, k|(m)
isomorphically onto M (m). Thus according to (6.33), we obtain , for each m > 0,

(6.36) dimg [Ug, k](m) = dimec M} (m) = §(S(k, m)),

where #(S) denotes the cardinality of the set S. Moreover we have the following
ring-isomorphism

(6.37) M =" 3" Mj(m) = C[E4, Eg, x10, X12)-

k>0m>0
Let [I'2, k| be the Maass space. ( See Appendix B.) Maass showed that
g, k| = CE, @[Ty, klo and dime [['y, ko = 4(S(k, 1)).
Also Maass showed that
(6.38) [Ty, k)™ =~ M(1) and [I'g, k|o = MJ(1).

The detail for (6.38) can be found in Appendix B, [E-Z] and [Ma2-4|. For k >
4, even, we have the simple dimensional formulas

(6.39)  dime Mi(1) — {%} and  dime M(1) {k’—gﬂ —H(S(k,1)).
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6.3. Open Problems

In this subsection, we give some open problems which should be investigated
and give some comments. Those of Problem 1-6 are due to R. Borcherds ( cf. [Bo6-

7).

Problem 1. Can the methods for constructing automorphic forms as infinite
products in section 5 be used for semisimple Lie groups other than Ogyg9(R)?

Problem 2. Are there a finite or infinite number of singular automorphic forms
that can be written as modular products? Are there such singular modular forms
on Ogygo(R) for s > 247

Problem 3. Interprete the automorphic forms that are modular products in
terms of representation theory or the Langlands philosophy.

Problem 4. Extend Theorem 5.4 to higher levels.

Problem 5. Investigate the Lie algebras and the superalgebras coming from
other elements of the MONSTER G or Aut (A) and write down their denominator
formulas explicitly in some nice form.

Problem 6. Are there any generalized Kac-Moody algebras other than the
finite dimensional, affine, monstrous or fake monstrous ones, whose simple roots
and root multiplicities can both be described explicitly ?

Problem 7. Given a generalized Cartan matrix A of the arithmetic hyper-
bolic type, construct its associated Kac-Moody Lie algebra g(A) of the same type
explicitly. Give a relationship between the Kac-Moody algebras of the arithmetic
hyperbolic type and classical mathematics. For instance, M. Yoshida showed that
the Weyl group W(A) of g(A) of rank 3 are all hyperbolic triangle groups and
that the semidirect product of the Weyl group W(A) and the root lattice of g(A)
is isomorphic to a discrete subgroup of a parabolic subgroup of Sp(2,R).

Problem 8. Develope the theory of Kac-Moody Lie algebras of the arithmetic
hyperbolic type geometrically.

Problem 9. Give an analytic proof of the denominator formula (6.23) for F
analogous to that of the Jacobi’s triple product identity.

Problem 10. Find the transformation behaviour of the denominator formula
(6.23) for F under the symplectic involution Z — —Z =1,

Problem 11. Apply the theroy of the Kac-Moody Lie algebra F to the study
of the moduli space of principally polarized abelian surfaces.

Problem 12. Generalize the Maass correspondence to the Kac-Moody algebras
of the arithmetic hyperbolic type other than F7
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Appendix A. Classical Modular Forms

Here we present some well-known results on modular forms whose proofs can
be found in many references, e.g., [Kob], [Mal], [S], and [T].

Let H; be the upper half plane and let ' := SL(2,Z) be the elliptic modular
group. For a positive integer N € Z1, we define

{2 )er] (2 )= (3 1) )
To(N) == {(CCL 2) el

I(N) (resp. T'o(V)) is called the principal congruence subgroup of level N (resp.

the Hecke subgroup of level N). The subgroup I'p of I" generated by + <(1) ?) and

and

c=0 (modN)}

+ <_01 (1)> is called the theta group. A subgroup I'y of I is called a congruence

subgroup if T'y contains T'(N) for some positive integer N. For instance, the Hecke
subgroup T'g(N) is a congruence subgroup because I'(N) C I'p(N) € I'. And
I'(N) is a normal subgroup because it is the kernel of the reduction-modulo-N
homomorphism SL(2,Z) — SL(2,Z/NZ). It is well known that the index of I'( V)
in [' is given by

(A1) [C:0(N)] = N*JJ(1—p7?).
p|N

The proof of (A.1) can be found in [Sh] pp.21-22. It was discovered around the
1880s that there are an infinite number of examples of noncongruence subgroups
(cf. [Mal] pp. 76-78). But SL(n,Z) behaves quite differently for n > 3. In fact,
it has been proved that if n > 3, every subgroup of SL(n,Z) of finite index is a
congruence subgroup (cf. [Bas]). A similar result for the Siegel modular group
Sp(n,Z) for n > 2 can be found in [Me].

For an integer k € Z, we denote by [I', k] (resp. [I', k|]o) the vector space of all
modular forms (resp. cusp forms) of weight k for the elliptic modular group T
Only for k > 0, k even, [T, k| does not vanish.

For any positive integer k with k& > 2, we put

(A.2) Galr) =Y 7 !

_— Te Hy.
mT +n)2k’ !

m,n

Here the symbol 3 means that the summation runs over all pair of integers (m, n)
distinct from (0,0). Then Gof, € [I', 2k] and Gox(00) = 2¢(2k), where ((s) denotes
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the Riemann zeta function. Gax (k € Z1, k > 2) is called the FEisenstein series of
index 2k. The Fourier expansion of Gay (k > 2) is given by

. 2k >0
(A.3) ng(T) = 2C(2k’) + 2(2L)' Z agk_l(n)q”7 T € Hy,
" n=1

where g = e*™ and o4(n) = > o<dn dt.
We consider the following parabolic subgroup P of ' given by

pe{(2 Ver).

Then we can see easily that

k
Gar(r) = 20(2k) S <d(”;:>)> .

~yeP\I'
a b
Here for v = e d €Il'and 7 € H;, we set

v <1 >= (ar + b)(er +d)~h
For a positive integer k > 2, we can see easily that

det Gag(7)
(A.4) Ba(r) £ 2C§2k)

where By (k = 0,1,2,---) donotes the k—th Bernoulli number defined by the
formal power series expansion:

4k
. 1 _ ¥
=1- Bor nE:102k 1(n)q",

o0 k
T T
= Br—.
et — 1 > By k!
k=0
Then clearly Bary1 = 0 for k > 1. The first few By, are

Bo=1, By = —1/2, By =1/6, B, = —1/30, Bg = 1/42, Bs = —1/30, Byo = 5/66,
Biy = —691/2730, By = 7/6, Bis = —3617/510, Bys = 43867 /798, - - -

Indeed, (A.4) follows immediately from the relation

CR) =~ e
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For example,
Ey(1) = 14240 os(n)q", (240=2*-3-5)
n=1

Eo(r)=1-5043 os(n)g”, (504=2°.3%.7)

Bs(r)=1+480) or(n)g", (480=2°-35)

n=1
Erolr —1—264209 Vg, (264 =2%.3-11)
65520
Eu(r):uW o11(n)g”, (65520 =2"-3%.5.7.13)

n—=

E14(T): 1-2420’13(’[1)(]’”’7 (24:233)
n=1

According to the argument on the dimension of [I', k], we obtain the relation
(A.5) E? = Es, E.Es—= E.

These are equivalent to the identities:

or(n) = +12ozag Yos(n —m),
11og(n) = 21os(n) — 1003(n) + 5040 ”z_: os(n)os(n —m).

More generally, every Iy, can be expressed as a polynomial in 4 and Fjg. For
instance, Fiy = F?F;.
We put

(A.6) go := 60G,, and g3 = 140Gs.
Then it is obvious that

(2m)*
223

(2m)°

E'47 and gg WE%

92 =
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Since g2(00) = 57 and g3(00) = 7%, we see that the discriminant

(A.7) A = g5 — 2743
is a cusp form of weight 12, that is, A € [T, 12]5. And we have

A(r) = (2m)'% 270 373(By(r)* — Es(1)?)

(A8) = (2m)'2(q — 244 + 252¢° — 1472¢* + - )

= (2n)*%q H (1—q¢™* (Jacobi’s identity).
n=1

In this article, we put A(7) := (2m)"12A(7) = ¢[[22, (1 — ¢)**.
Fix 7 € H;. The Weierstrass gp-function p(z;7) is defined by

(A.9) o(z;7) :7-1_2+Z/{(z—n1—m7')2_(n+1m7')2}’ zeC.

Then p(z;7) is a meromorphic function with respect to 1,7 with double poles at
the points n + mr, n,m € Z. The map ¢, : C — P? defined by

d
(A.10) or(2) = [1:p(z7): Ep(z;r)L zeC
induces an isomorphism of X = C/L, with a nonsingular plane curve of the form
(A.11) Xo X3 =4X} +aX3X: +bXE,

where a and b are suitable constants depending on 7 and L, := {m7+n | m,n € Z}
is the lattice in C generated by 1 and 7. If we put = p(2;7) and y = L p(z;7),
we have the differential equation

(A.12) y? = 4a® — go(m)w — ga(7).

Up to a numerical factor, A(7) := (g5—g2)(7) is the discriminant of the polynomial
423 — go(T)x — ga(7). Since A(7) £ 0, X, = C2/L, is a nonsingular elliptic curve.
This story tells us as the reason why the function A is called the discrimant. We
observe that the differential equation (A.12) shows that it is the inverse function
for the elliptic integral in Weierstrass normal form, that is,

p(zi7)
(A.13) =20 = / (4w® = ga(T)w — g3(7)) " 2dw.
o

(20;7)
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The Ramanujan tau function 7(n) (n € Z1) is defined by
(A.14) A(r) = (2m)~2A(r H (1—g"* =3 7(n)g
n=1 n=1

The Dedekind eta function n(r) is defined by

(A.15) n(r) = g/ H(l —q"), T e H.

n>1

Then 7n(7) satisfies

n(r+1)=n(r) and  9(=1/7) = (7/i)*n(r).

The Dedekind eta function n(7) is related to the partition function p(n) as follows:

(A.16) eI || [EE O R ()

n>1 n>0
where p(n) is the number of partitions of n, i.e., the number of ways of writing
n=nit+-+n, n; €Lt (1<j5<r).
The modular invariant J(7) is defined by
(A.17) J = (60G,)%/A = ¢35 /A = (2r)12 . 275 . 373E3 /A,

The function J(r) was first constructed by Julius Wilhelm Richard Dedekind
(1831-1916) in 1877 and Felix Klein (1849-1925) in 1878. The modular invari-
ant J(7) has the following properties:
(J1) J(7) is a modular function. .J is holomorphic in H; with a simple pole at
00, J(i) =1 and J (7_12‘/@) =0.
(J2) J defines a conformal mapping which is one-to-one from H; /I’ onto C, and
hence J provides an identification of H;/I'U{oo} with the Riemann sphere
S? = CU {oc}.
(J3) The following are equivalent for a function f which is meromorphic on Hy;
(a) f is a modular function;
(b) f is a quotient of two modular forms of the same weight;
(c) f is a rational function of J, i.e., a quotient of polynomials in J. Thus
J is called the Hauptmodul or the fundamental function.
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The g-expansion of j(7) := 1728J(r) = 2° - 3%2J(7), also called the modular
invariant, is given by

(A19) j(r) = q "+ 7444 ) c(n)q™ = g~ '+ 744+ 196884 + 21493760¢" + - - - .

n=1

We observe that j(i) = 1728 = 2° .33 and j (HT‘/&) = 0. It was already men-

tioned that there is a surprising connction of the coefficients in (A.19) with the
representations of the Fischer-Griess monster group. All of the early Fourier co-
efficients in (A.19) are simple linear combinations of degrees of characters of the
MONSTER. This was first observed by John Mckay and John Thompson. The
modular invariant J(7) is used to prove the small Picard theorem and to study an
explicit reciprocity law for an imaginary quadratic number field.

For a positive definite symmetric real matrix S of degree n, we define the theta
series

(A.20) Os(r) = > _ ™ rem,
TEL™

where S|z| := wSx denotes the quadratic form associated to S. We can prove the
transformation formula

(A.21) 0g-1(—1/7) = (det S)2(7/i)"*05(7).

It is known that if S is a positive definite symmetric even integral, unimodular
matrix of degree n, then n is divided by 8 and fs(7) € [[',n/2]. In fact, for n = 8,
there is only one positive definite symmetric even integral unimodular matrix
up to equivalence modulo GL(8,Z). For n = 16, there are two nonequivalent
examples modulo GL(16,Z). For n = 24, there are 24 nonequivalent examples
modulo GL(24,Z).

We consider a Jacobi function

(A.22) 0(r,z) = Z emi T nz) (r,2) e H xC
nEL

Then 6(r, z) satisfies the following properties:

(6.1) 6(r,z) is an entire function on H; x C.

(6.2) 0 is quasi-periodic as a function of z in the following sense:
O(r,z+mn)=0(r,z) forall neZ
O(r, 2+ nr) = e~ ™ (T4 9(r 2) forall n € Z.
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(0.3) 0(r, 2) satisfies the transformation formula

O(r,2) = (r/D)V/2 ) emmitn=2)"/r,

nez

(0.4) 0(r,(1+7)/2)=0.
(0.5) Fixing 7, the only zero of 0(z) := 0(r,2) as a function of z in the period
parallelogram on 1 and 7 is 2 = (1 + 7)/2. Moreover, this zero is simple.

For a proof of (6.3), use Poisson formula.

Appendix B. Kohnen Plus Space and Maass Space

Here we review the Kohnen plus space and the Maass space. And then we give
isomorphisms of them with the vector spaces of Jacobi forms. For more detail we
refer to [Koh]|, [Ma2-4].

