THE SCHRODINGER-WEIL REPRESENTATION AND THETA SUMS

JAE-HYUN YANG

ABSTRACT. In this paper, we construct the Schrodinger-Weil representation of the Jacobi
group associated with a positive definite symmetric real matrix of degree m and as its
application, we obtain some properties of theta sums associated with the Schrodinger-Weil
representation.

1. Introduction

For a given fixed positive integer n, we let
H,={QeC"™|Q="0, ImQ>0)}
be the Siegel upper half plane of degree n and let
Sp(n,R) = {g € R(2m21) ‘ 9 Jng = Jn }
be the symplectic group of degree n, where F'*!) denotes the set of all k x [ matrices with

entries in a commutative ring F' for two positive integers k and [, ’M denotes the transpose
of a matrix M, Im 2 denotes the imaginary part of 2 and

(0 I,
= (81,
Here I,, denotes the identity matrix of degree n. We see that Sp(n,R) acts on H,, transitively
by
g-Q=(AQ+ B)(CQ+ D)™,

h —ABES(R) dQeH
where g = { ~ p p(n,R) an n-

For two positive integers n and m, we consider the Heisenberg group

Hﬂ%n’m) ={( A\ mK)| A\ue R™™ e R k4 4 tX\ symmetric }
endowed with the following multiplication law
A pik)o (Nopsw') = A+ N p+ sk + 6 + X0 — ptX).
We let
G’ = Sp(n,R) x Hﬂ({“m) (semi-direct product)

be the Jacobi group endowed with the following multiplication law
(g, (A 13 f@)) : (9’, (N, s ﬂ’)) = (99’7 A+ N+ psk+ 6+ XY~ /719\'))
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with g,¢" € Sp(n,R), (\, ;5 k), (N, 15 k') € Hﬂ(g’m) and (X,ﬁ) = (A, 1)g’. Then we have the
natural transitive action of G’ on the Siegel-Jacobi space H, ,, := H,, x C(mn) defined by

(g, O\ 12 @) (9, 2) = ((AQ L BY(CQ+ D)L (Z A0+ w)(CQ+ D)*1>,

é IB; € Sp(n,R), (A\,u;k) € Hﬂ({"’m) and (Q,72) € H, . Thus H,,,py is a
homogeneous Kahler space which is not symmetric. In fact, Hj, ;,, is biholomorphic to the
homogeneous space G’ /K7, where K7 = U(n) x S(m,R). Here U(n) denotes the unitary
group of degree n and S(m,R) denote the abelian additive group consisting of all m x m
symmetric real matrices. We refer to [?, ?, ?], [?]-[?] for more details on materials related to
the Siegel-Jacobi space, e.g., Jacobi forms, invariant metrics, invariant differential operators
and Maass-Jacobi forms.

where g =

The Weil representation for a symplectic group was first introduced by A. Weil in [?]
to reformulate Siegel’s analytic theory of quadratic forms (cf.[?]) in terms of the group
theoretical theory. It is well known that the Weil representation plays a central role in
the study of the transformation behaviors of theta series. In this paper, we construct the
Schrodinger-Weil representation wyy of the Jacobi group GY associated with a positive
definite symmetric real matrix M of degree n.

This paper is organized as follows. In Section 2, we review the Schrodinger representation
of the Heisenberg group H]I({n’m) associated with a nonzero symmetric real matrix of degree m
which is formulated in [?, 7, ?]. In Section 3, we define the Schrodinger-Weil representation
wpy of the Jacobi group G” associated with a symmetric positive definite matrix M and
provide some of the actions of w4 on the representation space L2 (R(W") ) explicitly. In the

final section, we define the theta sum @E{Vl](ﬂ ¢ ;A\, i, k) and obtain some properties of the

theta sum. The theta sum @Ef\/” (1,0 ;A\, i, k) is a generalization of the theta sum defined
by J. Marklof [?].

Notations: We denote by Z, R and C the ring of integers, the field of real numbers
and the field of complex numbers respectively. C* denotes the multiplicative group of
nonzero complex numbers and Z* denotes the set of all nonzero integers. T denotes the
multiplicative group of complex numbers of modulus one. The symbol “:=” means that the
expression on the right is the definition of that on the left. For two positive integers k and
I, F1 denotes the set of all k x | matrices with entries in a commutative ring F. For a
square matrix A € F* %) of degree k, o(A) denotes the trace of A. For any M € F*D g
denotes the transpose of a matrix M. I, denotes the identity matrix of degree n. We put
i = v/—1. For a positive integer m we denote by S(m, F) the additive group consisting of
all m x m symmetric matrices with coefficients in a commutative ring F'.