We fix two positive integers n and m. Let

H, ={ZeC"™V|Z=1% ImZ >0}

be the Siegel upper half plane of degree n and let T',, := Sp(n, Z) the Siegel modular
group of degree n. That is,

. (2n,2n) | t o L 0 E,
I'y:={g€Z | 'gJg = J}, J'(—En O>'

Here F,, denotes the identity matrix of degree n. Then the real symplectic group

Sp(n,R) acts on H,, transitively. If M = <é, g) € Sp(n,R) and Z € H,,

(B.1) M < Z >:=(AZ + B)(CZ + D)™\,

Let M be a positive definite, symmetric half integral matrix of degree m. For
a fixed element Z € H,,, we denote by @5827 , the vector space of all the functions
6 : C™") — C satisfying the condition

(B2) G(W +\Z +,U/) _ €—27Ti0'(./\/l[/\]Z+2tVV./\/l/\)7 W e C(m,n)

for all A, p € Z™™. For brevity, we put L := Z"™ and L := L/(2M)L. For

each v € L :== L/(2M) L, we define the theta series

(B.3)

97(27 W) - Z 6271'1'0(/\/1[/\4»(2/\/1)’17]Z+2tW/\/l(/\+(2/\/l)71W))7 (Z7 W) c anc(m,n).
AeL
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Then {0, (Z, W) | v € L1} forms a basis for @58272. For any Jacobi form ¢(Z, W) €

Je.m(Ty), the function ¢(Z,-) with fixed Z is an element of @58272 and ¢(Z, W)
can be written as a linear combination of theta series 0.,(Z, W) (y € L) :

(B.4) QW) = Y 6,(2)0,(2,W).
YEL M

Here ¢ = (¢4(Z))err, is a vector valued automorphic form with respect to theta
mutiplier system.

(I) Kohnen Plus Space (cf. [Ib], [Koh])

We consider the case: m = 1, M = E,,, L = Z(}™ =~ 7" We consider the
theta series

(B.5) 00 (7) = " 2NN — 0(2,0), Z € Ha.
AeL
We put
B.6 @y =4 (4 BYer, | c=0(moda)l,
0 C D

Then Fén> (4) is a congruence subgroup of I',,. We define the automorphic factor
J :Fén>(4) x H, — C* by

0 (y < Z>)

(B.7) i, Z) = o7y v eTS(4), Z € H,.

Then we obtain the relation

(B.8) 0, 2)2 = e(y) - det(CZ + D), e(3)? =1

A B n
for any v = <C’ D> 6Fé>(4).
Now we define the Kohnen plus space M. ]:r_ ) (Fén> (4)) introduced by W. Kohnen

cf. [Koh]). M ]:r_ 1 (Fén> (4)) is the vector space consisting of holomorphic functions
f+ H, — C satisfying the following conditions:

(8) fly < Z>) = j(v, 271 /(2) for all 5 € T5(4);
(b) f has the Fourier expansion

HZ)

Z CL(T) p2Tio (TZ) 7

T>0

186



JACOBI FORMS AND INFINITE PRODUCTS 61

where T’ runs over the set of semi-positive, half-integral symmetric matrices of
degree n and a(T) = 0 unless T = —p‘u mod 45*(Z) for some p € Z™1 . Here we
put

SHZ) = {T e R"™™ | T =T, 5(TS) € Zfor all § = S € Z(™™}.
For ¢ € Ji1(T'), according to (B.4), we have

(B.9) HZ,W)= > [(2)0,(2,W), ZeH, WeC
~veL/2L

Now we put

(B.10) fo(Z):= > f,(42), Z € H,.
vEL/2L
Then f, € M;", (TS (4)).
Theorem 1 (Kohnen-Zagier (n = 1), Ibukiyama (n > 1)). Suppose k is an
even positive integer. We have the isomorphism
Tia(Ta) 2 MY (0 (4))
P fo

Furthermore the isomorphism is compatible with the action of Hecke operators.

(II) Maass Space

The Maass space or the Maaf’s Spezialschar was introduced by H. Maass (1911-
1993) to solve the Saito-Kurokawa conjecture. Let k € ZT. We denote by [I'y, k]
the vector space of all Siegel modular forms of weight k and degree 2. We denote
by [['s, k] the vector space of all Siegel modular forms F : Hy — C, F(Z) =
Spso ap(T)e?™ (T 2) in [Ty, k] satisfying the following condition:

w(f 2)- X (4
(B.ll) 2 d|(n,r,m),d>0 2d

3 ol

forallT(? >Z()Withn7r7m€Z.
2

The vector space [I'z, k]™ is called the Maass space or the Maaf3’s Spezialschar.
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For any F'in [I'3, k|, we let

(B.12) F(Z) =Y ¢m(r, z)e2mimT g <Z j,) c H,

m>0

be the Fourier-Jacobi expansion of F. Then for any m € Z; we obtain the linear
map

(B.13) pm L2, k] — Jem(T1), Fr— ¢

We denote that pg is nothing but the Siegel ®—operator.

Maass (cf. [Ma 2-3]) showed that for k even, there exists a natural map V :
Jea (1) — [T'2, k] such that p; o V' is the identity. More precisely, we let ¢ €
Jy1(I'1) with Fourier coefficients c(n,r) (n,r € Z, r? < 4n) and we define for any
m ez,

(B13)  (Vamd)(r2)= > Sl (TR 1Y) it

d?’d
n,r€Z, r2<dmn \d|(n,r,m)

It is easy to see that Vi¢ = ¢ and V,,¢ € Ji ,,(I'1). We define

(B.15) (Vo) <T z) = (Vi) (1, 2)e2™ 7 <T z) € Hs.

z T z T
m>0

We denote by T, (n € Z™) the usual Hecke operators on [I'z, k] resp. [I'z, ko.
Here [I's, k|o denote the vector subspace consisting of all cusp forms in [['z, k.
For instance, if p is a prime, 7T}, and T2 are the Hecke operators corresponding to
the two generators I'; diag(1, 1, p, p) I's and T'y diag(1, p, p?, p) I's of the local Hecke
algebra of I'y at p respectively. We denote by T3, (n € Z') the Hecke operators
on Jgm(I'1) resp. J. P (01) (cf. [E-Z]).

Theorem 2 (Maass [Ma 2-4], Eichler-Zagier [E-Z], Theorem 6.3). Sup-
pose k is an even positive integer. Then the map ¢ — V¢ gives an injection of
Jea1(I1) into [Dg, k] which sends cusp forms to cusp forms and is compatible with
the action of Hecke operators. The image of the map V is equal to the Maass space
[Ty, k)™, If p is a prime, one has

TyoV =Vo(Tip+p"2(p+1)

and
TreoV=Vo (T‘%p + "2 (p DTy, + p?F=2).
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In summary, we have the following isomorphisms

Lo, WM = Jea(Dy) = M (0P0(4) >[Iy 2k -2],
Vo~ ¢ - Jo

where the last isomorphism is the Shimura correspondence. And all the above
isomorphisms are compatible with the action of Hecke operators.

REMARK. (1) [[g, k|M = (CE,i2> @ [[a, k)M, where E,@ is the Siegel-Eisenstein
series of weight k on I'; given by

EX(Z) = Y det(CZ+ D)%, ZeH,
{C.D}

(sum over non—associated pairs of coprime symmetric matrices C, D € Z(??)) and
[F27 ] [F27k]Mm[F27k]O-
(2) Maass proved that dim[T, k|M = [E3%] for k > 4 even. It is known that
dim[[y, k] ~27¢.373 . 571 . k? as k — oo.

We observe that Theorem 2 implies that [ng’]M is invariant under all the
Hecke operators and that it is annihilated by the operator

(B.16) Cp = T2 _ pk—Q(p +1)T, — Ty + p2k—2

g

for every prime p. We let I € [I'3, k] be a nonzero Hecke eigenform with 7,,F =
A I for n € Z1t. For a prime p, we put

Zpp(X) = 1= ApX o+ (A = Ao = p™ =) X2 — AP 2X7 4 pth o
so that Zp,(p~*) (s € C) is the local spinor zeta function of I at p. We put

(B.17) Zp(s) = [[ Zrpp™"), Res>o0.

Then we have

(B.18) ZF(S):C(2S—2I{?+4)22—Z7 Res > 0.

n>1
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Theorem 3 (Saito-Kurokawa conjecture ; Andrianov [An], Maass [Ma 2-
3], Zagier [Za]). Letk € ZT be even and let F be a nonzero Hecke eigenform in
Uy, k|M. Then there exists a unique normalized Hecke eigenform f in [['1, 2k — 2]
such that

Zp(s) = ((s = k+1)C(s — k +2) L (s),
where Ly(s) is the Hecke L-function attached to f.

Theorem 2 implies that Zz(s) has a pole at s = k if F' is a Hecke eigenform in
Do, kM. If F € [I'2, k]o is an eigenform, it was proved by Andrianov that Zp(s)
has an analytic continuation to C which is holomorphic everywhere if k is odd and
is holomorphic except for a possible simple pole at s = k if k is even. Moreover,
the global function

(B.19) Zi(s) = 2m) I (s)I(s — k +2)Zp(s)

is (—1)*-invariant under s — 2k—2—s. It was proved by Evdokimov and Oda that
Zr(s) is holomorphic everywhere if and only if F' is contained in the orthogonal
complement of [['g, k|3 in [y, M].

So far a generalization of the Maass space to higher genus n > 2 has not been
given. There is a partial negative result by Ziegler (cf [Zi], Theorem 4.2). We
will describe his result roughly. Let F € [T'y1,k] (g9 € ZT, k : even) be a Siegel
modular form on Hg, of weight k and let

t ] t
F <Zl W> = Z (I)F’m(ZhVV)ezmmZQ7 <Zl W> c L’g+17 with J € flg7 29 € Hy

W 2 Wz

m>0

be the Fourier-Jacobi expansion of F. For any nonnegative integer m, we consider
the linear mapping

Pk [Lgr1, k] — Jk,m(rg)

defined by
pg7m7k(F) = q)F,my I e [Fg+17k’].

Ziegler showed that for g > 32, the mapping

pg1,16 © [Lgy1,16] — Jis1(T'y)

is not surjective.
Question: Is p, 1 ; surjective for an integer k # 167
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Appendix C. The Orthogonal Group O, 2(R)

A lattice is a free Z-module of finite rank with a nondegerate symmetric bilinear
form with values in Q. Let K be a positive definite unimodular even integral
lattice of rank s with its associated symmetric matrix Sp. Let II; ; be the unique
unimodular even integral Lorentzian lattice of rank 2 with its associated symmetric

matrix <_01 _01> . If there is no confusion, we write 11, 1 = <_01 _01> .

We define the lattices L and M by

(Cl) L=K ®H1,1 and M = H171 D L= H171 &5, K D Hl,l-
We put
Ky ::K®ZR7 Ly ::L®ZR7 Myr = M ®zC.
We let
0 0 -1 0 0 Iy,
-1 0 0 I, 0 0

be the unimodular even integral symmetric matrices associated with the lattices
K, L and M respectively. The isometry group Op(R) of the quadratic space
(Mg, Qnar) is defined by

(C2)  Ou(R) == {g€ GL(Mg) = GL(s 1 4,R)| '9Qurg — Qs }-

Then it is easy to see that O (R) is isomorphic to the orthogonal group O 2 2(R).
Here for two nonnegative integers p and ¢ with p+ ¢ = n, O, 4(R) is defined by

(C.3) OpqR) :={g € GL(p+ q¢R)| yEpeg = Epq },

FE 0
s (5 )

Indeed, @ar is congruent to Esyp0 over R, that is, Qa = taEerg,ga for some
a € GL(s + 4,R) and hence Oy (R) = a='O4y22(R)a. For brevity, we write
O(p,R) = O,0(R) and SO(p,R) = SO, (R). Similiarly, we have Op(R) =
Os411(R) and Og(R) = O(s,R). We denote by (, )i, (, )z and (, )as the nonde-
generate symmetric bilinear forms on Kg, Ly and Mg corresponding to Qx, @
and (Jps respectively.

where
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We let
(C4) D= DMg):={zC Mg|dimgz=2, zis oriented and (, )|, < 0}

be the space of oriented negative two dimensional planes in M. We observe that a
negative two dimensional plane in My occurs twice in D with opposite orientation.
Thus D may be regarded as a space consisting of two copies of the space of negative
two dimensional planes in My. For z € D, the majorant associated to z is defined
by

on ZJ_'
(©5) - {0 ’

—(,)m onz

Then (Mg, (, ).) is a positive definite quadratic space. It is easy to see that we
have the orthogonal decomposition Mg = 2t @ z with respect to (, ), and that
(, )ar has the signature (s + 2,0) on 2+ and (0,2) on z.

According to Witt’s theorem, Og422(R) acts on D transitively. For a fixed
element 2o € D, we denote by Ko the stabilizer of Os422(R) at z9. Then

(C.6) D2 04y22(R)/ Koo

is realized as a homogeneous space. It is easily seen that K., is isomorphic to
O(s+2,R)xSO(2,R), which is a subgroup of the maximal compact subgroup O(s+
2,R) x O(2,R) of Opr(R) = Og422(R). It is also easy to check that Ogys 2(R) has
four connected components. We denote by SOs;22(R)° the identity component
of Ogy22(R). In fact, SOsy22(R) is the kernel of the spinor norm mapping

(C.7) p i SO4p22(R) — R*/(R¥)2
Now we know that
(C.8) D>~ 04452(R)/O(s+ 2,R) x SO(2,R)

has two connected components and the connected component D° containing the
origin o := zy is realized as the homogeneous space as follows :

(C.9) D=0,y 22(R)/O(5,R) x O(2,R) = SO, 22(R)?/SO(4,R) x SO(2,R).

It is known that D° is a Hermitian symmetric space of noncompact type with
complex dimension s + 2. Let us describe a Hermitian structure on D explicitly.
For brevity, we write G := SO;122(R)? and K := SO(s + 2,R) x SO(2,R).
Obviously G is the identity component of Ogy22(R) = Op(R) and K3 is the
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identity component of O(s + 2,R) x O(2,R) = K. For a positive integer n, the
Lie algebra so(n,R) of SO(n,R) has dimension (n — 1)n/2 and

(C.10) so(n,R) = {X e R | o(X) =0, 'X + X =0}.

Then the Lie algebra g of GY is given by

(C.11)

g= { <té g) e REHT | 4 cs0(s+ 2,R), B € 50(2,R), C € REH22) }

Let 0 be the Cartan involution of G§ defined by

(012) Q(g) = Es+2729E3+2727 g < G]%

Then K3, is the subgroup of G% consisting of elements in G} fixed by 6. We also
denote by 6 the differential of # which is given by

(013) Q(X) - ES+272XES+2727 X €g.
Then g has the Cartan decomposition
(C.14) g=t+p,

where € and p denote the (+1)-eigenspace and (—1)-eigenspace of 6 respectively.
More explicitly,

t= { <61 g) €g| Aeso(s+2,R), B€50(27R)}

0 C s
(B 6 e

The real dimension of g, £ and p are (s +3)(s+4)/2, (s> +3s+4)/2 and 2(s +2)
respectively. Thus the real dimension of D° is 2(s +2). Since p is stable under the
adjoint action of Kg, i.e., Ad(k)p = p for all k € K3, (g, ¢, ) is reductive. Thus
the tangent space T,(D) of D° C D at o := 2o can be canonically identified with
R2(+2) via

and

<’% g) — (2,y), C=(a,y) € RE¥Z =RIHD,

Then the adjoint action of K on p =2 R?(5+2) is expressed as

ki 0 B 0 k1 C s
(015) Ad << 0 1{12)) (£C7 y) - <k’2 tcrtk,1 0 > ’
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where k; € SO(s + 2,R), ky € SO(2,R) and C = (z,y) € RE+22 The Cartan-
Killing form B of g is given by
(C.16) B(X,Y)=(s+2)o(XY), X, Yeg.
The restriction By of B to p is given by
Bo((x,y), (2 9)) = 2(s + 2)(< w2’ > + <,y >),

where <, > is the standard inner product on R*+2. The restriction By induces a
G%-invariant Riemannian metric go on D° defined by

go(X,Y) = Bo(X,Y), X,Y ep.
It is easy to check that gg is invariant under the adjoint action of K.

Now let Jy be the complex structure on the real vector space p defined by

(C.17) Jo((z, y)) == (—y,2), (x,y) €p.
We note that

JgAd<ESO+2 ?) 1:(? _01> J2 = 1d,.

It is easy to check that Jy is Ad(Kg)-invariant, i.e.,
Jo(Ad(k)X) = Jo(X) for all k € Kg and X € p.

Hence Jy induces an almost complex structure J on DY and also on D. J becomes
a complex structure on D° via the natural identification

(C.18) To(D%) = p 2 R2CH2) > 342 (g 4) — a4 iy, a,y € R®T2,

Indeed, J is the pull-back of the standard complex structure on C**2. The com-
plexification pc := p ®r C has a canonical decomposition

pc = p+ D p-,
where py (resp.p_ ) denotes the (+i)-eigenspace ( resp. (—i)-eigenspace ) of Jy. Pre-
cisely, p, and p_ are given by
py = {(z,—iz) |z € C**?} and p_ = {(x,i2)| x € C*T2}.

Usually py and p_ are called the holomorphic tangent space and the anti-holomorphic
tangent space respectively. Moreover, it is easy to check that the Riemann-
ian metric go on DY is Hermitian with respect to the complex structure J, i.e.,
go(JX, JY) = go(X,Y) for all smooth vector fields X and Y on D°. And D has
the canonical orientation induced by its complex structure.
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In summary, we have

Theorem 1. D is a Hermitian symmetric space of noncompact type with di-
mension s+ 2. D° is realized as a bounded symmetric domain in C**? and hence
D is a union of two bounded symmetric domains in C*12.

REMARK 2. We choose an orthogonal basis of z3-. We also choose a basis of zg
which is properly oriented. Let

T4 = diag (B, —1) and 7, = diag (1, —1)

be the symmetries in the isometry groups O(z3-) and O(zo) with respect to the last
coordinates of 23~ and zo respectively. We observe that 7., reverses the orientation
of zp and lies in O(z) — SO(20). It is easy to check that

p(lzoL X TZO) = -1, /)(7—,20L X 120) =1,

where p is the spinor norm mapping defined by (C.7). It is easy to see that the
set

(C.19) {1MR7 Lot X Tags Tad X Lugy Tot X o }

is a complete set of coset representatives of Ogy22(R)/SOg 22(R)". We note that
the set (C.19) is contained in O(s+2,R) x O(2,R) and so that (C.19) is a complete
set of coset representatives of O(s+2,R)x O(2,R)/(SO(s+2,R) x SO(2,R)). It is
easy to see that the set { 1pg, 1,1 X 72, } is a complete set of coset representatives
of (O(s+2,R) x O(2,R))/(O(s+ 2,R) x SO(2,R)). Thus we have

(C.20) D=D"U (1,1 X 7s) D"

The complex structure —Jy on p determines the opposite almost complex structure
on DY and the almost complex structure on the connected component D — D is
the one on D° carried by the element 1,1 X 7. The ground manifolds D° and
D — DY may be regarded as the same one, but each carries the opposite almost
complex structure.

REMARK 3. D° may be regarded as an open orbit of Gf in the complex projective
quadratic space t2Q 2 = 0 via the Borel embedding. (See [Bai] for detail.) D is
realized as a tube domain in C**2 given by (4.10) in section 4. For the explicit
realization of D° as a bounded symmetric domain in C**2, we refer to [Bai], [H]
and [O].
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Finally we present the useful equations for g to belong to Osyz2(R). For g €
Os42,2(R), we write

All A12 AlS
9= A21 A22 A23 )
ASl A32 ASS

where Ai1, Ais, As1, Ass € R Ay € RS App, Agy € R and Agy, Ags €
R, Then the condition ‘gQurg = Qs is equivalent to the following equations
given by

(C.21) YA 1 Ay + PAg1 SoAsy + PAs T 1 Agg = 0,
(C.22) YA 1 Ass + PA21SoAgs + PAs T 1 A = 0,
(C.23) YA 1 Ags + P A2 SoAas + TA L 1 Arg = 1T 4,
(C.24) YA1ally 1 Asy + P A2 SoAgs + PAsally 1 Ajg = So,
(C.25) PA1oIl 1 Asgs + TA22S0Aos + FAslly 1A = 0,
and

(C.26) YAyally  Ass + "Ag3S0Ags + PAssIly 1 Ars = 0.

Appendix D. The Leech Lattice A

Here we collect some properties of the Leech lattice A. Most of the materials
in this appendix can be found in [C-S].

The Leech lattice L is the unique positive definite unimodular even integral
lattice of rank 24 with minimal norm 4. A was discovered by J. Leech in 1965.
(cf. Notes on sphere packing, Can. J. Math. 19 (1967), 251-267.) It was realized
by Conway, Parker and Sloane that the Leech lattice A has many strange geometric
properties. Past three decades more than 20 constructions of A were found.

The following properties of A are well known :

(A1) The determinant of A is det A = 1. The kissing number is 7 = 196560 and
the packing radius is p = 1. The density is A = 7'2/(12!) = 0.001930--- . The
covering radius is R = /2 and the thickness is © = (27)2/(12!) = 7.9035 - - - .
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(A2) There are 23 different types of deep hole one of which is the octahedral hole
8=1/2(4,0%%) surrounded by 48 lattice points.

(A3) The Veronoi cell has 16969680 faces, 196560 corresponding to the minimal
vectors and 16773120 to those of the next layer.

(A4) The automorphism group Aut(A) of A has order
222 .39. 5% .72 .11 - 13 - 23 = 8315553613086720000.

Aut(A) has the Mathieu group Ms, as a subgroup. The automorphism group
Aut(A) is often denoted by Cog or 0 because J.H. Conway first discovered this

group.

For a given lattice L, we denote N,,(L) by the number of vectors of norm m.
Conway characterized the Leech lattice as follows ( cf. A characterization of Leech’s
lattice, Invent. Math. 7 (1969), 137-142 or Chapter 12 in [C-S]):

Theorem 1 ( Conway ). A is the unique positive definite unimodular even inte-
gral lattice L with rank < 32 that satisfies any one of the following

(a) L is not directly congruent to its mirror-image.

(b) No reflection leaves L invariant.

(¢) Na(L) = 0.

(d) Nopm(L) = 0 for some m > 0.

Theorem 2 ( Conway ). If L is a unimodular even integral lattice with rank < 32
and No(L) = 0, then L = A and N4(L) = 196560, Ng(L) = 16773120, Ns(L) =
398034000.

Now we review the Jacobi theta functions. For the present time being, we put
q = €™ and ¢ = ™. (We note that we set ¢ = €?™7 and ¢ = €27 at other
places.) We define the Jacobi theta functions

(D.1) 0r(r,2) =071 Y (1)l L
nez

(D.2) Or(r,2) = 3 /D et
nez

(D.3) Os(r,2) == > q" ¢*",

nez
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(D.4) Ou(r,2) == (=1)"q" ¢,

nez

where 7 € H; and z € C. We also define the theta functions 0x(7) := 05 (7, 0) for
k= 2,3,4. Then it is easy to see that

(D.5) Oa(r) = Y gD = emiT gy (7,7 )2),
nez
(D.6) Ou(7) = 3 (~1)"q" = Os(7,7/2) = O5(7 + 1).
nez

According to the Poisson summation formula, we obtain
(D.7) O3(—1/7,2/7) = (—ir) /2™ /704(r, 2), (r,2) € Hy x C.

And these theta functions can be written as infinite products as follows:

(D.8) 01(r,2) = 2sinmz - ¢'/* nl;[g(l — "1 = g*" )1 - g*(7?),
(D.9) 02(7, 2) ql/“Cnl;[O L=+ ¢ ) A+ (7,
(D.10) 05(, 2) = nl;[g(l =) (L + "¢ (1 + ¢,

(D.11) 04(1,2) = nl;[g(l — ") =Y =g,

Thus the theta functions 0x(7) (2 < k < 4) are written as infinite products:

(D.9) O(7) = ¢"* T =" A+ A+ %) = 2¢* [TA=* A+,
n>0 n>0
(D.107) 0(r) = [T (1 = ™)1+ "),
n>0
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(D.117) 0u(7) = [T =" —g* )%

n>0

We note that the discriminant function A(r) is written as

(D.12) A(r) = ¢* TT( =) = {1/202(7)05(r)0a(7) }°

n>0

We observe that the theta function #3(7,z) is annihilated by the heat opera-

tor H = 37,2 47”3_ It is easy to check that 6,(7,z) has zeros only at m; +
maT (M1, ma € Z) and satisfies the equations

(D.13) Or(r, 2+ 1) = —=01(1,2), O1(r,7+2)= —q_le_%”’el(n z2).

Now for a given positive definite lattice L, we define the theta series ©p(7) of a
lattice L by

(D.14) OL(r) =Y ¢" =" N,(L)g", TeH,

a€el m>0

where N(a) = («, a) denotes the norm of a vector a € L. We can also use (D.14)
to define the theta series of a nonlattice packing L. The commonest examples of
this appear when L is a translate of a lattice or a union of translates. Clearly

02(1) = Oz41/2(7), 03(1) = Oz(7) and Oz~ (1) = Oz(1)"™ = (7)™
Returing to the Leech lattice L,

OA(T) = Op, (1)* — T20 A(T)
= 1/8 {02(r)* + O5(r)* + 04(r)* }* — 45/16 { 62(7)03(r) () }*
= 1/2{02(7)* + 05(7)** 1 04(7)** } — 69/16 { B2(7)03(7)04(7) }°
= > Np(A)g™ =1+ 196560q" + 16773120¢° + -

m>0

where O g, (7) is the theta series of the exceptional lattice Fg of rank 8. It is known
that

(D.15) N (A) = 65520/691 (011 (m/2) — 7(m/2)) .

The values of N,,(A) for 0 < m < 100, m : even can be found in [C-S], p. 135.
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In the middle of 1980s, M. Koike, T. Kondo and T. Tasaka solved a special part
of the Moonshine Conjectures for the Mathieu group Msyy. For g € My, we write

(D.16) 9= (m)(ng)--- (), ma = 2w >,

where (n;) is a cycle of length n; (1 <i < s). To each g € M4 of the form (D.16),
we associate modular forms 7,4(7) and 6,(7) defined by

(D.17) ng(7) = n(mr)n(net) - nlner), 7€ H

and

(D.18) Og(r) = Y N7 e Hy,
a€Ay

where 7(7) is the Dedekind eta function and
(D.19) Ay ={aelA|g-a=a}

is the positive definite even integral lattice of rank s. We observe that 6,(7) =

O, (7).

Theorem 3 ( [Koi2]). For any element g € My, with g # 122, 45, 212 102 .
2%, 12:6-4-2, 4%-2%, there exists a unique modular form fo(1) = 1437, 54 ag(n)g**, ag(n) €
Z satisfying the following conditions :

(K1) There exists an element g1 € G such that fy(T)ng(7)~! = T, (1) + ¢ for

some constant c, where G is the MONSTER and T,, () denotes the Thompson
series of g1 € G.

(K2) ay(1) =0, and az(n) are nonnegative even integers for all n > 1.

(K3) If ¢’ = g" for somer € Z, then ay(n) < agy(n) for all n.

(K4) a4(2) is equal to the cardinality of the set {a € Ag| N(a) = (o, ) =4 }.
Theorem 4 ( Kondo and Tasaka [K-T]). Let g € May be any element of the
Mathieu group May. Then the function 0,(7) ny(7)™! is a Hauptmodul for a genus
0 discrete subgroup of SL(2,R). The function 04(7) is the unique modular form
satisfying the conditions (K1)-(K4).

For more detail on the Leech lattice A we refer to [Bo3|,[C-S] and [Kon].
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In this paper, we give a survey of a geometrical theory of Jacobi forms of higher
degree. And we present some geometric results and discuss some geometric problems to
be investigated in the future.

1. Introduction

A Jacobi form is an automorphic form on the Jacobi group, which is the
semi-direct product of the symplectic group Sp(g,R) and the Heisenberg group

Hﬂég ) (see section 2 ). Jacobi forms are very useful because they are closely related
to modular forms of half integral weight and the theory of the moduli space of
abelian varieties. The simplest case is when the symplectic group is SL(2,R) and
the Heisenberg group is three dimensional, that is, g = h = 1. This case had been
treated more or less systematically in [21] and many papers of Zagier’s school. But
it seems to us that there is no systematic investigation of Jacobi forms of higher
degree when g > 1 and h > 1. Some results could be found in [17], [79]-[89] and
[94].