2. The Schrodinger Representation

First of all, we observe that Hlén’m) is a 2-step nilpotent Lie group. The inverse of an

element (\, p; k) € Hﬂ({“m) is given by

A s 8) ™ = (=X = =k 4 X — ).
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Now we set
[\ 3 6] = (0, 5 ) 0 (A, 0;0) = (X, i3 5 — '),
Then Hﬂg{n’m) may be regarded as a group equipped with the following multiplication
(X, 5 K] © [N, ko3 ko] = [+ Ao, =+ po; & + Ko + Ao + po A
The inverse of [\, u; k| € Hﬂ%"’m) is given by
1

A s ] = [ = =+ A+ AL

We set

Then L is a commutative normal subgroup of HIén’m). Let L be the Pontrajagin dual of L,

i.e., the commutative group consisting of all unitary characters of L. Then Lis isomorphic
to the additive group R(™™ x S(m,R) via the canonical pairing

(a,a) = 2O HRR) g — [0, k] € L, a= (i, &) € L,
where S(m,R) denotes the space of all symmetric m x m real matrices.
We put
S = { X,0;0] € ™ ( A e ROWY) } o~ R(mm) |
Then S acts on L as follows:
[\, 0;0] %[0, ;5] := [0, 55 + X+ "],  [X0,00€8, [0,u;x] € L.
We see that the Heisenberg group (Hﬂg{"’m),o) is isomorphic to the semi-direct product
S x L of S and L whose multiplication law is defined by

(0,0: 01, [0, 1 1] ) (120,03 01,0, o o] )
= ([A+ X0, 0;0], [0, st + po3 K + o + Ao +uotx\])-

On the other hand, S acts on L by
[A,0;0] @ (i1, &) = (fu + 2R, &),

where [X,0;0] € S, (4,#) € L with 2 € R0 and & € S(m, R). Then we have the following
relation

([A,0;0] [0, p; 6], (f2, &)

) = ([0, s K], [A, 0; 0] ® (41, &) ),
where [A,0;0] € S, [0,;k] € L and (1, k) € L.

We have three types of S-orbits in L.
TvypE L Let # € S(m,R) be nondegenerate. The S-orbit of (0, %) € L is given by

O = {(2/%/\, R el ‘ \e RWM} &~ ROMn).

TypE II. Let (i) € R™™ x S(m,R) with i € R™™_ % € S(m,R) and degenerate
/ # 0. Then

~

Oy = {7+ 28, )

Ae RW”)} C ROMM ¢ {2}
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TypE I1I. Let § € R(™™. The S-orbit Oy of (§,0) is given by

Oy ={(5,0)}.
We have

L= U o|Ul U a|U U O
ReS(m,R) HeR(m,n) (fu,7)ER™™) x S(m,R)
/< nondegenerate ~#0 degenerate
as a set. The stabilizer Sy of S at (0, %) with nondegenerate £ is given by
Si = {0}.
And the stabilizer S; of S at (7,0) is given by

S5 = { 1A, 0:0] ‘ NeRMM L — g = RO,

In this section, for the present being we set H = Hé&n’m) for brevity. We see that L is a
closed, commutative normal subgroup of H. Since (A, u; k) = (0, ;5 + puA\) o (X,0;0) for
(A, i; k) € H, the homogeneous space X = L\H can be identified with R(™™ via

Lh=Lo(\0;0)— A\, h=(\u;k) € H.
We observe that H acts on X by
(Lh) - hg =LA+ X, 0;0) = XA+ N,
where h = (A, u; k) € H and hg = (o, pto; ko) € H.

If h = (\ p;k) € H, according to the Mackey decomposition of h = I o s, with I, € L
and s, € S, (cf. [?]) we have

I = (0,5 +uN), s,=(A0;0).
Thus if hg = (Ao, po; ko) € H, then we have
sn 0 ho = (X,0;0) o (Xo, o; 50) = (A + Ao, po; ko + A o)
and so
(2.1) Lsyono = (0, ko3 Ko + 1o Mo + Ao + 1o ™A).

For a real symmetric matrix ¢ = ‘c € S(m,R) with ¢ # 0, we consider the unitary
character x. of L defined by

(2.2) Xe ((0, p; &) = €™ (0, s k) € L.

Then the representation #, = Indf Xe of H induced from x. is realized on the Hilbert
space H(x.) = L?(X,dh,C) = L? (R(m™) d¢) as follows. If hy = (No, to; ko) € H and
x = Lh € X with h = (\, ;&) € H, we have

(2.3) (#e(ho) f) (x) = Xellsyone) f(zho), [ € H(xe)-

According to (2.1) and (2.2), we can describe Formula (2.3) more explicitly as follows.