The purpose of this paper is to give a survey of a geometrical theory of Jacobi
forms of higher degree. And we present some geometric results and discuss some
geometric problems which should be investigated in the future. In Section 2, we
review the notion of Jacobi forms and establish the notations. In Section 3, we
present a brief historical remark and some motivation on Jacobi forms. In Section
4, we review the toroidal compactifications of the Siegel modular variety and the
universal abelian variety. In Section 5, we introduce the automorphic vector bundle
E, s associated with the canonical automorphic factor Ju, , for the Jacobi group
ng,h and then discuss the properties of F, o4 related to Jacobi forms. In Section
6, we give some open problems related to Wang’s result(cf. [63]). In Section 7,
we describe the boundary of the Satake compactification in terms of the languages
of Jacobi forms. These results are essentially due to Igusa [35]. In Section 8, we

(Received : September 9, 1999. Revised : January 19, 2000)

This article is an extended version of the paper published under the same title in
Proceedings of Symposium on Hodge Theory and Algebraic Geometry (edited by Tadao
Oda), Sendai, Japan(1996).

209

205



210 Jae-Hyun Yang

provide you with some characterizations of singular Jacobi forms due to Yang [85].
We roughly explain that the study of singular Jacobi forms is closely related to the
invariant theory of the action of the group GL(g,R) x H]I({g’h)(cf. (9.1)) and to the
geometry of the universal abelian variety. In Section 9, we introduce some results of
the Siegel-Jacobi operator. We describe implicitly that the Siegel-Jacobi operator
plays an important role in the study of the universal abelian variety. In Section 10,
J . . . . J . . . .
we present G o prinvariant Kahler metrics and G 5 p-invariant differential operators

on the Siegel-Jacobi space H, x €9 We introduce the notion of Maass-Jacobi
forms. In the final section, we give a brief remark on some recent geometric results.
In appendix A, we talk about subvarieties of the Siegel modular variety and present
several problems. In appendix B, we describe why the study of singular modular
forms is closely related to that of the geometry of the Siegel modular variety. Finally
I would like to give my hearty thanks to Professor Tadao Oda and Dr. Hiroyuki Ito
for inviting me to Sendai and giving me a chance to give a lecture at the conference
on Hodge Theory and Algebraic Geometry.

Notations: We denote by Z, R and C the ring of integers, the field of real num-
bers, and the field of complex numbers respectively. H, denotes the Siegel upper
half plane of degree g. I'y := Sp(g, Z) denotes the Siegel modular group of degree
g. The symbol “:=” means that the expression on the right is the definition of that
on the left. We denote by Z* the set of all positive integers. F(*! denotes the
set of all k£ x [ matrices with entries in a commutative ring I. For a square matrix
A € F(&E) of degree k, o(A) denotes the trace of A. For A € F®) and B € F&:F)
we set B[A] = YABA. For any M € F(*! A denotes the transpose matrix of M.
FE,, denotes the identity matrix of degree n. For a commutative ring K, we denote
by S¢(K) the vector space of symmetric matrices of degree ¢ with entries in K. For
a positve integer g and an integer k, we denote by [['y, k] the vector space of all
Siegel modular forms on H, of weight k.

2. Jacobi Forms

In this section, we establish the notations and define the concept of Jacobi
forms.

Let
Sp(g,R) = {M € R292) | MJ,M = J, }

be the symplectic group of degree g, where

(3 5)

It is easy to see that Sp(g,R) acts on H, transitively by
M < Z >=(AZ + B)(CZ + D)},

A B
where M = ((C D)) € Sp(g,R) and Z € H,.
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For two positive integers g and h, we recall that the Jacobi group G;h =
Sp(g,R) x HH({g’h) is the semidirect product of the symplectic group Sp(g,R) and

)

the Heisenberg group Hﬂ(gg ") endowed with the following multiplication law

(M, (A 1, 1)) - (M, (N, 6)) = (MM (A N fit ki 1+ A = ™)

with M, M’ € Sp(g,R), (A, p, 5), (N, 1/, k') € HO™ and (A, j) == (A, p)M’. Tt is
easy to see that G;h acts on Hyp = Hy x C"9) transitively by

(2.1) (M, (A 1, 5)) - (Z, W) = (M < Z >, (W + AZ+ p)(CZ+ D)™ 1),

cC D

Let p be a rational representation of GL(g,C) on a finite dimensional complex
vector space V,. Let M € R™7) be a symmetric half-integral semi-positive definite
matrix of degree h. Let C°°(H, ,V,) be the algebra of all C* functions on H, p,
with values in V,. For f € C*(H, 1, V,), we define

(Flom (M, (A, i, £)N(Z, W)
(2.2) — 6727ria(M[W+>\Z+u](CZ+D)’1C) « e2mio(MAZATL2AW +(5+4N)))

xp(CZ + D) f(M < Z> (W+AZ+p)(CZ+ D)™,

where M — ((A B)) € Sp(g,R), (A p k) € HO™M and (Z,W) € H, .

where M = ((é [B)>> € Sp(g,R), (\, k) € HY™M and (Z,W) € H, ..

Definition 2.1. Let p and M be as above. Let
HZM = { o) € HEV |\ p e 209, e 20,

Let I' be a discrete subgroup of I'y of finite index. A Jacobi form of index M
with respect to p on I' is a holomorphic function f € C°°(H,,V,) satisfying the
following conditions (A) and (B):

(A) Floml3] = f forall y € IY =T s HPM.
(B) f has a Fourier expansion of the following form :

(Z,W) = Z Z c(T,R) - 62%; o(TZ)  2mic(RW)
T>0 REZ(EJL)

half-integral

4 1
with some nonzero integer Ar € Z and ¢(7', R) # 0 only if ((’}th ﬁ)) > 0.
2
If g > 2, the condition (B) is superfluous by Kocher principle ( cf. [94] Lemma
1.6). We denote by J, s(T") the vector space of all Jacobi forms of index M with

respect to p on I'. Ziegler(cf. [94] Theorem 1.8 or [21] Theorem 1.1) proves that the
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vector space J, (") is finite dimensional. For more results on Jacobi forms with
g > 1and h > 1, we refer to [17], [79]-[89] and [94].

Definition 2.2. A Jacobi form f € J, s(T') is said to be a cusp (or cuspidal) form

1 1

if (ith ,2/512) > 0 for any 7', R with ¢(T, R) # 0. A Jacobi form f € J, pm(T) is
2

said to be singular if it admits a Fourier expansion such that a Fourier coefficient

w1 sR
¢(T, R) vanishes unless det (IF ) =0.
s'/R M

Example 2.3. Let S € Z®%2F) be a symmetric, positive definite, unimodular
even integral matrix and ¢ € Z(2%") We define the theta series

(22) SOZW)= Y IS IV e W e cto),
AEZ(2k, )

We put M = %tcSc. We assume that 2k < g + rank (M). Then it is easy to see
that 19‘(5?2 is a singular Jacobi form in Ji aq(T'g)(cf. [94] p.212).

3. Historical Remarks
In this section, we will make brief historical remarks on Jacobi forms.

In 1985, the names Jacobi group and Jacobi forms got kind of standard by the
classic book [21] by EICHLER and ZAGIER to remind of Jacobi’s “Fundamenta nova
theoriae functionum ellipticorum”, which appeared in 1829 ([36]). Before [21] these
objects appeared more or less explicitly and under different names in the work of
many authors.

In 1969 Pyatetski-Shapiro [52] discussed the Fourier-Jacobi expansion of Siegel
modular forms and the field of modular abelian functions. He gave the dimension
of this field in the higher degree.

About the same time Satake [55]-[56] introduced the notion of “groups of Harish-
Chandra type” which are non reductive but still behave well enough so that he
could determine their canonical automorphic factors and kernel functions.

Shimura [57]-[58] gave a new foundation of the theory of complex multiplication
of abelian functions using Jacobi theta functions.

Kuznetsov [41] constructed functions which are almost Jacobi forms from ordi-
nary elliptic modular functions.

Starting 1981, Berndt [4]-[6] published some papers which studied the field of
arithmetic Jacobi functions, ending up with a proof of Shimura reciprocity law
for the field of these functions with arbitrary level. Furthermore he investigated
the discrete series for the Jacobi group G;h and developed the spectral theory

for LQ(FJ\Gih) in the case ¢ = h = 1([9],[11]). Recently he [10] studied the L-
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functions and the Whittaker models for the Jacobi forms.

The connection of Jacobi forms to modular forms was given by Maass, Andri-
anov, Kohnen, Shimura, Eichler and Zagier. This connection is pictured as follows.
For k even, we have the following isomorphisms

[Co, kM 2 Jya(D1) = M, (067 (4)) = [Ty, 2k — 2],

Here [y, k]M denotes the Maass’s Spezialschar, M :_ (Fél)(él)) denotes the Kohnen

space and [I'y, 2k — 2| denotes the vector space consisting of elliptic modular forms
of weight 2k — 2. For a precise detail, we refer to [42]-[44], [1], [21], [37] and [81].

1
2

In 1982 Tai [60] gave asymptotic dimension formulae for certain spaces of Jacobi
forms for arbitrary g and A = 1 and used these ones to show that the moduli A, of
principally polarized abelian varieties of dimension g is of general type for g > 9.

Feingold and Frenkel [23] essentially discussed Jacobi forms in the context of
Kac-Moody Lie algebras generalizing the Maass correspondence to higher level.
Gritsenko [30] studied Fourier-Jacobi expansions and a non-commutative Hecke
ring in connection with the Jacobi group.

After 1985 the theory of Jacobi forms for ¢ = h = 1 had been studied more
or less systematically by the Zagier school. A large part of the theory of Jacobi
forms of higher degree was investigated by Dulinski [17], Kramer [40], Yamazaki
[69], Yang [79]-[89] and Ziegler [94].

There were several attempts to establish L-functions in the context of the Jacobi
group by Murase [47]-[48] and Sugano [50] using the so-called “Whittaker-Shintani
functions”.

Recently Kramer [40] developed an arithmetic theory of Jacobi forms of higher
degree. Runge [54] discussed some part of the geometry of Jacobi forms for arbitrary
g and h = 1. Quite recently T. Arakawa and B. Heim [2] studied the iterated
Petersson scalar product of a diagonal-restricted real analytic Jacobi Eisenstein
series of degree (3,1) against elliptic Jacobi forms generalizing Garrett’s result in
the case of Siegel Eisenstein series of degree 3.

For a good survey on some motivation and background for the study of Jacobi
forms, we refer to [10].

4. Review on Toroidal Compactifications of the Siegel Space and the
Universal Abelian Variety

In this section, we will make a brief review on toroidal compactification of the
Siegel space and the universal abelian variety. We refer to [3], [22] and [51] for more
detail.

I. A toroidal compactification of the Siegel modular variety
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First we realize H, as a bounded symmetric domain Dy := { W € Clo9) | W =
"W, Ey—ZZ >0} (called the generalized unit disc of degree g) in S, (C) via the
transformation ® : H;, — D, given by

O(7Z) = (Z —iE,)(Z +iF,)", Z¢ H,.

Indeed, it is a Harish-Chandra realization of a homogeneous space. The inverse !
of ® given by
O NZ) = i (B, + W)(E, —W)~!, WeD,

is called the generalized Cayley transformation.

Let D, be the topological closure of D, in Sy(C). Then D, is the disjoint union
of all boundary components of D. Let

Zy 0 .
FT::{<01 Eg_r>eDg|Z1€Dr}, 0<r<g

be the standard rational boundary components of D,. Then any boundary compo-
nent F' of D, is of the form F' = g - F, for some g € Sp(g,R) and some r with
0 <r < g. In addition, if F' is a rational boundary component of Dy, then it is of
the form ' = ~- F, for some v € Sp(g,Z) and some r with 0 < r < g. We note that
Fo={FE,}and I, = D,;. We set

(4.1) Dy = Uo<r<g Sp(9. Z) - Iy .

Then D7 is clearly the union of all rational boundary components of Dy and is called
the rational closure of Dy. We let I'y := Sp(g, Z) for brevity. Then we obtain the
so-called Satake-Baily-Borel compactification A} := T'y)\Dj of Ay := I';\Dy. Let
F be a rational boundary component of D,. We denote by P(F'), W(F'), U(F) the
parabolic subgroup associated with F', the unipotent radical of P(F') and the center
of W(F) respectively. We set V(F) := W(F)/U(F). Since P(g-F) = gP(F)g~!
for g € Sp(g,R), it is enough to investigate the structures of these groups for the
standard rational boundary components F, (0 <r < g).

Now we take F' = F, for some r with 0 < 7 < g. We define D(F') := U(F)c-Dy C
f)g. Here f)g = B\Sp(g,R)c is the compact dual of D, with B a parabolic subgroup
of Sp(g,R)c. It is obvious that U(F)c =2 Sy, (C) and D(F) = F x V(F) x U(F)c
analytically. We observe that U(F') acts on D(F') as the linear translation on the
factor U(F)¢c. The isomorphism ¢ : D(F) — F x V(F) x U(F)¢ is given by

© ((Z*l 2)) = (Z1, %9, %3), Z1€ Dy, ZoeCM97) Zye S, (C).

We define the mapping ®p : D(F) — U(F) by
(4.2)
@F((Zl, ZQ, Zg)) = ImZ3 — t(ImZg) (ImZ)_l (ImZg), (Z]_,ZQ, Zg) S D(F)
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A Geometrical Theory of Jacobi Forms of Higher Degree 215

Then D, = H, is characterized by ®p(Z) > 0 for all Z € D,. This is the realization
of a Siegel domain of the third kind. We let C(F) be the cone of real positive
symmetric matrices of degree g —r in U(F') = S;_,(R). Clearly we have D, =
O~ (C(F)). We define

Gp(F) := Aut (F') (modulo finite group )

and
Gi(F) = Auwt (U(F), C(F)).

Then it is easy to see that

P(F) = (Gn(F) x Gi(F)) x W(F') (the semidirect product )
We obtain the natural projections py, : P(F) — Gr(F') and p; : P(F') — Gi(F").
Step I : Partial compactification for a rational bounadry component.

Now we let T" be an arithmetic subgroup of Sp(g,R). We let

I(F): =InNPF),
L) =p(T(F)) C G(F),
Up(F): =TnU(F), alatticein U(F),

Wr(F): =T'nW(F).
We note that ['(F) is an arithmetic subgroup of G;(F).