(24) [We(ho) f] (A) = emiotetrotimo Dot 20 o)} £y 1)),
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where hg = (Ao, po; ko) € H and X € R(™n") Here we identified z = Lh (resp. xhg = Lhhy)
with A (resp. A+X\p). The induced representation #. is called the Schrodinger representation
of H associated with x.. Thus #, is a monomial representation.

Theorem 2.1. Let ¢ be a positive definite symmetric real matriz of degree m. Then the
Schrodinger representation W, of H is irreducible.

Proof. The proof can be found in [?], Theorem 3. O
Remark 2.1. We refer to [?]-[?] for more representations of the Heisenberg group Hﬂ(gn’m)
and their related topics.

3. The Schrodinger-Weil Representation

Throughout this section we assume that M is a positive definite symmetric real m x m
matrix. We consider the Schrodinger representation # of the Heisenberg group Hﬂg{n’m)
with the central character #(((0,0; %)) = xm((0,0; k) = €™M~ 1 € S(m, R) (cf. (2.2)).
We note that the symplectic group Sp(n,R) acts on Hﬂ(g’m) by conjugation inside G”. For
a fixed element g € Sp(n,R), the irreducible unitary representation #{, of Hé&n’m) defined
by
(3.1) Wi(h) = WPaalghg™), e HY™
has the property that

W/\g/t((ov O; H)) = WM((Ov O; H)) = ewia(/\/m) IdH(XM)7 K€ S(mv R)

Here Idg,,,) denotes the identity operator on the Hilbert space H(xa). According to
Stone-von Neumann theorem, there exists a unitary operator Raq(g) on H(xam) with
Rp(I2n) = Idfr(y ) Such that
(3.2) Rpa(9)#u(h) = W2 (h)Bpalg)  for all h e HI™.
We observe that R(g) is determined uniquely up to a scalar of modulus one.

From now on, for brevity, we put G = Sp(n,R). According to Schur’s lemma, we have a
map cp : G X G — T satisfying the relation

(3-3) Rnm(g192) = em(g1, 92) Ra(g1) Raqa(g2)  for all g1, 92 € G.

We recall that T' denotes the multiplicative group of complex numbers of modulus one.
Therefore Rpq is a projective representation of G on H(xa) and caq defines the cocycle
class in H?(G,T). The cocycle cpq yields the central extension G of G' by T. The group
Gz is a set G x T equipped with the following multiplication

(3.4) (91,t1) - (92 2) = (q192. tit2 (91, 92) ")y 91,92 € G, ti,ta € T.
We see immediately that the map ]A-'EM : Gpm — GL(H(xm)) defined by

(3.5) Ra(g,t) =t Rm(g) for all (g,t) € G
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is a true representation of G aq. As in Section 1.7 in [?], we can define the map sy : G — T
satisfying the relation

em(gr, 92)° = salg) 'smlg2) tsamlgrge) for all g1, g2 € G.

Thus we see that

(3.6) Go = {(9:1) € G| * =5m(9) 7" }
is the metaplectic group associated with M that is a two-fold covering group of G. The
restriction R g of Ry to G2 a is the Weil representation of G associated with M.

If we identify h = (\, u; k) € Hﬂ(g’m) (resp. g € Sp(n,R)) with (Ia,, (A, u; k) € G (resp.

,(0,0;0)) € G7), every element § of G’ can be written as § = hg with h € ™™ and
(9, ( y g g=hg R
g € Sp(n,R). In fact,

(g9, (A, 15 5)) = (Tan, (N, )9~ 15 1)) (95 (0,050)) = (A, w)g™ 5 8) - 9.

Therefore we define the projective representation ma of the Jacobi group G with cocycle
cm(91, 92) by

(3.7) wam(hg) = #u(h) Rlg), he HI™, gea.

m)

Indeed, since Hﬂg{n’m) is a normal subgroup of G7, for any hi, hy € Hé&n’ and ¢g1,92 € G,

Tam(higihags) = mm(higihagy ' g192)

= Wm(hi(gihagr ")) Bam(g192)

= cmlgr, 92) W () # 3 (ha) Raa(g1) Ram(g2)
cm(91, g2) W (ha) Raa(g1) W (ha) Ram(g2)
= cm(91, 92)mm(hagr)maa(haga).

We let
GJ =@ H(n’m)
M= GMm X g

be the semidirect product of G and ng&n’m) with the multiplication law

((g1,t1), A, a3 81)) - ((g25t2), (A2, p2 ;s K2))
= ((g1.t1)(g2,t2), (A + Ao, i+ p s 51 + k2 + Nz — i),

where (g1,t1), (92,t2) € Gam, (A1, p1sR1), (A2, a5 ko) € HH({n’m) and (5\,/1) = (A, u)g2. If we
identify h = (A, u; k) € Hé&n’m) (resp. (g,t) € Gaq) with ((Ian, 1), (N, p;k)) € G (resp.
((g,1),(0,0;0)) € G¥,), we see easily that every element ((g,t), (A, pu;k)) of G can be
expressed as

((9:8), A5 8)) = ((T2n, 1), (A 1)g ™15 1)) ((9:9),(0,0:0)) = (A, p)g ™5 K) (g, 1).

Now we can define the true representation way of G}]\/t by

(38)  @mlh-(g.1) = tmp(hg) = t #au(h) Ralg), he HY™, (g.1) € G
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Indeed, since Hﬂg{n’m) is a normal subgroup of Gf/l,

W (hi(g1,t1)ha(g2, t2))

= Gm(halgr, t1)ha(gr, 1) (g1, t1) (g2, t2))

= @ (ha(gr,t)ha(gr, t1) " (9192, tita ca(g1, 92) 7))
tita a1, 92) " #ou(ha(gn, t)ha(gr, t1) 1) Ra(g1g2)
tito Wi (b)) #m ((g1,t1)ha(g1,t1) 1) Raa(g1) Raa(g2)

= tita W (h)#m(g1h2gr ') Raa(g1) Ra(g2)

= tita Wm(h1)Rm(g1) #m(ha) Ra(g2)

= {timm(hig)} {ta ma(hage)}

= Om(ha(gr,t1)) Orm(ha(gast2)).

Here we used the fact that (g1,t1)ha(g1,t1) " = glhggl_l.

We recall that the following matrices

tb) = (%‘ Ib > with any b = th € R,
ta 0 .
gla) = 0 o-l with any a € GL(n,R),

(0 -I,
9= \1, 0

generate the symplectic group G = Sp(n,R) (cf.[?, p.326],[?, p.210]). Therefore the
following elements h¢(\, 15 k), t(b;t), g(a;t) and oy, ¢ of Gag X Hﬂ(g ™) defined by
he(X s 5) = ((TIon, t), (A 5 K)) with t € T, A p € R(™™ and k€ RO™™),
( ) (((b), ) (0 0;0)) with any b= '€ R™™_ ¢t €T,
= ((g9(a),1),(0,0;0)) with any @ € GL(n,R) and ¢ € T,
( )7(0,0,0)) witht € T
generate the group G X Hﬂ({l’m). We can show that the representation w, is realized on the

representation H(x ) = L? (R(m’")) as follows: for each f € L? (R(m’")) and z € R(™n),
the actions of Wxq on the generators are given by

(3.9) Gan(heh i) f] (x) = pemoMstnd2eil pg o)),

(3.10) [Gaa(td: 1) f] (@) = te“"’(M“””tx)f( ),

(3.11) [Wm(g(ast) f] (z) = t|detalz f(zta),

(3.12) [@at(om:1) f] (&) =t (det M) 2 / f(y) e"2mioMyta) gy
R(m,n)

Let

G = G x G
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be the semidirect product of G2 o4 and Hﬂ%n’m). Then Gi \ 1s a subgroup of Gf/t which is
a two-fold covering group of the Jacobi group G”. The restriction was of Waq to Gg’ M s
called the Schrédinger-Weil representation of G associated with M.

We denote by Li (R(m’”)) (resp. L? (R(m’”))) the subspace of L? (R(mm)) consisting of
even (resp.odd) functions in L? (R(m’”)). According to Formulas (3.10)—(3.12), Ra a is
decomposed into representations of R;t’ M

Ry m = Ry (@ Ry
where R; v and R5 ) o are the even Weil representation and the odd Weil representation of
G that are realized on L2+ (R(m’”)) and L? (R(m’")) respectively. Obviously the center QFQJ M
of GgM is given by
%{M = {((IQna 1)7 (Oa 0; "{)) € GQJ,M } = S(m7R)

We note that the restriction of wag to G aq coincides with Ry v and way(h) = #pq(h) for

(n,m)
all he Hy .

Remark 3.1. In the case n = m =1, waq is dealt in [?] and [?]. We refer to [?] and [?]
for more details about the Weil representation Ra ag.

Remark 3.2. The Schrodinger-Weil representation is applied usefully to the theory of
Maass-Jacobi forms [?].