Let Xy = { oL} be a ['(F)-admissible polyhedral decomposition of C(F). We
set D(F) := D(F)/U(F)c. Since D(F') =2 F'x V(F'), the projection np : D(F) —
D(F) is a principal U(F)c-bundle over D(F)’. The map

(4.3) e Un(F)\D(F) = F x V(F) x (Up(F)\U(F)c) — D(F)

is a principal T'(F')-bundle with the structure group T'(F) := Up(F)\U(F)c =
(C*)?, where ¢ = o= r>(92_ Tt 1>. Let X5, be a normal torus embedding of
T(F). We note that Xy, is determined by ¥.p. Then we obtain a fibre bundle

(4.4) X(¥p) = (Ur(F\D(F)) x7(ry Xsp

over D(F) with fibre Xy,. We denote by X (Xp) the interior of the closure of
Ur(F)\Dy in X(Xp) (because D, C D(F)). X(Xp) has a fibrewise T'(I")-orbit
decomposition ][, O(x) such that

(i)  each O(y) is an algebraic torus bundle over D(F)/,
() o, <o, iff O(u) 2 O(v),

(14i) dimo, + dimO(p) = dim D(F),

(iv) foro, =0, O(u) =Up(F)\D(F).
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We define
OF)= |J Ola)cX(Zp)
cENC(F)#D
and
O(F) = T(F)/Up (F\O(F).
We note that O(F,) = Dy and O(F,) = I'\D,. We set

(4.5) Y(Xr) =)/ Ur(FA\X(3F) .
We note that T'(F)/Up(F) acts on Y(Xp) properly discontinuously. Then we can

show that Y (X F) has a canonical quotient structure of a normal analytic space and
O(F') is a closed analytic set in Y(Xp).
Step II : Gluing.

Let ¥ := {X¥p| F is a rational boundary component of D, } be a I'-admissible
family of polyhedral decompositions. We put

(F\Dg) = UF:rationalX(EF)~
We define the equivalence relation « on (F\bg) as follows:
X« Xy, Xi€ X(EF1)7 Xy € X‘(EFQ)

iff there exist a rational boundary component F, an element v € I' such that
Fiy < F, vF, < I and there exists an element X € X(Xp) such that 7p g (X) =
X17 7TF7F2(X) = ’)/X27 Where

rr - X(Xp) — X(XR), 7rR  X(Xr) — X(hR,).

The space (T\D,) := (I'\Dy)/ « is called the toroidal compactification of T\ D,
associated with X. It is known that (I"\ D, ) is a Hausdorff analytic variety containing
I'\D, as an open dense subset. For a neat arithmetic subgroup I', we can obtain a
smooth projective toroidal compactification of '\ D,.

I1. A toroidal compactification of the universal abelian variety

For a positive integer g € Z™, we put X := Z9. Let B(X) be the Z-module of
integral valued symmetric bilinear forms on X and let B(X)gr := B(X) ®z R. Let
C(X) C B(X)r be the convex cone of all positive semi-positive symmetric bilinear
forms on Xy whose radicals are defined over Q. We let X* be the dual of X. For a
positive integer s € Z1, we let

By(X):=B(X) x (X*)* and By(X)p:= Bs(X)®zR.

Then the semidirect product GL(X) x X*® acts on B,(X)p in the natural way and
the projection Bs(X)r — B(X)r is equivariant with respect to the canonical mor-
phism GL(X)x X*® — GL(X). Inside Bs(X )r we obtain the cone Cs(X) consisting

212



A Geometrical Theory of Jacobi Forms of Higher Degree 217

of ¢ = (b;fy,-- ,£y) € By(X)r such that b € C(X) and each ¢; vanishes on the
radical of b.

Let a GL(X)-admissible polyhedral cone decomposition C = {o,} of C(X) be
given. A GL(X)x X*-admissible polyhedral cone decomposition C = {75} of Cy(X)
relative to C = {0, } is defined to be a collection C = {73} such that

(1) each 73 is a non-degenerate rational polyhedral cone which is open in the
smallest R-subspace containing it;

(2) any face of a 75 € C belongs to C;

(3) CS(X) = UTﬁEéTﬂ ;

(4) C is invariant under the action of GL(X) x X* and there are only finitely
many GL(X) x X?*-orbits;

(5) any 753 € C maps into a o, € C under the natural projection Cy(X) —
C(X).

We call C equidimensional if in (5) of the above definition each 75 € C maps
onto a g, € C. Agaln C is called smooth or regular if each T3 € C is generated
by part of a Z-basis of B,(X). According to the reduction theory [3], there exists
a smooth equidimensional GL(X) x X*-admissible polyhedral cone decomposition
C of é’S(X) relative to C. Let F' be the split torus BS(X)R ®7 Gm. The choice of a
polyhedral cone decomposition C = {73} of C;(X) as above provides us with a torus
embedding F' < F. Then F is stratified by F-orbits and GL(X)x X?® acts on F pre-
serving this stratification. Therefore we obtain the toroidal compactification A,
of the universal abelian variety A, , := F;S\Hg x C9) with F;S =Ty x Hég’h).
We collect some properties of the toroidal compactification flw.

(a) A, s is a HaudorfT analytic variety containing A, s as an open dense subset.

(b) Ay s has a stratification parametrized by the GL(X) x X®-orbits of cones
T3 € C.

(¢) The toroidal compactification A, s depends on the choice of a smooth equidi-
mensional GL(X) x X*-admissible polyhedral cone decomposition C = {75} of
C,(X) relative to C. In order to indicate this dependence we write 4, ,(C) instead

of 1217975. The natural projection @ : A; s — A, extends to a proper morphism
Ay — Ay

Now we recall [22], p. 197 that an admissible homogeneous principal polarization
function of {73} — {04} is a piecewise linear function ¢ : Cs(X) — R satisfying
the following conditions

(P1) qg is continuous and G L(X )-invariant;

(P2) qb takes rational values on B;(X) N Cs(X) with bounded denominators;
(P3) ¢ is homogeneous, i.e. ¢(}5 q) =t-¢(q) for all real t > 0 and all ¢ € C5(X);
(P4)

¢ is linear on each 73 € C;
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(P5) ¢ is convex in the sense that
St-q+(L—t)-q) =t dla) +(1-1)-d(q)

for all ¢ € R with 0 <¢ < 1 and any ¢, ¢’ € Cs(X).

(P6) ¢ is strictly convex, that is, for each o, € C = {0,} and each 75 € C = {75}
lying over o4, there exist a finite number of linear functionals ¢; : B, (X)—R, 1<
1 < m with ¢, > qg on the preimage of o, for each ¢ and

75 ={q € Cs(X)] qlies over o, and ¢(q) = £i(q) for each i }.

(P7) There exists a rational positive number r such that for each p =
(p1, -+, ps) € X®, the function

d—¢oT, : q— flq) — flu-q)

is equal to r times (restriction to Cs(X) of) the linear functional x, on By(X),
where for ¢ = (b; £y, --- ,4,) € Cs(X),

Xu() = D () = D> {bi, ) +2- G(ps) ).

1<i<s 1<i<s

The conditions (P1)-(P7) above constitute a kind of convexity conditions on
{3} — {oa}. They imply that the morphism A4, , — A, attached to {75} —
{04} is projective. Indeed, the theory of torus embeddings shows that an admissi-
ble homogeneous principal polarization function qg : é’S(X ) — R gives rise to an

invertible sheaf £(¢), which is ample on A, ;(C) relative to A,(C).
5. The Automorphic Vector Bundle E, s/

Let p and M be as before in section 2. Assume that I" is a subgroup of
I'y = Splg,Z) of finte index which acts freely on H; and —FE», ¢ T'. Then
I’ =T Hég’h) actson Hgp = Hy % Cm9) properly discontinuously. We consider
the automorphic factor Ja, : G;h x Hy , — GL(V,) defined by

a3, (2, W)) = e2mic (MW HAZ+u(CZ+D) 1 C)
xefzww(/\/t(,\zf/\+2,\fw+n+uf,\))p(C«ZJFD)7

A B
C D
the automorphic vector bundle £, pq := Hyp Xps V, over Ay = FJ\HM. By
the definition, Jacobi forms in J, o¢(I') may be considered as holomorphic sections
of the vector bundle F, x4 with some additional cusp condition. For g > 2, this
additional condition may be dropped according to Kécher principle. Let A, r be
a toroidal compactification given by a regular I'-admissible family » of polyhedral
decompositions.

where § = (M, (\, i, 5)) € G7 with M = ( > € Sp(g,R). Then Jpy , defines
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Without proof we provides our results.

Theorem 5.1. Ay is contained in Ag7h7p as a Zariski open subset. I, apq
can be extended uniquely to the holomorphic vector bundle £, pq over Agp pm. And
Hl(Ag,h,Fv EP,M)

=~ HY Ay h i, Ep p). In particular, the dimension of J, s is finite dimensional.
vspace(.1lin

Definition 5.2. Let p be an irreducible rational representation of GL(g,C) with
its highest weight (A1, Aa, .-+, Ag). We call the number of j (1 < j < g) such that
Aj = Ay the corank of p which is denoted by corank (p). The number k(p) := A, is

called the weight of p.

Theorem 5.3. Let 2M be an even unimodular positive definite matriz of degree
h. Let p be an irreducible finite dimensional representation of GL(g,C) with highest
weight p = (A, -+, Ag). Let X(p) be the number of N,s such that \; = k(p) +1 =
Ag+1, 1 <i<g. Assume that p satisfies the following conditions :

la] p(A) =p(—A) forall A€ GL(g,C),
bl Alp) < 2(g — k(p) — corank(p) ) + h.

Then HO(A!Lh’F, Ep,M) =0.
Proof. The proof can be found in [80].

Corollary 5.4. Let 2M be as above in Theorem 5.3. Assume that 2k(p) <
g+ h —2corank(p). Then H°(Agnr, B, pm) = 0.

Remark 5.5. N.-P. Skoruppa [Sk] proved that Ji ,,,(I'1) = 0 for any nonnegative
integer m. It is interesting to give the geometric proofs of this fact and Theorem
5.3.

We give the following open problems :

Problem 1. Give the explicit dimension formula or estimate for H° (Agnr, Eppm).

Problem 2. Compute the cohomology groups H* (Ag.nr, E, a) explicitly. Here

0xikx HoT2HD)

Problem 3. Under which conditions is F, rq ample?

Problem 4. Discuss the analogue of Hirzebruch’s proportionality theorem for
E, m(cf. [45]).

6. Smooth Compactification of Siegel Moduli Spaces and Open Problems

Let T'y(k) be the principal congruence subgroup of Sp(g, Z) of level k and let
H, be the Siegel upper-half plane of degree g. We assume that k& > 3. This implies
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that 'y (k) is a neat arithmetic subgroup. Let X be the toroidal compactification of
X =T,(k)\H, from I';(k)-admissible family given by the central cone decomposi-
tion ) _ , or a refinement of 3 _ . Then the boundary D ==X — X =37 D,
is a divisor of X with normal crossing, that is, each D; is an irreducible smooth
divisor of X and D1, - - - , D, intersect transversally. If g < 4, we have the following
results obtained by Wang [63].

Theorem 6.1. (1) Each divisor is algebraically isomorphic to

Yyt = D (RN (Hy 1 x C91).

Here Fgﬁl(]f) =Ty 1(k)x (kZ)9~ 1 is the Jacobi modular group acting on the homo-
geneous space Wy_1 = Hy_4 xC971 in a usual way and Y,_1 is the compactification
of the universal family Yy_1 = Fgﬁl(k)\(Hg,l x C9~1) of abelian varieties induced
from the same T4 (k)-admissible family.

(2) All D; intersect along the boundary Yg,l Y, .
We have several natural questions.

Problem 6.2. Describe Yg,l and Yg,l —Y,_1 explicitly in terms of Jacobi forms.
More generally,describe Y, and Y, —Y, when Y, = I', (k) x Hg’k)\Hr x (k) (1<
r<g).

Problem 6.3. Describe the field of meromorphic functions on Yg,l orY,.

Problem 6.4. Can any Fgﬁl(k)—invariant or '/ (k)-invariant meromorphic func-
tion on Y, 1 or Y, be expressed by a quotient of two Jacobi forms of the same
weight and index?

7. The Boundary of the Satake Compactification

Let T" be a discrete subgroup of Sp(g, Q) which is commensurable with I'y. We
denote by My(T") the complex vector space consisting of Siegel modular forms of
weight k with respect to T' (k € Z ). These vector spaces generate a positively graded
ring

M(F) = Dr>o0 Mk(F)
which are integrally closed and of finite type over My(I') = C. The projective
variety A’g‘ r associated with M(T") contains a Zariski open subset which is complex
analytically isomorphic to A, r := I'\ H,. In addition, the boundary 8A’g‘ ri= A’g‘ r—
Ag 1 is a disjoint union of a finite number of rational boundary components of H,,.

From now on, we let I' := I',(k) be the principal congruence subgroup of I'; of
level k. We write g = p + ¢ for 0 < p < g. We write an element Z of H, as

({V v;) reH, WecCP?d TcH,
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or simply Z = (7, W, T'). The Siegel operator & : M (T'4(k)) — M(T'p(k)) defined

by
r W . T 0
In}ITHLOf<< T>> - llﬂ%f((O z'cEq>>

is a weight-preserving homomorphism which is almost surjective in the sense that it

is surjective for all large weights. Thus we have a canonical holomorphic embedding

" 2 AL n oy — Ajr - We can see that the image of Ay 1) = TL(k)\H, is

a quasi-projective subvarlety of A’g‘ P, (k) and that Sp(g, Z/kZ) acts on A’g‘ T, (k) 85
g g

(7.1) (@f) (1) :

automorphisms. Sp(g, Z/kZ) transforms ®*(A, p (1)) to its conjugates. Thus we
have

OAGr (hy

- AgF (k) AgF (k)

= U’yESp(g,Z/kZ Hl o VO (Air,w)

So in order to investigate the boundary 9A* 9T (k) it is enough to investigate the
boundary points in the image ®*(A,r, (x)) of Ay )y = I'p(k)\Hp under ®* for
0<p<y.

Omitting the detail, we state the following results.

Theorem 7.1(Igusa). Let 7o be an element of H,. Then the analytic local ring
O of A; Ty (k) at the image point of 7o under ®* consists of convergent series of the
following form

WMﬂZ@WWMM%ﬂ¢MMMM

M

where M runs over the equivalent classes of inequivalent half-integral semi-positive
symmetric matrices of degree q, ¢pq is a holomorphic function defined on V x C(&:P)
for some open neighborhood V' of 1o in H, and u runs over distinct Mlu] for v €

GL(q,Z)(k).
Theorem 7.2(Igusa). The ideal I in O associated with the boundary 0 A*
A*

o T (k) — Ag T, (k) consists of convergent series
g ’

Z@WW%ﬁW»¢MMMW

M

9,0g (k)

where M runs over inequivalent symmetric positive definite half-integral matrices
of degree q, G is a holomorphic function defined on V x COP) for some open
neighborhood V' of 7o in Hy, and u runs over distinet M{u] for v € GL(q, Z)(k).

8. Singular Jacobi Forms

In this section, we discuss the notion of singular Jacobi forms. Without loss of

217



222 Jae-Hyun Yang

generality we may assume that M is positive definite. For simplicity, we consider
the case that I" is the Siegel modular group I'y of degree g.

Let g and h be two positive integers. We recall that M is a symmetric positive
definite, half-integral matrix of degree h. We let

P, ={Y eRYI Y ="tV >0}

be the open convex cone of positive definite matrices of degree g in the Euclidean

space R“S™  We define the differential operator My, aq on Py x R"9) defined by

e, 1% 0 A,
Mg pam =det(Y) - det (W + . (W) M (W)) 7

where

d 140 0
Y = (yw V= el
(yu ) € Pg7 (vkl) S "3y ( 5 ay,“,>

o _ (9
ov - 8vkl ’

Yang [85] characterized singular Jacobi forms as follows :

and

Theorem 8.1. Let f € J, m(T'y) be a Jacobi form of index M with respect to
finite dimensional rational representation p of GL(g,C). Then the following condi-
tions are equivalent :

(1) f is a singular Jacobi form.

(2) [ satisfies the differential equation Mg p pf = 0.

Theorem 8.2. Let p be an irreducible finite dimensional representation of
GL(g,C). Then there exists a nonvanishing singular Jacobi form in J, pm(Ty) if
and only if 2k(p) < g + h. Here k(p) denotes the weight of p.

For the proofs of the above theorems we refer to [85], Theorem 4.1 and Theorem
4.5.

Exercise 8.3. Compute the eigenfunctions and the eigenvalues of M, , a¢(cf. [85],
pp. 2048-2049).

Now we consider the following group GL(g,R) x HH({g ) equipped with the mul-
tiplication law

(A, (A g, 5)) * (B, (N, 1/, 5))
= (AB, AB+ XN, u'B™ i+ ' + ABW — p'B7T ),

where A, B € GL(g,R) and (A, i, ), (N, i/, &) € Hﬂ({g’h). We observe that GL(g,R)

acts on HH({g ") on the right as automorphisms. And we have the canonical action of
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GL(g,R) x H" on P, x RU=9) defined by

(8.1) (A, (A 1, 8)) 0 (Y, V) = (AY A, (V 4 AY + p) " A),

where A € GL(g,R), (A, p1, ) € H¥™ and (Y, V) € P, x R0,

Lemma 8.4. M, , aq is invariant under the action of GL(g,R) |><{ (0, 11,0) |mu € RU-9) } )

Proof. It follows immediately from the direct calculation.
We have the following natural questions.

Problem 8.5. Develope the invariant theory for the action of GL(g,R) x H]I(gg’h)
on Py x RM"9),

Problem 8.6. Discuss the application of the theory of singular Jacobi forms to
the geometry of the universal abelian variety as that of singular modular forms to
the geometry of the Siegel modular variety (see Appendix B).

9. The Siegel-Jacobi Operator

Let p and M be the same as in the previous sections. For positive integers r
and g with r < g, we let p") : GL(r,C) — GL(V,) be a rational representation of
GL(r,C) defined by

PN a)w = p a0 v, a€GL(r,C), veV,
0 Ey .,

The Siegel-Jacobi operator ¥, = J, pm(I'y) — Jy amq(I'r) is defined by

01) o 02 W)= Jim 1 (7)o 0%0),

where f € J, m(Ty), Z € H, and W € C7) Tt is easy to check that the above

limit always exists and the Siegel-Jacobi operator is a linear mapping. Let Vp(r) be
the subspace of V, spanned by the values { (¥, , f)(Z,W)| f € J, m(Ly), (Z,W) €

H, x C%7) ). Then Vp(r) is invariant under the action of the group

{ (8 E5r> :a€GL(r,C) } >~ GL(r,C).

We can show that if Vp(r) # 0 and (p,V,) is irreducible, then (p(r)7Vp(r)) is also
irreducible.

Theorem 9.1. The action of the Siegel-Jacobi operator is compatible with that of
that of the Hecke operator.

We refer to [83] for a precise detail on the Hecke operators and the proof of the
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above theorem.

Problem 9.2. Discuss the injectivity, surjectivity and bijectivity of the Siegel-
Jacobi operator.

This problem was partially discussed by Yang [83] and Kramer [40] in the special
cases. For instance, Kramer [40] showed that if ¢ is arbitrary, h = 1 and p :
GL(g,C) — C* is a one-dimensional representation of GL(g, C) defined by p(a) :=
(det (a))¥ for some k € Z1, then the Siegel-Jacobi operator

Vo911 Jom(lg) — Jom(Lg-1)
is surjective for £ > m > 0.

Theorem 9.3. Let 1 <7 < g—1 and let p be an irreducible finite dimensional
representation of GL(g, C). Assume that k(p) > g +r + rank(M) + 1 and that k is
even. Then

J:zﬁ?/\/((rr) - \Ijg,r(Jp,M(Fg))~

Here J°5F, (I'y) denotes the subspace consisting of all cuspidal Jacobi forms in

P, M
JP(T),M(FT)'
Idea of Proof. For each f € J;(uf)p w(Tr), we can show by a direct computation
that ’

Uy (B (ZW; 1) = f,

where Efj /)\A(Z7 W f) is the Eisenstein series of Klingen’s type associated with a
cusp form f. For a precise detail, we refer to [94].

Remark 9.4. Dulinski [17] decomposed the vector space Ji p¢(Ty) (kK € Z1) into
a direct sum of certain subspaces by calculating the action of the Siegel-Jacobi
operator on Eisenstein series of Klingen’s type explicitly.

For two positive integers r and g with » < g — 1, we consider the bigraded ring
JN0) = @ @t Tl (0)

and
MO (0) = @ o T (T4 (0) = 30T, (0), k],

where T',.(¢) denotes the principal congruence subgroup of I',. of level £ and M runs
over the set of all symmetric semi-positive half-integral matrices of degree h. Let

Vrret T (U (€)) — T m(Ur—1(0))
be the Siegel-Jacobi operator defined by (9.1).
Problem 9.5. Investigate Proj J,ET*)(E) over M,ET)(E) and the quotient space

Y, (€)= (T (0) > (EZ)*)\(H; % C7)
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for 1 <r <g-1.

The difficulty to this problem comes from the following facts (A) and (B):
(A) J7) () is not finitely generated over M{"(¢).
(B) J, 5T (€)) # ker W, ¢ in general.

These are the facts different from the theory of Siegel modular forms. We remark
that Runge([54], pp. 190-194) discussed some parts about the above problem.

10. Invariant Metrics on the Siegel-Jacobi Space

For a brevity, we write Hyj = H, x C9) For a coordinate (Z,W) e Hyp
with Z = (2,,,) € H, and W = (wy;) € C"9) we put

Z = X +4Y, X = (zw), Y = (yu) real,
W= U+iV, U= (un), V = (vg) real,
dZ = (dzw), dX = (dzp), dY = (dyuw),
dW = (dwkl)7 dU = (dukl)7 dV = (dl}kl)7
o 10w & 9 ( 1404 0 )
9z — 3 Ozm )0 Bz 3 0z )
o 48, 8 9. ( 48, 9 )
oxX 2 EP ’ oY 2 Y e ’
9 9 9 9
) B 311.111 : 8'[1th ) . 8U.11 : 8m.h1
oW oo oW oo
w1y T Qwpg W14 © OWpy
9 9 9 9
) 8u.11 : 8'Uf.hl ) B 311.11 : 8'U.hl
O U T B S U T
Auig c upg Ouig c pg

We let
T, = {ZEC(9’9)| z= tz}

be the vector space of all g x g complex symimetric matrices. The unitary group
K :=U(g) of degree g acts on the complex vector space T x Ch9) by

(10.1) k-(z,0) = (kz'k,w'k), keU(g), z€T,, weCh9)

Then this action induces naturally the action p of U(g) on the polynomial algebra
Pol;, 5 := Pol (T}, x (C(hvg)). We denote by PolhKy the subalgebra of Poly, 4 consisting
of all K-invariants of the action p of K := U(g). We also denote by D(H, 1) the
algebra of all differential operators on H,; which is invariant under the action
(2.1) of the Jacobi group G; - Then we can show that there exists a natural linear
bijection

(10.2) ®: Polyf ) — D(Hys)
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of PolhKy onto D(H, 1).

Theorem 10.1. The algebra D(H, ) is generated by the images under the map-
ping P of the following invariants

(1) pi(zw) = o((22)), 1<j<g,
(12) Wiz w) = (who), 1<k<h,

(13) ¢ (z,w) = Re(w'w),, 1<k<p<h,

(14) ¢ (zw) = Im(w'd)y, 1<k<p<h,
(15) [ (zw) = Re(wz'w)y, 1<k<p<h
and

16) [ (zw) = Im(ws'w)y, 1<k<p<h.

In particular, D(H, 5) is not commutative.

Theorem 10.1°. The algebra D(H1 1) is generated by the following differential
operators

2 2 2 2
Di= v (& 4r) 10" (1 47)

2 2
+290 (5% + 5 )
H? o2
oy ([
J <8u2 + 81}2)7

3 a [ 8 d? d
Dy = 24? = == - = o 1)
! Y oroude Y Oy <8u2 Ov? > + (v + >

a [ 8? a? o3 d
_ 2 s 2 Y 2 oy —
Dyi=y oz ( Ov? Ou? > 2y Oydudv Y au\h

where T = x + iy and z = u + v with real variables x,y,u,v. Moreover, we have

and

2 2 3
D, W] :=D¥ —¥D = 24°2 (% _ 88_) VI
-2 (v %\II + \I/) .
In particular, the algebra ]D)(HLl) 3s not commutative.

Theorem 10.2. The following metric

ds2, = o (Y 'dZY 'dZ) + o (Y 1V VY 'dZY \dZ)
(10.3) Fo (YL dW) dW)
o (Y HZY AWV + Y LZY 1 dW) V)
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is a Riemannian metric on the Siegel-Jacobi space Hyp which is invariant under
the action (1.2) of the Jacobi group Ggh. Also the above metric is a Kahler metric.

The Laplace-Beltrami operator Ay j, of the Siegel-Jacobi space (Hy p, ds?hh) is given,
by

By = 40(YHYL)+
(10.4) +4

The following differential form
dv = (detY )" 9D XA [dY] A [dU] A [dV]
is a G;h—mvam’ant volume element on Hy 5, where
[dX] = Nu<vdzpy, [dY] = Nu<vdyp, [dU] = Agidug and  [dV] = Agdog .

Theorem 10.3. The automorphism group of Hyp is isomorphic to the group
Sp(g,R) x (R(h’g) X R(h’g)) equipped with the multiplication

(M, (A ) - (M, (N, ) = (MM, A+ N, i+ 1)),
where M, M’ € Sp(g,R), A\, € R™9 and (A, ji) == (A, u)M’.

Theorem 10.4. The scalar curvature of the Siegel-Jacobi space (Hy x C, ds?) is
-3.

We note that according to Theorem 2, the metric ds? is given by

’U2
(10.5) ds® = dsil = % (Céﬂﬂ2 +dy®) + %(duz + dv?)
— %% (dwdu + dydv)

on H; x € which is invariant under the action (2.1) of the Jacobi group Gil =

SL(2,R) x HH({LD7 where z = z + iy € Hy and w = u + iv € C with z,y, u, v real
coordinates.

Remark 10.5. The Poincaré upper half plane H; is a two dimensional Rieman-
nian manifold with the Poincaré metric
dz® + dy®
ds% = %7 z =x + 1y € Hy with z,y real.
It is easy to see that the Gaussian curvature is —1 everywhere and H; is an Finstein
manifold. In fact, if we denote by So(X,Y) the Ricci curvature of (Hy, ds3), then

we have
So(X,Y) = —go(X,Y) forall XY € X(H,y),
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where X(H1) denotes the algebra of all smooth vector fields on H; and go(X,Y)
is the inner product on the tangent bundle T'(H;) induced by the Poincaré metric
ds?. But the Siegel-Jacobi space H; x C is not an Einstein manifold. Indeed, if we
denote by S(X,Y) the Ricci curvature of (H; x C, ds?) and Ey := 2, we can see
without difficulty that there does not exist a constant ¢ such that

y+ v?
y3

S(Ey, Ey) = cg(E1, By) = cgi1 = ¢
where g = (g;;) is the inner product on the tangent bundle 7'(H; x C) induced by
the metric (10.5).

Now we will introduce the notion of Maass-Jacobi forms.

Definition 10.6. A smooth function f : H,; — C is called a Maass-Jacobi
form on Hgy if f satisfies the following conditions (MJ1)-(MJ3) :

(MJ1) f is invariant under F;h =Ty x Hég’h).
(MJ2) f is an eigenfunction of the Lapalce-Beltrami operator Ay, .
(MJ3) f has a polynomial growth.

Here I'y := Sp(g, Z) denotes the Siegel modular group of degree g and and

H(Zg,h) - {(%M%’?) e Hﬂ(ggvh) | A\, p, & integral } .