4. Theta Sums

Let M be a positive definite symmetric real matrix of degree m. We recall the Schrodinger
representation #) of the Heisenberg group Hﬂ({n’m) associate with M given by Formula (2.4)
in Section 2. We note that for an element (\, u; k) of Hﬂ({L’m), we have the decomposition

(A, 5 5) = (X,0;0) 0 (0, 4;0) © (0,0; £ — A ).

We consider the embedding ®,, : SL(2,R) — Sp(n,R) defined by

(4.1) o, <<i Z)) - (g: ZZ) <‘C‘ 2) € SL(2,R).

For x,y € R™1) | we put
(2w = o('aMy)  and  [lfaci= V@ o)ac
According to Formulas (3.10)-(3.12), for any M = ((Z Z

fer? (R(mﬂ)), we have the following explicit representation

) € SL(2,R) — Sp(n,R) and

|a) 2" @bl £ (qz) if c=0,
a(M,z,y,M)

. R (M) fl(x) = n mn ,
e e {(detM>21c|-2fR<m,n>ecflﬂy)dy o0,
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where
a(M,z,y, M) = a |3+ dlly| i — 2(z, y)m
Indeed, if a = 0 and ¢ # 0, using the decomposition

()= 6

and if a # 0 and ¢ # 0, using the decomposition

M = (CCL Z) = (3 Z—1> <(1) _01> <%c (ai)dl)’

we obtain Formula (4.2).

(a1 b1 ) ba _ (a3 b3
M, = (Cl d1> , My = <c2 d2> and M3 = (Cg d3> € SL(Q,R)

with M3 = M Ms, the corresponding cocycle is given by

If

(43) CM(Ml,MQ) _ e—iwmnsign(616203)/4,
where
-1 (x <0)
sign(z) =< 0 (x=0)
1 (x > 0).

In the special case when

My = (cosgbl —81n¢1> and My — (9089252 —s,lnqz52>7

sin ¢1 Cos ¢1 sin ¢o COSs @9

we find
e (My, My) = €71 (061406, =061405)/4,
where
2v if g =vm
Op = .
2v+1 ifvr <o < (v+1)7.

It is well known that every M € SL(2,R) admits the unique Iwasawa decomposition

1w\ [v'/? 0 cos¢ —sing
(4.4) M = <O 1) < 0 v_1/2) (singf) cos¢>’

where 7 = u + v € Hj and ¢ € [0,27). This parametrization M = (7,¢) in SL(2,R) leads
to the natural action of SL(2,R) on H; x [0,27) defined by

(4.5) <CCL Z) (1,0) := (Z:j__s, ¢ + arg(cr + d) mod 27r) .

Lemma 4.1. For two elements g1 and g2 in SL(2,R), we let
(1w v1/2 cos ¢1 —sin ¢y
9=\0 1 0 _1/2 sin ¢ cos ¢
(1 ug v;/ 2 COS g —sin ¢
2=\0 1 0 *1/2 singa  cos ¢

and
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be the Iwasawa decompositions of g1 and go respectively, where uy,us € R, v1 > 0, v9 > 0
and 0 < @1, ¢p2 < 2m. Let

_ (1w (w0 cos 3  —sin g3
g3 = g192 = (O 1) ( 0 v3_1/2 sin ¢3 Cos @3

be the Iwasawa decomposition of g3 = g1g2. Then we have
A

(ug sin ¢y + cos ¢1)? + (vo sin ¢)?’
V1V2

(ug sin @1 + cos ¢1)? + (vg sin ¢y )2

us =

vy =

and
(vg coS g + ug sin ¢2) tan ¢ + sin Py

= tan!
93 (—vg sin ¢g + ug cos Pg) tan g1 + cos Py |’

where

A = wuj(ugsing; + cos #1)% + (u1v2 — viug) sin? ¢y

+ vyug cos® @1 + vl(ug + v% — 1) sin ¢ cos ¢1.

Proof. If g € SL(2,R) has the unique Iwasawa decomposition (4.4), then we get the following

a = v/%cos o+ uv~ Y2 sin o,

b = —v'/?sin ¢+ uv™ Y2 cos o,

c = v Y2%sin ¢, d= v 12 cos o,

u = (ac+ bd) (62 + d2)_1 , U= (02 +d2)_1 , tang = 2 .
We set

_ _ (a3 b3
Since
_ - c
us = (agcg + b3d3) (C% + d%) ! , U= (0;2; + dg) 1 . tangs = dj,
3

by an easy computation, we obtain the desired results. (|

Now we use the new coordinates (7 = u +iv, ¢) with 7 € H; and ¢ € [0,27) in SL(2,R).
According to Formulas (3.10)-(3.12), the projective representation Raq of SL(2,R) —
Sp(n,R) reads in these coordinates (7 = u + iv, ¢) as follows:

(4.6) [Raa(r, 0)f) () = 0% e lel5a™ Ry (i, ) £] (v'22),
where f € L? (R(m’”)) .z e R™) and

(B (i, ) f] (2)
f(z) if » = 0 mod 2,
47 = < f(-x) if ¢ =7 mod 2,

mn

(det M) 2 [sing| =2 [ eB@VSMIT f(y)dy if ¢ # 0 mod .
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Here
|3 + lyll34) cos ¢ — 2(z,y) 1
sin ¢ '

0 -1
5= (1 0) |
We note that

(48 [Ru (i 5) 1] @) = [Rae(S)f] (&) = (det M) /R fyye iy

for f € L? (R(m’”)) .

B(z,y, ¢, M) = (

Now we set

Remark 4.1. For Schwartz functions f € % (R(m’")) , we have

lim |sing| 2" / BlveMITEf(y)dy = eH T f(z) £ f(x).
¢4>0i R(m,n)

Therefore the projective representation Rq is not continuous at ¢ = vw (v € Z) in general.
If we set

R(,0) = e "7 AR (7, ),

R corresponds to a unitary representation of the double cover of SL(2,R) (cf. (3.5) and
[?]). This means in particular that

RM (7” ¢)RM (7’7 ¢/) = RM (7” ¢+ qb,))
where ¢ € [0,47) parametrises the double cover of SO(2) C SL(2,R).

We observe that for any element (g, (\,u; %)) € G7 with g € Sp(n,R) and (X, u; k) €

HIERn’m), we have the following decomposition

(9. A\ 1 8)) = (I2n, (A, )9~ 15 £)) (9, (0,050)) = (A, p)g ™5 ) - g
Thus Sp(n,R) acts on H[Eg"’m) naturally by

g-mw)= (g k). g€ Sp(nR), (A pr) € HY™™.
Definition 4.1. For any Schwartz function f € .7 (R(m’”)) , we define the function @EcM]
on the Jacobi group SL(2,R) x Hﬂ(gn’m) — G’ by

(4.9) oM osamr) = > [ (A pwr)(r,9)) f] (),

wEZ(m’n)

where (1,¢) € SL(2,R) and (A, pu;kK) € Hﬂ({L’m). The projective representation maq of the
Jacobi group G was already defined by Formula (3.7). More precisely, for 7 = u+iv € Hy
and (\, pu; k) € H]I(g’m), we have

OM (7, 6 A, iy ) = 05 2TiOMUstIA)

% Z ewi{un—H\HiA +2(w,M)M} [RM(Z, ¢)f] <U1/2(w —+ /\)) .

weZ(mn)
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Lemma 4.2. We set f, = Ram(i, ) f for f € .7 (R(m’")). Then for any R > 1, there
exists a constant Cr such that for all z € R(™™ and ¢ € R,

[fo(@)] < Cr (14 [la) ™"
Proof. Following the arguments in the proof of Lemma 4.3 in [?], pp.428-429, we get the

desired result. O

Theorem 4.1 (Jacobi 1). Let M be a positive definite symmetric integral matriz of degree
m such that MZ™™) = 7.(mn)  Then for any Schwartz function f € .7 (R(m’")) , we have

1 _n
ol <T, o+ argnu,x,@ = (det M)~ % ena(S, (,6)) O (7, 6 0, 1, ),

where
M (S, (T, ¢)) — glTmn sign(sin ¢ sin(¢p+argT)) '

Proof. First we recall that for any Schwartz function ¢ € . (R(m’")) , the Fourier transform
F ¢ of p is given by

(F¢)(x) = / p(y) e oW gy,
R(m,n)

Now we put

S — (? _é> € SL(2,Z) = Sp(n,R)

and for any F € . (R(m’")) , We put
Fum(z) == F(M™tz), «eRM,
According to Formula (3.12), for any F € .%/ (R(m’")) ,

/ F(y) e—27rio(/\/(y tw)dy
R(m,n)

N3

[Rum(S)F) (z) = (det M)

— (det M)_% / F(M—ly) e—QWig(ytZ)dy
R(m,n)
= (deta) E [ Ry ey
R(m,n
= (detM) "2 [FFpu](x).
Thus we have
(4.10) FFu = (det M) Ru(S)F  for F e .7 (RU™™).
By Lemma 4.1, we get easily
1
(4.11) S-(r,¢) = <—7_a¢+ arg7> )