For more details on Maass-Jacobi forms in the case g = h = 1, we refer to [89].
11. Final Remarks

In [32] and [34], Gritsenko, Hulek and Sankaran gave applications of Jacobi forms
of degree 1 in the study of the moduli space of abelian surfaces with a certain polar-
ization. We refer to [7],[9],[11],[61],[62] for the representation theory of the Jacobi

group.
Appendix A. Subvarieties of the Siegel Modular Variety
Here we assume that the ground field is the complex number field C.

Definition A.1. A nonsingular variety X is said to be rational if X is birational
to a projective space P"(C) for some integer n. A nonsingular variety X is said
to be stably rational if X x P*(C) is birational to PY(C) for certain nonnegative
integers k and N. A nonsingular variety X is called unirational if there exists a
dominant rational map ¢ : P*(C) — X for a certain positive integer n, equiva-
lently if the function field C(X) of X can be embedded in a purely transcendental
extension C(z1,- - ,2y,) of C.

224



A Geometrical Theory of Jacobi Forms of Higher Degree 229

Remarks A.2. (1) It is easy to see that the rationality implies the stably ratio-
nality and that the stably rationality implies the unirationality.

(2) If X is a Riemann surface or a complex surface, then the notions of rationality,
stably rationality and unirationality are equivalent one another.

(3) Griffiths and Clemens(cf. Ann. of Math. 95(1972), 281-356) showed that most
of cubic threefolds in P*(C) are unirational but not rational.

The following natural questions arise :

QUESTION 1. Is a stably rational variety rational? Indeed, the question was raised
by Bogomolov.

QUESTION 2. Is a general hypersurface X C P"t1(C) of degree d < n + 1 unira-
tional?

Definition A.3. Let X be a nonsingular variety of dimension n and let Kx be
the canonical divisor of X . For each positive integer m € Z*, we define the m-genus
P (X) of X by

P (X) := dime HY(X,0(mKx)).

The number p,(X) := Pi(X) is called the geometric genus of X. We let
NX)={meZ" |P(X)>1}.

For the present, we assume that N(X) is nonempty. For each m € N(X), we let
{¢o,--- ,én,, } be a basis of the vector space H(X, O(mKx)). Then we have the
mapping ®,,5x, : X — P¥=(C) by

Prrx(2) = (go(2) 1 -+ dnm(2)), z€ X
We define the Kodaira dimension x(X) of X by
/(X)) ;== max {dimg Pk, (X)| me N(X) }.

If N(X) is empty, we put x(X) := —oo. Obviously x(X) < dim¢ X. A nonsingular
variety X is said to be of general type if K(X) = dimcX. A singular variety Y in
general is said to be rational, stably rational, unirational or of general type if any
nonsingular model X of Y is rational, stably rational, unirational or of general type
respectively. We define

Po(Y):=P,(X) and &k(Y):=«x(X).

A variety Y of dimension n is said to be of logarithmic general type if there exists
a smooth compactification Y of Y such that D := Y — Y is a divisor with normal
crossings only and the transcendence degree of the logarithmic canonical ring

@ H(Y, m(Ky + [D])
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is n+ 1, i.e., the logarithmic Kodaira dimension of Y is n. We observe that the
notion of being of logarithmic general type is weaker than that of being of general

type.

Let A, :=T,\H, be the Siegel modular variety of degree g, that is, the moduli
space of principally polarized abelian varieties of dimension ¢g. So far it has been
proved that A, is of general type for g > 7. At first Freitag [24] proved this fact
when g is a multiple of 24. Tai [60] proved this for g > 9 and Mumford [46] proved
this fact for g > 7. On the other hand, A, is known to be unirational for g <5 :
Donagi [16] for g = 5, Clemens [15] for g = 4 and classical for g < 3. For g = 3, using
the moduli theory of curves, Riemann [53], Weber [65] and Frobenius [28] showed
that As(2) ;= I'3(2)\ Hs is a rational variety and moreover gave 6 generators of the
modular function field K (T'3(2)) written explicitly in terms of derivatives of odd
theta functions at the origin. So As is a unirational variety with a Galois covering
of a rational variety of degree [I's : T'3(2)] = 1,451,520. Here T'3(2) denotes the
principal congruence subgroup of I's of level 2. Furthermore it was shown that As is
stably rational(cf. [38], [12]). For a positive integer k, we let I';(k) be the principal
congruence subgroup of I'y of level k. Let A,(k) be the moduli space of abelian
varieties of dimension g with k-level structure. It is classically known that A, (k) is
of logarithmic general type for k& > 3(cf. [45]). Wang [64] proved that As(k) is of
general type for k > 4. On the other hand, van der Geer [29] showed that A5(3) is
rational. The remaining unsolved problems are summarized as follows:

Problem 1. Is Aj rational?

Problem 2. Are A4, Ay stably rational or rational 7

Problem 3. Discuss the (uni)rationality of Ag.

Problem 4. What type of varieties are A,(k) for g > 3 and k > 27

We already mentioned that A, is of general type if g > 7. It is natural to ask
if the subvarieties of A, (g > 7) are of general type, in particular the subvarieties
of A, of codimension one. Freitag [Fr3] showed that there exists a certain bound
go such that for g > go, each irreducible subvariety of A, of codimension one is
of general type. Weissauer [Wei2] proved that every irreducible divisor of A, is of
general type for ¢ > 10. Moreover he proved that every subvariety of codimension
< g—131in A, is of general type for g > 13. We observe that the smallest known
codimension for which there exist subvarieties of A, for large g which are not of
general type is g — 1. A1 x A,_1 is a subvariety of A, of codimension g — 1 which
is not of general type.

Remark A.4. Let M, be the coarse moduli space of curves of genus g over C.
Then M, is an analytic subvariety of A, of dimension 3g — 3. It is known that
M, is unirational for g < 10. So the Kodaira dimension (M) of M, is —oo for
g < 10. Harris and Mumford [H-M] proved that M, is of general type for odd g
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with g > 25 and x(Ms3) > 0.
Appendix B. Singular Modular Forms

Let p be a rational representation of GL(g,C) on a finite dimensional complex
vector space V,. A holomorphic function f : H, — V, with values in V), is called
a modular form of type p if it satisfies

fIM <Z>)=p(CZ+ D)f(Z)

for all (é g) €Iy and Z € H;. We denote by [I'y, p] the vector space of all

modular forms of type p. A modular form f € [['y, p] of type p has a Fourier series

F(2)=>"a()e™ TP 7 e H,,
T>0

where T' runs over the set of all semipositive half-integral symmetric matrices of
degree g. A modular form f of type p is said to be singular if a Fourier coefficient
a(T") vanishes unless det (1) = 0.

Freitag [25] proved that every singular modular form can be written as a fi-
nite linear combination of theta series with harmonic coefficients and proposed the
problem to characterize singular modular forms. Weissauer [66] gave the following
criterion.

Theorem B.1. Let p be an irreducible rational representation of G L(g, C) with its
highest weight (A1, -+ ,)g). Let f be a modular form of type p. Then the following
are equivalent :

(a) f is singular.

(b) 224 < g.

Now we describe how the concept of singular modular forms is closely related to
the geometry of the Siegel modular variety. Let X be the Satake compactification of
the Siegel modular variety A, = I';\H,. Then A, is embedded in X as a quasipro-
Jectlve algebraic subvariety of codimension g. Let X, be the smooth part of A, and
X the desingularization of X. Without loss of generality, we assume X, C X Let
QF(X) (resp. QP (X)) be the space of holomorphic p-form on X (resp. X,). Freitag
and Pommerening [27] showed that if ¢ > 1, then the restriction map

QP(X) — QF(X,)

is an isomorphism for p < dime X = @. Since the singular part of A, is at least

codimension 2 for g > 1, we have an isomorphism

QP(X) = QP (H,) s
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Here QP (Hg)Fg denotes the space of I'y-invariant holomorphic p-forms on H,. Let
Sym?(CY) be the symmetric power of the canonical representation of GL(g,C) on
C™. Then we have an isomorphism

OF(Hg)" — [Ty, APSym*(C7)].

Theorem B.2([66]). Let p, be the irreducible representation of GL(g,C) with
highest weight
(g+17 7g+17g—057"' 79—05)

such that corank(py) =« for 1 <a<g. Ifa= -1, welet po = (g+1,---,g+1).

Then (o4 1) (o 1)
. + a(a+
OF(Hg)'e = {[pra]? ifp="55= -5

, otherwise.

Remark B.3. If2a > g, then any f € [Ty, pal is singular. Thus if p < W7

then any I g-invariant holomorphic p-form on Hy can be expressed in terms of vec-
tor valued theta series with harmonic coefficients. It can be shown with a suitable
modification that the just mentioned statement holds for a sufficiently small congru-
ence subgroup of I'y.

Thus the natural question is to ask how to determine the I';-invariant holomor-

9(39 +2) glg+1)

phic p-forms on H, for the nonsingular range <p < =——= Weissauer

[68] answered the above question for ¢ = 2. For g > 2, the above question is still
open. It is well know that the vector space of vector valued modular forms of
type p is finite dimensional. The computation or the estimate of the dimension
of QP(H, g)Fg is interesting because its dimension is finite even though the quotient
space A, is noncompact.

Finally we will mention the results due to Weisauer [67]. We let T" be a con-
gruence subgroup of I'y. According to Theorem B.2, I'-invariant holomorphic forms
in Q?(H)" are corresponded to modular forms of type (3,1). We note that these
invariant holomorphic 2-forms are contained in the nonsingular range. And if these
modular forms are not cusp forms, they are mapped under the Siegel $-operator to
cusp forms of weight 3 with respect to some congruence subgroup ( dependent on I")
of the elliptic modular group. Since there are finitely many cusps, it is easy to deal
with these modular forms in the adelic version. Observing these facts, he showed
that any 2-holomorphic form on T'\ Hs can be expressed in terms of theta series with
harmonic coefficients associated to binary positive definite quadratic forms. More-
over he showed that H?(I'\Hs,C) has a pure Hodge structure and that the Tate
conjecture holds for a suitable compactification of I'\ Hy. If ¢ > 3, for a congruence
subgroup T" of T’y it is difficult to compute the cohomology groups H*(I'\H,,C)
because I'\ H, is noncompact and highly singular. Therefore in order to study their
structure, it is natural to ask if they have pure Hodge structures or mixed Hodge
structures.
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Erratum

In the article A Geometrical Theory of Jacobi Forms of Higher Degree by Jae-
Hyun Yang [Kyungpook Math. J., 40(2)(2000), 209-237], the author presents the
Laplace-Beltrami operator A, of the Siegel-Jacobi space (Hy p, ds;h) given by
the formula (10.4) without a proof at the page 227. But the operator A, j is not
a correct one.

At the page 227, the formula (10.4) should be replaced by the following correct
formula (10.4):

sl <Y;Z>;Z)+4 (7o )
0

)

Yo (V t(Y%) %) tao| v t(Y%) %) .

+io (VY 1 tv
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A NOTE ON A FUNDAMENTAL DOMAIN FOR
SIEGEL-JACOBI SPACE

JAE-HYUN YANG

Communicated by Jutta Hausen

ABSTRACT. In this paper, we study a fundamental domain for the Siegel-
Jacobi space Sp(g, Z) x Hég’h)\Hg x Ch9)

1. INTRODUCTION

For a given fixed positive integer g, we let
H,= {QeC¥99 | Q=10 ImQ>0}
be the Siegel upper half plane of degree g and let
Sp(g,R) = {M e R®929) | ‘M J M = J; }

be the symplectic group of degree g, where F"! denotes the set of all k x I
matrices with entries in a commutative ring F' for two positive integers k& and [,
‘M denotes the transpose matrix of a matrix M and

0o I
J ( )
9= \=1, 0

Sp(g,R) acts on H, transitively by
(1.1) M-Q=(AQ+ B)(CQ+ D),

é g) € Sp(g,R) and Q € H,. Let I'; be the Siegel modular

group of degree g. C. L. Siegel [§] found a fundamental domain F, for I';\H, and
calculated the volume of F,. We also refer to [2], [4], [10] for some details on F,.

where M — (

2000 Mathematics Subject Classification. 11G10, 14K25.

Key words and phrases. Fundamental domains, abelian varieties, theta functions.

This work was supported by INHA UNIVERSITY Research Grant (INHA-31619).
701

237



702 JAE-HYUN YANG

For two positive integers g and h, we consider the Heisenberg group
Hﬂ({g’h) ={(ur)| \pe R"9) . e RWM k4 X symmetric 1
endowed with the following multiplication law
A pir) o (N p/sw') = A+ N pt i s+ 6 H A — p '),
We define the semidirect product of Sp(g,R) and Hﬂ({g )
G’ = Sp(g,R) x HY™
endowed with the following multiplication law
(M, O, i 1)) - (M, N, 1)) = (MM, (A N ik k4 8+ X = i)

with M, M’ € Sp(g,R), (A, k), (N, i &) € H™ and (X, i) = (A, )M’ Then
G acts on H, x Cm9) transitively by

(1.2) (M, (A g 8)) - (2, Z) = (M - Q,(Z + X2+ p)(CQ+ D)),

where M — (A B) € Sp(g,R), (A k) € HE™ and (Q,2) € H, x C*9),

C D
We note that the Jacobi group G is not a reductive Lie group and also that the
space H, x C»9) is not a symmetric space. We refer to [11]-[14] and [16] about
automorphic forms on GY and topics related to the content of this paper. From
now on, we write Hy ; = H, x Ch9),
We let
Typ =Ty x HEM
be the discrete subgroup of G7, where

HEY = {0 k) € HEM |\ pe 209, ke z®M Y,

The aim of this paper is to find a fundamental domain for 'y 5 \H, 5. This
article is organized as follows. In Section 2, we review the Minkowski domain and
the Siegel’s fundamental domain F, roughly. In Section 3, we find a fundamen-
tal domain for T'y ,\H, 5 and present Riemannian metrics on the fundamental
domain invariant under the action (1.2) of the Jacobi group G”. In Section 4,
we investigate the spectral theory of the Laplacian on the abelian variety Aq
associated to Q € F,.
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2. REVIEW ON A FUNDAMENTAL DOMAIN F, FOR I'j\Hj,
We let
Pg:{YeR(gngY: tY>O}

be an open cone in RY with N = g(g + 1)/2. The general linear group G L(g, R)
acts on P, transitively by

(2.1) goY :=gY'y, geGL(g,R), Y €P,

Thus P, is a symmetric space diffeomorphic to GL(g,R)/O(g). For a matrix
Ae F®D and B € F&Y | we write A[B] = 'BAB and for a square matrix A,
o(A) denotes the trace of A.