If we take F' = mapq (N, ps 6)(1,0)) f for f € . (R(m’")), a fixed element (A, u; k) € Hﬂg{"’m)
and an fixed element (7,¢) € SL(2,R), then it is easily seen that F' € . (R(m’”)).
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According to Formulas (4.11), if we take F' = wap((A, s 5)(7,9)) f for f € (R(mvn)),

[Rum(S)F) () = [Ra(S)mm (A pik)(7,9)) f] (x), =€ RU™™
[RM(S)WM()‘ i k)R (T, 8) f] (@)
= [P\ 1)S™H K) R (S)Raa(7, 9) f] (2)
= cm(S,(1,0) 7" [#m(=p X; )R (S - (7,9)) f] ()
)

= cm(S, (1.9) 7 [WM(_%)\;H)RM (—i,chrargT) f] (x)

= cnlSmo) " [ (nrin) (< Lo+ aner ) ) 1] @
Thus we obtain
@12 [Ra(SF)(@) = ean(S. (70" [maa (i) (1,0 aner) ) 1] o)

According to Poisson summation formula, we have

(4.13) Yo FERMW = DY Fuw.

weZ(m:n) weZ(m,n)
It follows from (4.10) and (4.12) that

Y FEM W) = (detM): Y [Ru(S)F](w)

weZ(m,n) weZ(m,n)

= (det M) % cpq(S, (1, 9)) !

x> [77/\/1 <(—/M;F») <—i,¢>+arg7)> f] (z)

weZ(m,n)

= (det/\/l)% em(S, (r,¢) 7t @BCM] (—i, <Z>—|—arg7;—,u,)\,/-€> )

On the other hand,

Y Fuw) = Y F(Mlw)

wezZmm) weZ(m:n)
= > [l R)(n 0) f] (M)
weZmn)
— Z [WM((/\,M;R)(T, ¢))f] (w) ( M—lz(m,n) _ Z(m,n))
weZ(m,n)

= M (657, k).
Hence from (4.13) we obtain the desired formula
1 _n
;" <—T, ¢+arg7;—u,/\,f@> = (det M) "% cp(S, (r,9) O (.63 A, . ).
If

S:(“l 21) (T,¢):<“2 b2) and - (r,0) = (“g Z?’)ESL(Q R),

c1 co  do

13



14 JAE-HYUN YANG

according to Lemma 4.1, we get easily

c1c2C3 = (u2 + v2)1/2 sin ¢ sin(¢ + arg 7),

1w\ [v'/? 0 cos¢ —sing
(r,¢) = <O 1> < 0 v_1/2> (sin¢ cosqS)

is the Iwasawa decomposition of (7, ¢) € SL(2,R). Thus we obtain

where

M (S (7_ ¢)) — elmmn sign(cicacs) eiﬂmnsign(sinqﬁ sin(¢+arg 7))
» \T)

This completes the proof. O

Theorem 4.2 (Jacobi 2). Let M = (My;) be a positive definite symmetric integral m x m
matriz and let s = (s;) € Z™™) be integral. Then we have

@5;/\/[}(7+27¢;)‘73_2)\+Ma’{_8t)\) :@EZ/\A](T,Qb;A,/J,K)

for all (1,¢) € SL(2,R) and (\, u; k) € Hﬂ({“m).
Proof. For brevity, we put T, = <(1) ?) According to Lemma 4.1, for any (7, ¢) € SL(2,R),
the multiplication of T, and (7, ¢) is given by

(4.14) Ti(7,¢) = (T +2,0).

For s € R"™™ (X, u;k) € ngl’m) and (7,¢) € SL(2,R), according to (4.14),

T ((0, 530)T5) T (A, s £)(7, 8))
= Wm0, 8:0) Rm(T) W (N, s 6) R (T, 0)
= (0,5 0) (N T 5 K) Ra(Te) Rpa (7, )
= cm(Te, (1.0) " Wu(Ns — 2 X+ pik — s N R (Ti(7, 9))
= W\ s =2 X+ sk — sNRM(T +2,0)
= WM((/\,S —2XA+ ik — st/\)(7+2,¢)).
Here we used the fact that cyq(Ty, (7,¢)) = 1 because Ty is upper triangular.
On the other hand, according to the assumptions on M and s, for f € . (R(m’")) and
w € 2™ using Formulas (2.4), (3.10) or (4.6), we have
[T ((0, 85 0)T%) maq (A, s 5) (7, 0)) f] (@)
= [#m(0, 500 Rad(To) mamn (N, w3 6)(7, 0)) f] (w)
= oML 21T [R(6,0) (A 3 0) (7 0) ] ()
= [mm (N pR)(1,0)) f] ().
Here we used the facts that
e2rioMw's) — g 2T =1 and  Ru(i,0)f = f (cf. (4.7)).
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Therefore for f € . (R(™™)),

@BfM](T+2,q§;)\,s—2)\+u,/<c—st)\)
= Z [WM(()US_2)‘+:U’7I€_St)‘)(7—+27¢))f:| (w)
weZ(m,n)

= Z [ (€0, 5;0)T%) mad (N, 5 6) (7, 9)) f] (w)

wGZ(m«")

= Y [ mR)(T9)f] (W)

weZ(m,n)

= M (650 k).

This completes the proof. O

Theorem 4.3 (Jacobi 3). Let M = (My;) be a positive definite symmetric integral m x m
)

matriz and let (o, po; ko) € Hém’n) be an integral element of H}}%n,m . Then we have

OM (7, 65X+ Ao, 1+ po, -+ ko + Aot — 1o ')
= €ﬂ—io’(M(HO+MO tAO))@E({Vﬂ (7_7 (Z) 5 )\a H, H)

for all (1,¢) € SL(2,R) and (\, u; k) € Hﬂgn’m),

Proof. For any f € . (R(m’”)), we have

Z [Wam(Nos po; ko) (X, 5 6) (7, 9)) f] (w)

wezm,n)

- Z [WM()\(),,U,();K}())WM(A,,U,;H)RM(T, ¢)f] (w)
wez(m,n)

= Z [#0a(Xo + A, o + 1560 + &+ Ao ' — 110 N)) Raa (T, 8) f] (w)
wezm,n)

= Z [Tad (Mo + A, o + w550 + £+ Ao 1w — 10 N) (1, 9)) f] (w)
wez(m,n)
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On the other hand, for any f € . (R(m”‘)), we have
Z [WM()\(%MO;HO)TFM (()‘aM;H)(Ta (b))f] (w)

weZ(nL,n)

_ Z eTrio’{M(No-i-uo t)\o-i-th,U«O)} [71_./\/[(7_7 (ZS ; )\’ w, /g;)f] ((.U + Ao)
weZ(m;n)

—  mio{M(so+po Mo} Z [T (T, 05\ 1y k) f] (W + Xo) (.0 po is integral)
wez(m,n)

_ eﬂ’ia{M(lﬁoJrﬂo o} Z [ﬂ-M (7-, O\, L, /ﬁj)f] (w) ( Ao is integral)
wezZ(m.n)
= emg{M(nOJﬁuO Ao} @E;A/l] (T, O35, s K’)'

Finally we obtain the desired result.
We put V(m,n) = R0 x RO™™) Let
G .= SL(2,R) x V(m,n)

be the group with the following multiplication law

(415) (917 (>\17lu’1)) : (927 ()\2,,&2)) = (9192, (/\1,,&1)92 + ()\2’ N?))a
where g1, g2 € SL(2,R) and A1, Ag, i1, po € RO™7).
We define

romn .= S1(2,7) x HY"™.
Then T(™™ acts on G™™ naturally through the multiplication law (4.15).

Lemma 4.3. ™" s generated by the elements

(S’ (0’0))7 (Tb’(ovs)) and (127()\07#0))7

0 -1 11 -
S—<1 0>, Tb—<0 1> ands,)\o,uer( m),

Proof. Since SL(2,7) is generated by S and T}, we get the desired result.

where

We define
oM (7, 0.\ 1)

mn

= o 3 ertenBer 2w [Ry(i0) 1] (012w + N)

wez(m.n)

Theorem 4.4. Let Fg']l’n) be the subgroup of D™ generated by the elements

(S,(0,0)), (T*,(O,S)) and (127()\(]7#0))7

where

T, = <(1) %) and s, )\0,,[1,0 S Z(m,n)'
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Let M = (My;) be a positive definite symmetric unimodular integral m x m matriz such

that MZm™) = 7(mn) - Then for f,g € . (R(m’”)) , the function

M (7,02 X 1) 05 (7, 61 A )

is invariant under the action of Fg?’n) on Gm:n)

Proof. The proof follows directly from Theorem 4.1 (Jacobi 1), Theorem 4.2 (Jacobi 2) and

Theorem 4.3 (Jacobi 3) because the left actions of the generators of F[(;? ™) are given by

(). 0o — ((~Ho-+argr ) (nn).
((Ta ¢)a ()":UJ)) — ((T +2, ¢)’ ()‘a s—2A+ M))

and
((Tv ¢)7 ()‘7 /’L)) — ((T7 (25)7 (>‘ + )‘07 A+ :U’U))
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