The fundamental domain R, for GL(g, Z)\ P, which was found by H. Minkowski
[5] is defined as a subset of P, consisting of Y = (y;;) € P, satisfying the following
conditions (M.1)-(M.2) (cf. [2, p.191] or [4, p. 123]):

(M.1) aY 'a > yg for every a = (a;) € Z9 in which ay, - - - , a, are relatively
prime for k=1,2,--- , g.

(M2) ypg+1 20 fork=1,---,9—1.

We say that a point of R, is Minkowski reduced or simply M-reduced. R, has
the following properties (R1)-(R6):

(R1) For any Y € P, there exist a matrix A € GL(g,Z) and R € R, such
that Y = R[A] (cf. [2, p.191] or [4, p. 139]). That is,

GL(g,Z) o Ry =P,.

(R2) R, is a convex cone through the origin bounded by a finite number of
hyperplanes. R, is closed in P, (cf. [4, p.139]).

(R3) If Y and Y[A] lie in R, for A € GL(g,Z) with A # £, then Y lies
on the boundary dR, of R,. Moreover R, N (R4[A]) # 0 for only finitely many
A€ GL(g,Z) (cf. |4, p.139]).

(R4) If Y = (y;,) is an element of R, then
1 .
y11 <yoo <o <yyy and Iy¢j|<§yn for 1 <i<j<yg.

We refer to [2, p.192] or [4, pp. 123-124].

Remark. Grenier [1] found another fundamental domain for GL(g, Z)\P,.
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For Y = (y;;) € Py, we put

9 1+0; 0
dY = (dy;; d —==—2)
(dys) an (F5 )

Then we can see easily that
(2.2) ds® = o(Y1dY)?)

is a GL(g,R)-invariant Riemannian metric on P, and its Laplacian is given by
o\ 2
A= Y — .

_attl
dpg(Y) = (detY) ™ deij
1<j

We also can see that

is a GL(g,R)-invariant volume element on P,. The metric ds® on P, induces the
metric ds% on R,. Minkowski [5] calculated the volume of R, for the volume
element [dY] = [[,; dy;; explicitly. Later Siegel [7], [9] computed the volume
of R, for the volume element [dY] by a simple analytic method and generalized
this case to the case of any algebraic number field.

Siegel [8] determined a fundamental domain F, for I'j\H,. We say that Q =
X +1Y € Hy with X, Y real is Siegel reduced or S-reduced if it has the following
three properties:

(8.1) det(Im (v -Q)) < det(Im (Q2)) for all y € T'y;

(5.2) Y =ImQ is M-reduced, that is, ¥ € Ry ;

(S3) oyl <% for1<ij<g, where X = ().

Fgy is defined as the set of all Siegel reduced points in H,. Using the highest

point method, Siegel proved the following (F1)-(F3) (cf. [2, pp.194-197] or [4,
p. 169]):

(F1) I'y-Fyg=Hy, ie, Hy = Uyer,v- Fy.

(F2) F, is closed in H,.

(F3) F, is connected and the boundary of F, consists of a finite number of
hyperplanes.

For Q = (wy;) € Hy, we write Q = X +4Y with X = (z;;), Y = (ys;) real and
dQ = (dw;;). We also put

o (1t 9 and 2L (L0 0
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Then
(2.3) ds? = o(Y1dQY 1dQ)

is a Sp(g, R)-invariant Kahler metric on H, (cf. [8]) and H. Maass [3] proved that
its Laplacian is given by

a\ o
_ t oy =
o N R AKAY
And
(2.5) dvg(Q) = (detY) 0D T dwyy [ duy
1<i<j<yg 1<i<j<g

is a Sp(g, R)-invariant volume element on Hj (cf.[10, p.130]). The metric ds?
given by (2.3) induces a metric ds% on F,.

Siegel [8] computed the volume of F,
g
(2.6) vol (Fy) =2 [[ = T (k)< (2k),
k=1

where T'(s) denotes the Gamma function and ((s) denotes the Riemann zeta
function. For instance,

3 6 10

vol (o) = ;TO’ vol (F3) = — . vol (Fa) = W

™
] _ = .
vol (F1) = 5 127575’ 200930625

37

3. A FUNDAMENTAL DOMAIN FOR T'y ,\H,

Let Er; be the h x g matrix with entry 1 where the k-th row and the j-th
column meet, and all other entries 0. For an element €2 € H,, we set for brevity

(3.1) Frj(Q) = EQ,  1<k<h 1<j<y.
For each Q) € F,, we define a subset Pq of Cc9) by

h g h g
Po= ZZ)"“J'E’“J' +Zzﬂkijj(Q) ‘ 0 < g, prg <1

k=17=1 k=1j=1
For each Q) € F,, we define the subset Dq of H, by
Daq :{(Q,Z) EHg,hl ZEPQ}

We define
fg7h = UQengQ.
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Theorem 3.1. F,;, is a fundamental domain for T'g p\H, 5.

PRroOOF. Let (Q Z) be an arbitrary element of Hy ;. We must find an element
(Q,Z) of F, 1, and an element 47 = (v, (A, ;%)) € Ty, with v € T'y such that
v (Q,7Z) = (9, Z). Since F, is a fundamental domain for I',\H,, there exists
an element v of I'y and an element Q of F, such that - = Q. Here € is unique

up to the boundary of F,.
A B
v = (C D) ely.

It is easy to see that we can find A\, i € Z"9) and Z € Pgq satisfying the equation

We write

Z+ XN+ p= Z(CQ+ D).

If we take v/ = (7, (A, 11;0)) € T'y 1, we see that v7 - (Q, Z) = (Q, Z). Therefore
we obtain
Hg,n = vang,h'YJ “Fg,h-

Let (Q, Z) and v7 - (2, Z) be two elements of F 5, with v/ = (v, (A, p;8)) € Ty 1.
Then both € and - lie in F,;. Therefore both of them either lie in the boundary
of F4 or v = *1,. In the case that both € and ~ - Q lie in the boundary of F,
both (2, Z) and 47 - (Q, Z) lie in the boundary of F, j,. If v = £1I,, we have

(3.2) ZePqy and +(Z+X2+p) e Pg, \peZh9)

From the definition of Py and (3.2), we see that either A = p = 0, v # —Iy
or both Z and £(Z + XQ + p) lie on the boundary of the parallelepiped P.
Hence either both(€2, Z) and 4/ - (Q, Z) lie in the boundary of F,; or 4/ =
(Iag,(0,0;k)) € Ty . Consequently F, p is a fundamental domain for T'y 5 \H, 5.

O

For a coordinate (Q,Z) € H, 5, with Q = (w,,) € H, and Z = (z1;) € C"™9) | we
put

Q=X+14Y, X =(zw), Y = (yu) real,

Z =U+1iV, U= (up), V = (vg) real,

d) = (dwp), dX = (dzw), dY = (dyuw),

dz = (dzp), dU = (du), dV = (du),

dQ) :(dw,“,)7 d7: (d5k1)7
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9 14 6, 9 1460 0
Ol ( 2 awuu) o) - ( 2 Ty >7
el el
9 32.11 '. o 32h1 9 3?.11 '. o 33.h1
o7 B ’ ) oz 5 ’ 5
dz14 co IZ14 co IZhng

Remark. The following metric
s}, =o (Y QY 1dQ) + o (Y 'V VY QY 1dQ)
+ o (Y 1!(dz)dZ)
—o (VY HQYtH(dQ) + VY ldQY11(dZ))

is a Kéhler metric on H, ;, which is invariant under the action (1.2) of the Jacobi
group GY. Its Laplacian is given by

0 0 0 0
A :4 Y ¢ Y—_ 4 Y - ¢ 1
o U( ( 89) aﬂ> + ”( PV (az))
0 0
4o (VY IV HY =) —
e ( ( az) az)
0 0 0 7]
4oV HY—= 4 VilY—=)|— ).
N U( ( 89) az)+ U( ( az) 89)
The following differential form
dvgp = (detY )W X A [dY] A [dU] A [dV]
is a GY-invariant volume element on Hy 7, where
[ClX] = /\Hgl,dx,“” [dY] = /\Hil’dyll«l” [dU] = /\deukl and [dV] = /\kJCll}kl.
The point is that the invariant metric ds;h and its Laplacian are beautifully
expressed in terms of the trace form. The proof of the above facts can be found
n [15].
4. SPECTRAL DECOMPOSITION OF L?(Agq)

We fix two positive integers g and h throughout this section.

For an element Q) € H,, we set

Lg = 7ZM9  7(9)Q)
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We use the notation (3.1). It follows from the positivity of Im ) that the elements
Erj, Frj(Q) (1 <k <h, 1<j<g)of Ly are linearly independent over R. There-
fore Lq is a lattice in C"9) and the set {Ekj, Firj ()| 1<k <h, 1<j<g}
forms an integral basis of Lg. We see easily that if © is an element of Hy, the
period matrix Q, := (I,, Q) satisfies the Riemann conditions (RC.1) and (RC.2):

(RC.1)  Q,J,'Q, =0;
(RC2) -1i0,J,7Q, >0.

Thus the complex torus Ag := C9) /Lq is an abelian variety. For more details
on Agq, we refer to [2] and [6].

It might be interesting to investigate the spectral theory of the Laplacian A,
on a fundamental domain F; ;. But this work is very complicated and difficult
at this moment. It may be that the first step is to develop the spectral theory
of the Laplacian Ag on the abelian variety Aq. The second step will be to study
the spectral theory of the Laplacian A, (see (2.4)) on the moduli space I';\H, of
principally polarized abelian varieties of dimension g. The final step would be to
combine the above steps and more works to develop the spectral theory of the
Laplacian A, ;, on F, ;. In this section, we deal only with the spectral theory of
AQ on L2 (AQ)

We fix an element () = X +:Y of H, with X = Re{ and ¥ = Im ). For a pair
(A, B) with A, B € ZU9) we define the function Eo.ap: C9) — C by

Eq ap(Z) = il (CAU+ o (B-AX)Y T} V)

where Z = U + iV is a variable in C9) with real U, V.

Lemma 4.1. For any A, B € ZU9) | the function Eq.a p satisfies the following
functional equation

EQ;A,B (Z + AQ + /1/) - EQ;A,B (Z)7 7 € (C(h,g)

forall \ n € Z9) . Thus Eq.a,p can be regarded as a function on Ag.
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PRrOOF. We write @ = X +iY with real X,Y. For any A, u € Z"9) we have
Eoap(Z+ M+ p)=FEoap((U+XX +p) +i(V+AY))
_ 6271'71{ o (FAUAAX+p))+ 0 (B—AX)Y H{(V+AY)) }
_ 6271'71{ o (PAU+ *ANX+"Ap)+ o (B—AX)Y 1 V4B A—AX “A) }

_ 6271'71{ o (PAU) + o (B-AX)Y 1 tV)}

= Fa.a8(2).
Here we used the fact that ‘A and B*\ are integral. O
We use the notations in Section 3.

Lemma 4.2. The metric
dsd = o ((ImQ)~! 1(d2)dZ))

is a Kihler metric on Aq invariant under the action (1.2) of IV = Sp(g,Z)
Héh’g) on (Q, Z) with Q fized. Its Laplacian Aq of ds2, is given by

so- (o 2 (2))

PROOF. Let 7 = (v, (A, ;%)) € TV with y = (é g) € Sp(g,Z) and (Q, Z) =

7 -(Q, Z) with Q € H, fixed. Then according to [4, p. 33],
Im~-Q="CQ+D) 'ImQ(CQ+ D)*
and by (1.2),
dZ =dz (CQ + D) L.
Therefore
(Im Q)1 *(dZ)dZ

= (CQ+D)(ImQ) ' CQ+ D)(CQ+ D) dZ)dZ (CQ+ D)™ ?

= (CQ+D)(Im Q)" '¥dz)dZ (CQ+ D) L.
The metric ds;;, = o(dZ'(dZ)) at Z = 0 is positive definite. Since G acts on
H, 5 transitively, ds?, is a Riemannian metric for any Q € H,. We note that the

differential operator Aq is invariant under the action of I'7. In fact, according to

(1)
7] 7]
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Hence if f is a differentiable function on Aq, then
Im i ¢ <8—£>
0Z \oy
| 1 9 oficar ;2L
= HCQ+ D) (ImQ)(CQ+ D) (CQ+ D) 77 (CQJrD)ﬁ

o o ,(0f _
. i 1 i i
= YO+ D) ImQ <_a7> (CQ+ D).

(o (3)) - ~(mo ()

By the induction on h, we can compute the Laplacian Ag.

Therefore

We let L?(Aq) be the space of all functions f : Aqg — C such that
1flle = [ 15(2)Pdes,
Aq

where dvq is the volume element on Aq normalized so that f Aq dva = 1. The
inner product ( , )q on the Hilbert space L?(Ag) is given by

9]
Theorem 4.3. The set { Foap| A Be Zh9) } is a complete orthonormal basis
for L?(Agq). Moreover we have the following spectral decomposition of Aq:
L*(Aq) = @4 pesrarC - Egap.
PRrRoOOF. Let
T = C"9 )(z9) 5 79)y — (RU9) x RUW9)Y (709) ¢ 7790

be the torus of real dimension 2hg. The Hilbert space L?(T') is isomorphic to
the 2hg tensor product of L?(R/Z), where R/Z is the one-dimensional real torus.
Since L2(R/Z) = @©,,czC - €2 the Hilbert space L?(T) is

LA(T) = @4 pegpnarC - Eap(W),
where W = P +iQ, P,Q € R and
Eap(W) = 2ricCAPT EQ) - 4 B c 7o),
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The inner product on L?(T') is defined by

(4.2) / /f g(W)dp11 -+~ dpngdaqiy - - - dang,  f,g € L*(T),

where W = P +4iQ € T, P = (pgi) and @ = (qr). Then w